第301回群馬大学アナログ集積回路研究会 Re

Rev. 1 2017.11.13

パワーMOSFETの基礎

松田順一 群馬大学

2016年06月23日(木) 14:20~17:30 群馬大学理工学部(桐生キャンパス)総合研究棟502号室

慨要

- 材料特性
 - ・ 真性キャリア密度、P-N接合ビルトイン(拡散)電位、抵抗、移動度、抵抗率、インパクト・イオン化、ブレークダウン電圧、
 理想特性オン抵抗とブレークダウン電圧の関係
- MOSFET基本電気特性
 - しきい値電圧、電流式とチャネル抵抗
- パワーMOSFETのオン抵抗
 - VD(Vertical Diffused)-MOSFETのオン抵抗、U-MOSFETのオン抵抗
- パワーMOSFETの容量
 - VD-MOSFETの容量、U-MOSFETの容量
- スイッチング特性
 - ・ ゲート電荷、ターンオン特性、特性ゲート電荷とFOM値、ターンオン過渡特性、ターンオフ過渡特性、スイッチング損失
- 過渡変化によるターンオンとSOA(Safe Operating Area)
 - ・ 容量性ターンオン、バイポーラ・ターンオン、セカンド・ブレークダウン、リバース・リカバリーによるターンオン、SOA
- 温度特性(しきい値電圧と特性オン抵抗)
- ・ 4H-SiCパワーMOSFET
 - VD-MOSFET、シールド型VD-MOSFET、シールド型U-MOSFET

参考文献 B. Jayant Baliga, "Fundamentals of Power Semiconductor Devices," Springer Science + Business Media, 2008

真性キャリア密度

真性キャリア密度 $n_i = \sqrt{np} = \sqrt{N_C N_V} e^{-E_G/2kT}$ Siの真性キャリア密度 $n_i = 3.87 \times 10^{16} T^{3/2} e^{-(7.02 \times 10^3)/T}$ (cm⁻³) 4H-SiCの真性キャリア密度 $n_i = 1.70 \times 10^{16} T^{3/2} e^{-(2.08 \times 10^4)/T}$ (cm⁻³)

n_i: 真性キャリア密度(cm⁻³)N_C: 伝導帯中の状態密度(cm⁻³)E_G: バンドギャップ・エネルギー(J)n: 電子密度(cm⁻³)N_V: 価電子帯中の状態密度(cm⁻³)k: ボルツマン定数(1.38 × 10⁻²³J/K)p: 正孔密度(cm⁻³)T: 絶対温度(K)

P-N接合ビルトイン(拡散)電位

P-N階段接合のビルトイン電位の温度依存性

ビルトイン電位

$$V_{bi} = \frac{kT}{q} \ln \left(\frac{N_A^- N_D^+}{n_i^2} \right)$$

k:ボルツマン定数(1.38×10⁻²³ J/K) q:素電荷量(1.6×10⁻¹⁹ C)

P-N階段接合ゼロバイアス時の空乏層幅の濃度依存性 ゼロバイアス時の空乏層幅

$$W_{bi} = \sqrt{\frac{2\varepsilon_s}{qN_A^-}} V_{bi}$$

 ε_s : 誘電率 Si ⇒ 11.7×8.854×10⁻¹⁴ (F/cm) 4H-SiC ⇒ 9.7×8.854×10⁻¹⁴ (F/cm)

抵抗

$$R = \frac{1}{\mu_B nq} \frac{a}{bc} = \rho \frac{a}{bc} = R_s \frac{a}{b}$$

$$\rho = \frac{1}{\sigma} = \frac{1}{\mu_B nq} \qquad (\rho: 抵抗率, \sigma: 導電率)$$

$$R_s = \frac{\rho}{c} = \frac{1}{\mu_B nqc} = \frac{1}{\mu_B |Q'|} \qquad (R_s: \flat - \flat \text{LLT})$$

$$\therefore I = (nq)(bc)(v_d) = (nq)(bc)(\mu_B E)$$

$$= (nq)(bc)\left(\mu_B \frac{V}{a}\right) = (\mu_B nq)\left(\frac{bc}{a}\right)V$$
単位体積当たりの電荷 断面積 = コンダクタンス = (1/ 抵抗)

μ_B: キャリア移動度
n:キャリア密度
q:素電荷量
Q':単位面積当たりの電荷
ν_d:ドリフト速度
E:電界

移動度(濃度依存性)

C. Jacobini, et al., "A Review of Some Charge Transport Properties of Silicon," Solid-State Electronics, Vol. 20, pp. 77-89, 1977.
 M. Ruff, H. Mitlehner, and R. Helbig, "SiC Devices: Physics and Numerical Simulations," IEEE Transactions on Electron Devices, Vol. ED-41, pp. 1040-1054, 1994.

移動度(温度依存性)

- (1) C. Canali, et al., "Electron Drift Velocity in Silicon," Physical Review, Vol. B12, pp. 2265-2284, 1975.
- (2) G. Ottaviani, et al., "Hole Drift Velocity in Silicon," Physical Review, Vol. B12, pp. 3318-3329, 1975.
- (3) N.G. Wright, et al., "Electrothermal Simulation of 4H-SiC Power Devices," Silicon Carbide, Ⅲ-Nitrides, and Related Materials 1997, Material Science Forum, Vol. 264, pp.917-920, 1998.

移動度(電界依存性)

N型Si内の電子の平均移動度(低濃度)

$$\mu_n(\text{Si}) = \frac{9.85 \times 10^6}{\left(1.04 \times 10^5 + E^{1.3}\right)^{0.77}} \quad (\text{cm}^2 \text{V}^{-1} \text{s}^{-1})$$

P型Si内の正孔の平均移動度(低濃度)

$$\mu_p(\text{Si}) = \frac{8.91 \times 10^6}{\left(1.41 \times 10^5 + E^{1.2}\right)^{0.83}} \quad (\text{cm}^2 \text{V}^{-1} \text{s}^{-1})$$

N型4H-SiC内の電子の平均移動度(低濃度)⁽¹⁾

$$\mu_n(4\text{H}-\text{SiC}) = \frac{\mu_0}{\left(1 + \left(\mu_0 E / v_{sat,n}\right)^2\right)^{0.5}} \quad (\text{cm}^2 \text{V}^{-1} \text{s}^{-1})$$

移動度の電界依存性

$$\mu_0 = 1140 \text{ (cm}^2 \text{V}^{-1} \text{s}^{-1}) \quad v_{sat,n} = 2 \times 10^7 \text{ (cm/s)} \quad E \text{ (V/cm)}$$

(1) N.G. Wright, et al., "Electrothermal Simulation of 4H-SiC Power Devices," Silicon Carbide, Ⅲ-Nitrides, and Related Materials — 1997, Material Science Forum, Vol. 264, pp.917-920, 1998.

ドリフト速度の電界依存性と飽和速度の温度依存性

キャリア・ドリフト速度の電界依存性(低濃度)

v_d = μE v_d:ドリフト速度 μ:移動度 E:電界

キャリア飽和速度の温度依存性(低濃度)

抵抗率

N型Siの抵抗率(室温)

$$\rho_n(\text{Si}) = \frac{3.75 \times 10^{15} + N_D^{0.91}}{8.16 \times 10^{-1} N_D + 1.47 \times 10^{-17} N_D^{1.91}} \quad (\Omega \text{cm})$$

$$\rho_n(\text{Si}) = \frac{4.60 \times 10^{15}}{N_D} \quad (\Omega \text{cm}) \quad \text{for } N_D < 10^{15} \text{ cm}^{-3}$$

$$\rho_n(\text{Si}) = \frac{6.94 \times 10^{16}}{N_D} \quad (\Omega \text{cm}) \quad \text{for } N_D > 10^{19} \text{ cm}^{-3}$$

P型Siの抵抗率(室温)

$$\rho_{p}(\text{Si}) = \frac{5.86 \times 10^{12} + N_{A}^{0.76}}{4.64 \times 10^{-4} N_{A} + 7.63 \times 10^{-18} N_{A}^{1.76}} \quad (\Omega \text{cm})$$

$$\rho_{p}(\text{Si}) = \frac{1.26 \times 10^{16}}{N_{A}} \quad (\Omega \text{cm}) \quad \text{for } N_{A} < 10^{15} \text{ cm}^{-3}$$

$$\rho_{p}(\text{Si}) = \frac{1.25 \times 10^{17}}{N_{A}} \quad (\Omega \text{cm}) \quad \text{for } N_{A} > 10^{19} \text{ cm}^{-3}$$

$$N_{D}(\text{cm}^{-3}), N_{A}(\text{cm}^{-3})$$

抵抗率の濃度依存性

N型4H-SiCの抵抗率(室温) $\rho_n(4\text{H-SiC}) = \frac{3.55 \times 10^{10} + N_D^{0.61}}{6.48 \times 10^{-6} N_D + 3.20 \times 10^{-18} N_D^{1.61}} \quad (\Omega \text{cm})$

インパクト・イオン化係数

(1) A.G. Chynoweth, "Ionization Rates for Electrons and Holes in Silicon," Physical Review, Vol. 109, pp. 1537-1545, 1958.

(2) C.R. Crowell and S.M. Sze, "Temperature Dependence of Avalanche Multiplication in Semiconductors," Applied Physics Letters, Vol. 9, pp. 242-244, 1966.

(3) R. Van Overstraeten and H. De Man, "Measurement of the Ionization Rates in Diffused Silicon P-N Junctions," Solid-State Electronics, Vol. 13, pp. 583-590, 1970.

(4) R. Raghunathan and B.J. Baliga, "Temperature Dependence of Hole Impact Ionization Coefficients in 4H and 6H SiC," Solid-State Electronics, Vol. 43, pp. 199-211, 1999.

(5) R. Raghunathan and B.J. Baliga, "Role of Defects in Producing Negative Temperature Dependence of Breakdown Voltage in SiC," Applied Physics Letters, Vol. 72, pp. 3196-3198, 1998.

(6) Fulop, "Calculation of Avalanche Breakdown of Silicon P-N Junctions," Solid-State Electronics, Vol. 10, pp. 39-43, 1967.

(7) B.J. Baliga, "Silicon Carbide Power Devices," World Scientific, Singapore 2006.

PN階段接合ブレークダウン電圧と空乏層幅

xにおける電界 $E(x) = -\frac{qN_D}{\varepsilon_s} (W_D - x)$ xにおける電圧(ビルトイン電位無視) $V(x) = \frac{qN_D}{\varepsilon_c} \left(W_D x - \frac{1}{2} x^2 \right)$ 空乏層幅Wと印加電圧V』の関係 $W_D = \left(\frac{2\varepsilon_s V_a}{aN_p}\right)^{1/2}$ ブレークダウン条件 $\int_{a}^{w_{D}} \alpha dx = 1$ $\alpha_F(\text{cm}^{-1}) = 1.8 \times 10^{-35} E^7$ (for Si) $\alpha_{B \mod{\text{iffed}}}(\text{cm}^{-1}) = 9.5 \times 10^{-43} E^7 \text{ (for 4H-SiC)}$

Siの場合 $BV_{PP} = 5.24 \times 10^{13} N_D^{-3/4}$ (V) $W_{C,PP} = 2.60 \times 10^{10} N_D^{-7/8}$ (cm) $E_{C,PP} = 4.02 \times 10^3 N_D^{1/8}$ (V/cm)

4H-SiCの場合 $BV_{PP} = 3.00 \times 10^{15} N_D^{-3/4}$ (V) $W_{C,PP} = 1.80 \times 10^{11} N_D^{-7/8}$ (cm) $E_{C,PP} = 3.35 \times 10^4 N_D^{1/8}$ (V/cm)

BV_{PP}: ブレークダウン電圧 W_{C,PP}: ブレークダウン時の空乏層幅 E_{C,PP}: ブレークダウン時の電界(臨界電界) (平型PN階段接合) N_D(cm⁻³)

ブレークダウン電圧と空乏層幅の濃度依存性

Doping Concentration (cm⁻³)

ブレークダウン電圧の濃度依存性

ブレークダウン時空乏層幅の濃度依存性

ブレークダウン時の電界(臨界電界)の濃度依存性

ブレークダウン時の電界(臨界電界)の濃度依存性

理想特性オン抵抗とブレークダウン電圧の関係(1)

理想特性オン抵抗とブレークダウン電圧の関係(ドリフト領域の抵抗のみ考慮)

$$R_{on-sp,ideal} = \frac{4BV_{PP}^2}{\varepsilon_s \mu E_C^3} \ (\Omega \,\mathrm{cm}^2)$$

BV_{PP}: 平型PN階段接合ブレークダウン電圧 (V) μ: 移動度(cm²V⁻¹s⁻¹) E_C: 臨界電界(V/cm) ε_s: 半導体誘電率(F/cm) Siの低ドリフト濃度の場合(<10¹⁵cm⁻³)

 $R_{on-sp,ideal} (n - channel) = 5.93 \times 10^{-9} BV_{PP}^{2.5} (\Omega \text{ cm}^2)$ $R_{on-sp,ideal} (p - channel) = 1.63 \times 10^{-8} BV_{PP}^{2.5} (\Omega \text{ cm}^2)$

4H-SiC の低ドリフト濃度の場合(<10¹⁵cm⁻³)

 $R_{on-sp,ideal}$ (n - channel) = 1.96×10⁻¹² $BV_{PP}^{2.5}$ (Ω cm²)

理想特性オン抵抗とブレークダウン電圧の関係(2)

 $\mu \in E_C$ の濃度依存性考慮 1E+02 1E-01 1E-04 1E+02 1

Breakdown Voltage BVPP (V)

N型Siと4H-SiCの理想特性オン抵抗と ブレークダウン電圧の関係の比較

MOSFETしきい 値 電圧

フラットバンド電圧

$$V_{FB} = \phi_{MS} - \frac{Q_O}{C_{OX}}$$
$$\phi_{MS} = \phi_{F,gate} - \phi_F$$
$$\phi_F = \frac{kT}{q} \ln\left(\frac{N_A}{n_i}\right)$$
$$C_{OX} = \frac{\varepsilon_{OX}}{t_{OX}}$$

しきい値電圧

$$V_{TH} = V_{FB} + 2\phi_F + \gamma \sqrt{2\phi_F} \qquad \gamma = \frac{\sqrt{2q\varepsilon_S N_A}}{C_{OX}}$$

Q₀: 界面固定電荷(単位面積当たり) Cox: ゲート酸化膜容量(単位面積当たり) ϕ_{MS} : 仕事関数差による電位差(ゲートと基板間) $\phi_{F,gate}$: ゲートのフェルミ電位 (N⁺ポリSiゲート: -0.56V) ϕ_{F} :フェルミ電位(基板) k: ボルツマン定数 T: 絶対温度 q:素電荷量 *ε*_s: 半導体誘電率 *ε_{0X}*:酸化膜誘電率 *t_{OX}*: ゲート酸化膜厚

n_j: 真性キャリア密度

N_A:基板不純物濃度

MOSFET電流式とチャネル抵抗

Z: MOSFETのチャネル幅 μ_{ni} : 反転層移動度

飽和領域の電流式

$$I_{DS} = \frac{1}{2} \mu_{ni} C_{OX} \frac{Z}{L_{CH}} (V_{GS} - V_T)^2 \quad \because dI_{DS} / dV_{DS} = 0$$

dx 領域のチャネル抵抗 dR(5頁参照) $R = \frac{1}{\mu_{ni} nq} \frac{a}{bc} \Longrightarrow dR = \frac{1}{\mu_{ni} n(x)q} \frac{dx}{Zc} \Longrightarrow dR = \frac{1}{\mu_{ni} Q_n(x)} \frac{dx}{Z}$ xにおける単位面積当たりのチャネル電荷 $Q_{n}(x) = C_{OX} \left[V_{CS} - V_{TH} - V(x) \right]$ xにおける電流 I_{DS} と電圧dVの関係(オームの法則) $dV = I_{DS} dR$ \downarrow $I_{DS} dx = Z\mu_{ni}C_{OX} [V_{CS} - V_{TH} - V(x)] dV$ 線形領域の電流式 ($I_{DS}dx$ の式を $x: 0 \sim L_{CH}$ で積分) $I_{DS} = \mu_{ni} C_{OX} \frac{Z}{L_{exc}} \left\{ (V_{GS} - V_{TH}) V_{DS} - \frac{1}{2} V_{DS}^2 \right\}$ チャネル抵抗(V_{DS} :小) $R_{CH} = \frac{L_{CH}}{\mu \cdot C_{OH} Z (V_{CH} - V_{TH})}$

反転層移動度のゲート電圧依存性

反転層移動度のゲート電圧依存性

$$\mu_{ni} = \frac{\mu_{ni0}}{1 + \theta (V_{GS} - V_{TH})}$$

μ_{ni0}: ゲート電界が弱い場合の反転層移動度 θ: ゲート電界による移動度の劣化パラメータ

VD-MOSFETのオン抵抗

オン状態の抵抗 R_{ON}

$$R_{ON} = R_{CS} + R_{N^+} + R_{CH} + R_A + R_{JFET} + R_D + R_{SUB} + R_{CD}$$

 R_{CS}: ソース・コンタクト抵抗
 R_{JFET}: JFET抵抗

 R_{N+}: ソースN⁺抵抗
 R_D: ドリフト抵抗

 R_{CH}: チャネル抵抗
 R_{SUB}: 基板抵抗

 R_A: 蓄積抵抗
 R_{CD}: ドレイン・コンタクト抵抗

VD-MOSFETの各オン抵抗成分(1)

VD-MOSFETの各オン抵抗成分(2)

$R_{CH} = \frac{L_{CH}}{Z\mu_{ni}C_{OX}(V_G - V_{TH})} (\Omega) \qquad L_{CH} : f v \lambda V_E (cm) \qquad L_{CH} = x_{JP} - x_{JN^+} \qquad V_G : f - h \equiv E (V) \\ \mu_{ni} : 反 転層移動度 (cm^2 V^{-1} s^{-1}) \qquad V_{mi} : L > L \land i f \equiv F (V)$ <u>各チャネル抵抗</u> *C*_{ox}:単位面積当たりのゲート容量 (F/cm²)

V_{TH}:しきい値電圧 (V)

チャネルの特性オン抵抗(単位面積に換算)

$$R_{CH,SP} = \frac{L_{CH}}{2Z\mu_{ni}C_{OX}(V_G - V_{TH})} (W_{Cell}Z) = \frac{L_{CH}W_{Cell}}{2\mu_{ni}C_{OX}(V_G - V_{TH})} (\Omega \,\mathrm{cm}^2)$$

各蓄積層の抵抗

$$R_{A} = \frac{L_{A}}{Z\mu_{nA}C_{OX}(V_{G} - V_{TH})} (\Omega) \qquad \qquad L_{A}: 蓄積領域長 (cm) \qquad L_{A} = \frac{W_{G}}{2} - x_{JF}$$
$$\mu_{nA}: 蓄積領域移動度 (cm2V-1s-1)$$

|蓄積層の特性オン抵抗(単位面積に換算)

 K_A :電流広がり係数 (蓄積 \rightarrow JFET) *x_{IP}*:Pベース接合深さ(cm)

TT7

$$R_{A,SP} = K_A \frac{(W_G - 2x_{JP})}{4Z\mu_{nA}C_{OX}(V_G - V_{TH})} (W_{Cell}Z) = K_A \frac{(W_G - 2x_{JP})W_{Cell}}{4\mu_{nA}C_{OX}(V_G - V_{TH})} (\Omega \text{ cm}^2)$$

VD-MOSFETの各オン抵抗成分(3)

<u>JFET領域の抵抗</u>

$$R_{JFET} = \frac{\rho_{JFET} x_{JP}}{Za} = \frac{\rho_{JFET} x_{JP}}{Z \left(W_G - 2x_{JP} - 2W_0\right)} \left(\Omega\right)$$

JFET領域の特性オン抵抗(単位面積に換算)

$$R_{JFET,SP} = \frac{\rho_{JFET} x_{JP}}{Z(W_G - 2x_{JP} - 2W_0)} (W_{Cell} Z) = \frac{\rho_{JFET} x_{JP} W_{Cell}}{(W_G - 2x_{JP} - 2W_0)} (\Omega \text{ cm}^2)$$

 ρ_{JFET} : JFET領域の抵抗率 $\rho_{JFET} = \frac{1}{q\mu_n N_{DI}} (\Omega \text{ cm})$

a: JFET領域の電流通路幅

W_o: JFET領域のゼロバイアス空乏層幅

$$W_0 = \sqrt{\frac{2\varepsilon_s N_A V_{bi}}{q N_{DJ} \left(N_A + N_{DJ}\right)}} \quad (\text{cm})$$

V_{bi}: JFET領域のビルトイン電位

$$a = W_G - 2x_{JP} - 2W_0$$
 (cm) $V_{bi} = \frac{kT}{q} \ln\left(\frac{N_A N_{DJ}}{n_i^2}\right)$ (V)

q:素電荷量(1.6×10⁻¹⁹ C) k:ボルツマン定数(1.38×10⁻²³J/K) T:絶対温度(K) ε_s:Si誘電率(11.7×8.854×10⁻¹⁴ F/cm)

N₄: Pベース不純物濃度 (cm⁻³) *N_{DJ}*: JFET領域不純物濃度 (cm⁻³)

VD-MOSFETの各オン抵抗成分(4)

電流通路のドリフト領域が 45°で広がり、セルいっぱいに広がる前に、 N⁺基板と接続する場合のドリフト領域の抵抗

ドリフト領域の抵抗

$$R_D = \frac{\rho_D}{2Z} \ln\left(\frac{a+2t}{a}\right)(\Omega)$$

ドリフト領域の特性オン抵抗(単位面積に換算)

$$R_{D,SP} = \frac{\rho_D}{2Z} \left(W_{Cell} Z \right) \ln \left(\frac{a+2t}{a} \right) = \frac{\rho_D W_{Cell}}{2} \ln \left(\frac{a+2t}{a} \right) (\Omega \text{ cm}^2)$$

$$X_{D} = a + 2y$$
 $dR_{D} = \frac{\rho_{D}dy}{ZX_{D}} = \frac{\rho_{D}dy}{Z(a + 2y)}$ $R_{D} = \int_{0}^{t} \frac{\rho_{D}dy}{Z(a + 2y)}$

VD-MOSFETの各オン抵抗成分(5)

電流通路のドリフト領域がセルいっぱいに広がり, 広がった時点で N⁺ 基板と接続する場合のドリフト領域の抵抗

<u>ドリフト領域の抵抗</u>

ドリ

$$R_{D} = \frac{\rho_{D}t}{Z(W_{Cell} - a)} \ln\left(\frac{W_{Cell}}{a}\right)(\Omega)$$

フト領域の特性オン抵抗(単位面積に換算)

$$R_{D,SP} = \frac{\rho_D t}{Z(W_{Cell} - a)} (W_{Cell} Z) \ln\left(\frac{W_{Cell}}{a}\right) = \frac{\rho_D t W_{Cell}}{W_{Cell} - a} \ln\left(\frac{W_{Cell}}{a}\right) (\Omega \text{ cm}^2)$$

$$X_D = a + \frac{W_{Cell} - a}{t} y$$

$$dR_D = \frac{\rho_D dy}{ZX_D} = \frac{\rho_D t dy}{Z[at + (W_{Cell} - a)y]}$$

$$R_D = \int_0^t \frac{\rho_D t dy}{Z[at + (W_{Cell} - a)y]}$$

VD-MOSFETの各オン抵抗成分(6)

電流通路のドリフト領域が N⁺ 基板と接続する前に、 45°でセルいっぱいに広がった場合のドリフト領域の抵抗

ドリフト領域の抵抗

$$R_{D1} = \frac{\rho_D}{2Z} \ln\left(\frac{W_{Cell}}{a}\right)(\Omega) \qquad \qquad R_{D2} = \frac{\rho_D}{ZW_{Cell}} \left(t + \frac{a}{2} - \frac{W_{Cell}}{2}\right)(\Omega)$$

(45°で広がった領域) (広がった後、N⁺基板接続までの領域) ドリフト領域の特性オン抵抗(単位面積に換算)

$$R_{D,SP} = \left(R_{D1} + R_{D2}\right) \left(W_{Cell}Z\right)$$
$$= \frac{\rho_D W_{Cell}}{2} \ln\left(\frac{W_{Cell}}{a}\right) + \rho_D \left(t + \frac{a}{2} - \frac{W_{Cell}}{2}\right) (\Omega \text{ cm}^2)$$

$$X_{D} = a + 2y \qquad dR_{D1} = \frac{\rho_{D} dy}{ZX_{D}} = \frac{\rho_{D} dy}{Z(a + 2y)} \qquad R_{D} = \int_{0}^{(W_{Cell} - a)/2} \frac{\rho_{D} dy}{Z(a + 2y)}$$
$$L_{D2} = t + \frac{a}{2} - \frac{W_{Cell}}{2}$$

VD-MOSFETの各オン抵抗成分(7)

基板領域の抵抗

$$R_{SUB} = \rho_{SUB} \frac{t_{SUB}}{W_{Cell}Z} \ (\Omega)$$

ρ_{SUB}: 基板抵抗率 (Ω cm) t_{SUB}: 基板厚み (cm)

基板領域の特性抵抗(単位面積に換算)

$$R_{SUB,SP} = \rho_{SUB} \frac{t_{SUB}}{W_{Cell}Z} (W_{Cell}Z) = \rho_{SUB} t_{SUB} (\Omega \,\mathrm{cm}^2)$$

<u>ドレインのコンタクト抵抗</u>

$$R_{CD} = \frac{\rho_{CD}}{W_{Cell}Z} \quad (\Omega)$$

ρ_{CD}:ドレインの特性コンタクト抵抗 (Ω cm²)

ドレイン・コンタクトの特性抵抗(単位面積に換算)

$$R_{CD,SP} = \frac{\rho_{CD}}{W_{Cell}Z} (W_{Cell}Z) = \rho_{CD} \ (\Omega \,\mathrm{cm}^2)$$

VD-MOSFETの特性オン抵抗(BV_{DS}=60V)

特性オン抵抗の各成分(JFET幅変化)

特性オン抵抗 値 (Ω cm²) 割合 R_{CH,SP} 2.06E-05 6.4% 3.18E-05 9.9% $R_{A,SP}$ 1.34E-05 4.2% $R_{JFET,SP}$ $R_{D,SP}$ 2.27E-04 71.0% 2.56E-05 8.0% $R_{SUB,SP}$ 3.20E-04 100.0% R_{ON,SP_total}

> 全特性オン抵抗最小値での 各特性オン抵抗の値と割合

全特性オン抵抗最小値

 $\Rightarrow R_{ON,SP_total} = 3.20 \times 10^{-4} \,(\Omega \text{ cm}^2) \text{ at } W_G = 3.0 \,(\mu\text{m}), \, W_{cell} = 4.6 \,(\mu\text{m})$ $V_G = 5\text{V}, \, V_{TH} = 1.38\text{V}, \, t = 3.0 \,(\mu\text{m}), \, t_{SUB} = 200 \,(\mu\text{m})$

VD-MOSFETの特性オン抵抗(BV_{DS}=200V)

特性オン抵抗の各成分(JFET幅変化)

特性オン抵抗	值 (Ωcm ²)	割合
R _{CH,SP}	2.60E-05	0.7%
$R_{A,SP}$	6.68E-05	1.8%
R _{JFET,SP}	9.68E-06	0.3%
$R_{D,SP}$	3.61E-03	96.5%
R _{SUB,SP}	2.56E-05	0.7%
R _{ON,SP_total}	3.74E-03	100.0%

. .

л.

___.

全特性オン抵抗最小値での 各特性オン抵抗の値と割合

全特性オン抵抗最小値

 $\Rightarrow R_{ON,SP_total} = 3.74 \times 10^{-3} (\Omega \text{ cm}^2) \text{ at } W_G = 4.2 (\mu \text{m}), W_{cell} = 5.8 (\mu \text{m})$

 $V_G = 5V, V_{TH} = 1.38V, t = 12.4 (\mu m), t_{SUB} = 200 (\mu m)$

U-MOSFETのオン抵抗

オン状態の抵抗 R_{ON}

 $R_{ON} = R_{CS} + R_{N^+} + R_{CH} + R_A + R_D + R_{SUB} + R_{CD}$ R_{CS} : ソース・コンタクト抵抗 R_D : ドリフト抵抗 R_{N+} : ソースN⁺抵抗 R_{SUB} : 基板抵抗 R_{CH} : チャネル抵抗 R_{CD} : ドレイン・コンタクト抵抗 R_A : 蓄積抵抗

U-MOSFETのオン抵抗成分(1)

各ソースのコンタクト抵抗 $R_{CS} = \frac{2\rho_{CS}}{Z(W_C - W_S)} (\Omega) \qquad \begin{array}{l} \rho_{CS} : \mathcal{Y} - \mathcal{X} o 特性コンタクト抵抗 (\Omega cm^2) \\ Z : 断面に垂直方向のデバイス幅 (cm) \end{array}$ ソース・コンタクトの特性抵抗(単位面積に換算) $R_{CS,SP} = \frac{\rho_{CS}}{Z(W_c - W_c)} (W_{Cell} Z) = \rho_{CS} \frac{W_{Cell}}{W_c - W_c} (\Omega \text{ cm}^2)$ 各N⁺ソースの抵抗 $ho_{_{SQN^+}}$:ソース領域シート抵抗 (Ω/\Box) $R_{SN^+} = \rho_{SQN^+} \frac{L_{N^+}}{7} (\Omega)$ *L*_{N⁺}:ソース領域の長さ (cm) $L_{N^{+}} = \frac{W_{M} - W_{S}}{2}$ $x_{JN^{+}} : N^{+} Y - ス領域接合深さ (cm)$ N*ソースの特性抵抗(単位面積に換算) $R_{SN^{+},SP} = \rho_{SQN^{+}} \frac{L_{N^{+}}}{27} (W_{Cell}Z) = \frac{\rho_{SQN^{+}} L_{N^{+}} W_{Cell}}{2} (\Omega \text{ cm}^{2})$

31

U-MOSFETのオン抵抗成分(2)

<u>各チャネル抵抗</u>

 $R_{CH} = \frac{L_{CH}}{Z\mu_{ni}C_{OX}(V_G - V_{TH})} (\Omega) \qquad \begin{array}{l} L_{CH} : \mathcal{F} \lor \land \mathcal{I} \lor \mathcal{I}_{CH} = x_{JP} - x_{JN^+} \\ \mu_{ni} : 反転層移動度 \ (\mathrm{cm}^2 \mathrm{V}^{-1} s^{-1}) \end{array}$ V_G :ゲート電圧 (V) *V_{TH}*:しきい値電圧 (V) *C*_{ox}:単位面積当たりのゲート容量 (F/cm²)

チャネルの特性オン抵抗(単位面積に換算)

$$R_{CH,SP} = \frac{L_{CH}}{2Z\mu_{ni}C_{OX}(V_G - V_{TH})} (W_{Cell}Z) = \frac{L_{CH}W_{Cell}}{2\mu_{ni}C_{OX}(V_G - V_{TH})} (\Omega \,\mathrm{cm}^2)$$

各蓄積層の抵抗

$$R_{A} = \frac{L_{A}}{Z\mu_{nA}C_{OX}(V_{G} - V_{TH})} (\Omega) \qquad \qquad L_{A} : \Bar{a}tating \eqref{eq:cm} L_{A} = t_{T} - x_{JP} + \frac{W_{T}}{2} \\ \mu_{nA} : \Bar{a}tating \eqref{eq:cm} t_{A} = t_{T} - x_{JP} + \frac{W_{T}}{2} \\ \mu_{nA} : \Bar{a}tating \eqref{eq:cm} t_{A} = t_{T} - x_{JP} + \frac{W_{T}}{2} \\ \mu_{A} : \Bar{a}tating \eqref{eq:cm} t_{A} = t_{T} - x_{JP} + \frac{W_{T}}{2} \\ \mu_{A} : \Bar{a}tating \eqref{eq:cm} t_{A} = t_{T} - x_{JP} + \frac{W_{T}}{2} \\ \mu_{A} : \Bar{a}tating \eqref{eq:cm} t_{A} = t_{T} - x_{JP} + \frac{W_{T}}{2} \\ \mu_{A} : \Bar{a}tating \eqref{eq:cm} t_{A} = t_{T} - x_{JP} + \frac{W_{T}}{2} \\ \mu_{A} : \Bar{a}tating \eqref{eq:cm} t_{A} = t_{T} - x_{JP} + \frac{W_{T}}{2} \\ \mu_{A} : \Bar{a}tating \eqref{eq:cm} t_{A} = t_{T} - x_{JP} + \frac{W_{T}}{2} \\ \mu_{A} : \Bar{a}tating \eqref{eq:cm} t_{A} = t_{T} - x_{JP} + \frac{W_{T}}{2} \\ \mu_{A} : \Bar{a}tating \eqref{eq:cm} t_{A} = t_{T} - x_{JP} + \frac{W_{T}}{2} \\ \mu_{A} : \Bar{a}tating \eqref{eq:cm} t_{A} = t_{T} - x_{JP} + \frac{W_{T}}{2} \\ \mu_{A} : \Bar{a}tating \eqref{eq:cm} t_{A} = t_{T} - x_{JP} + \frac{W_{T}}{2} \\ \mu_{A} : \Bar{a}tating \eqref{eq:cm} t_{A} = t_{T} - x_{JP} + \frac{W_{T}}{2} \\ \mu_{A} : \Bar{a}tating \eqref{eq:cm} t_{A} = t_{T} - x_{JP} + \frac{W_{T}}{2} \\ \mu_{A} : \Bar{a}tating \eqref{eq:cm} t_{A} = t_{T} - x_{JP} + \frac{W_{T}}{2} \\ \mu_{A} : \Bar{a}tating \eqref{eq:cm} t_{A} = t_{T} - x_{JP} + \frac{W_{T}}{2} \\ \mu_{A} : \Bar{a}tating \eqref{eq:cm} t_{A} = t_{T} - x_{JP} + \frac{W_{T}}{2} \\ \mu_{A} : \Bar{a}tating \eqref{eq:cm} t_{A} = t_{T} - x_{JP} + \frac{W_{T}}{2} \\ \mu_{A} : \Bar{a}tating \eqref{eq:cm} t_{A} = t_{T} - x_{JP} + \frac{W_{T}}{2} \\ \mu_{A} : \Bar{a}tating \eqref{eq:cm} t_{A} = t_{T} + \frac{W_{T}}{2} \\ \mu_{A} : \Bar{a}tating \eqref{eq:cm} t_{A} = t_{T} + \frac{W_{T}}{2} \\ \mu_{A} : \Bar{a}tating \eqref{eq:cm} t_{A} = t_{T} + \frac{W_{T}}{2} \\ \mu_{A} : \Bar{a}tating \eqref{eq:cm} t_{A} = t_{T} + \frac{W_{T}}{2} \\ \mu_{A} : \Bar{a}tating \eqref{eq:cm} t_{A} = t_{T} + \frac{W_{T}}{2} \\ \mu_{A} : \Bar{a}tating \eqref{eq:cm} t_{A} = t_{T} + \frac{W_{T}}{2} \\ \mu_{A} : \Bar{a}tating \eqref{eq:cm} t_{A} = t_{T} + \frac{W_{T}}{2} \\ \mu_{A} : \Bar{a}tating \e$$

|蓄積層の特性オン抵抗(単位面積に換算)|

 K_A :電流広がり係数 (蓄積 \rightarrow JFET) *x_{IP}*:Pベース接合深さ(cm)

TT7

$$R_{A,SP} = K_A \frac{L_A}{2Z\mu_{nA}C_{OX}(V_G - V_{TH})} (W_{Cell}Z) = K_A \frac{L_A W_{Cell}}{2\mu_{nA}C_{OX}(V_G - V_{TH})} (\Omega \,\mathrm{cm}^2)$$

U-MOSFETのオン抵抗成分(3)

電流通路のドリフト領域が N⁺ 基板と接続する前に、45° でセルいっぱいに広がった場合のドリフト領域の抵抗

<u>ドリフト領域の抵抗</u>

ドリフト領域の特性オン抵抗(単位面積に換算)

$$R_{D,SP} = (R_{D1} + R_{D2})(W_{Cell}Z)$$

= $\frac{\rho_D W_{Cell}}{2} \ln\left(\frac{W_M + W_T}{W_T}\right) + \rho_D\left(t + x_{JP} - t_T - \frac{W_M}{2}\right)(\Omega \text{ cm}^2)$
 $X_D = a + 2y$ $dR_{D1} = \frac{\rho_D dy}{ZX_D} = \frac{\rho_D dy}{Z(a + 2y)}$ $R_D = \int_0^{(W_{Cell} - a)/2} \frac{\rho_D dy}{Z(a + 2y)}$
 $L_{D2} = t + x_{JP} - t_T - \frac{W_M}{2}$ $a = W_M$ $W_{Cell} = W_M + W_T$

U-MOSFETのオン抵抗成分(4)

基板領域の抵抗

$$R_{SUB} = \rho_{SUB} \frac{t_{SUB}}{W_{Cell}Z} \ (\Omega)$$

ρ_{SUB}: 基板抵抗率 (Ω cm) t_{SUB}: 基板厚み (cm)

基板領域の特性抵抗(単位面積に換算)

$$R_{SUB,SP} = \rho_{SUB} \frac{t_{SUB}}{W_{Cell}Z} (W_{Cell}Z) = \rho_{SUB} t_{SUB} (\Omega \,\mathrm{cm}^2)$$

<u>ドレインのコンタクト抵抗</u>

$$R_{CD} = \frac{\rho_{CD}}{W_{Cell}Z} \quad (\Omega)$$

ρ_{CD}:ドレインの特性コンタクト抵抗 (Ω cm²)

ドレイン・コンタクトの特性抵抗(単位面積に換算)

$$R_{CD,SP} = \frac{\rho_{CD}}{W_{Cell}Z} (W_{Cell}Z) = \rho_{CD} \ (\Omega \,\mathrm{cm}^2)$$

U-MOSFETの特性オン抵抗(BV_{DS}=60, 200V)

特性オン抵抗成分 (BV_{DS}=60V)

特性オン抵抗	值 (Ωcm ²)	割合
R _{CH,SP}	1.12E-05	4.4%
$R_{A,SP}$	1.15E-05	4.6%
$R_{D,SP}$	2.03E-04	80.5%
R _{SUB,SP}	2.56E-05	10.2%
R _{ON,SP_total}	2.52E-04	100.0%

t=3.0 (µm)

特性オン抵抗成分 (BV_{DS}=200V)

特性オン抵抗	值 (Ωcm ²)	割合
R _{CH,SP}	1.12E-05	0.3%
$R_{A,SP}$	1.15E-05	0.3%
$R_{D,SP}$	3.57E-03	98.6%
R _{SUB,SP}	2.56E-05	0.7%
R _{ON,SP_total}	3.61E-03	100.0%

t=12.4 (µm)

 $V_G = 5$ V, $V_{TH} = 1.38$ V, $t_{SUB} = 200 (\mu m)$

 $t_T = 0.8 \text{ (}\mu\text{m}\text{)}, W_T = 0.8 \text{ (}\mu\text{m}\text{)}, W_{cell} = 2.5 \text{ (}\mu\text{m}\text{)}$

VD-MOSFET構造の容量(1)

<u>各MOSFETの入力容量</u>

 $C_{IN} = C_{N^+} + C_P + C_{SM}$ (F)

特性入力(ゲート)容量(単位面積に換算)

$$C_{IN,SP} = \frac{C_{N^{+}} + C_{P} + C_{SM}}{W_{Cell}Z} = \frac{2x_{PL}Z}{W_{Cell}Z}C_{OX} + \frac{W_{G}Z}{W_{Cell}Z}C_{ILOX}$$
$$= \frac{2x_{PL}}{W_{Cell}}C_{OX} + \frac{W_{G}}{W_{Cell}}C_{ILOX} \quad (\text{Fcm}^{-2})$$

$$C_{OX} = \frac{\varepsilon_{OX}}{t_{OX}}$$
 (Fcm⁻²) $C_{ILOX} = \frac{\varepsilon_{OX}}{t_{ILOX}}$ (Fcm⁻²)

 ε_{OX} :酸化膜誘電率(3.84×8.854×10⁻¹⁴ Fcm⁻¹) t_{OX} :酸化膜厚(cm)

t_{ILOX}: 層間酸化膜厚(cm)
VD-MOSFET構造の容量(2)

酸化膜

VD-MOSFET構造の容量(3)

<u>MOSFETの出力(ドレイン・ソース間)容量(セル当たり)</u> $C_{O} = (W_{PW} + 2x_{PL})ZC_{S,J}$ (F) (モデルA) $C_{O} = (W_{PW} + x_{PL})ZC_{S,J}$ (F) (モデルB)

特性出力(ドレイン・ソース間)容量(単位面積に換算)

$$C_{O} = \frac{\left(W_{PW} + 2x_{PL}\right)Z}{W_{Cell}Z}C_{S,J} = \left(\frac{W_{PW} + 2x_{PL}}{W_{Cell}}\right)C_{S,J} \quad (\text{Fcm}^{-2}) \quad (\text{EFILA})$$

$$C_{O} = \frac{\left(W_{PW} + x_{PL}\right)Z}{W_{Cell}Z}C_{S,J} = \left(\frac{W_{PW} + x_{PL}}{W_{Cell}}\right)C_{S,J} \quad (\text{Fcm}^{-2}) \qquad (\text{EFILB})$$

(モデルAは実際より大きく見積もり過ぎ)

C_{S.J}:単位面積当たりのドリフト・Pベース間接合容量

$$C_{S,J} = \frac{\mathcal{E}_S}{W_{D,J}} \quad (\text{Fcm}^{-2})$$

W_{D,J}:ドリフト領域側の空乏層幅

$$W_{D,J} = \sqrt{\frac{2\varepsilon_s (V_D + V_{bi})}{qN_D}} \quad (\text{cm})$$

(片側階段接合近似)

U-MOSFET構造の容量(1)

各MOSFETの入力容量 $C_{IN} = C_{N^+} + C_P + C_{SM}$ (F) 特性入力(ゲート)容量(単位面積に換算) $C_{IN,SP} = \frac{C_{N^{+}} + C_{P} + C_{SM}}{W_{Call}Z} = \frac{2x_{JP}Z}{W_{Call}Z}C_{OX} + \frac{W_{T}Z}{W_{Call}Z}C_{ILOX}$ $= \frac{2x_{JP}}{W_{Cell}}C_{OX} + \frac{W_T}{W_{Cell}}C_{ILOX} \quad (\text{Fcm}^{-2})$ $C_{OX} = \frac{\varepsilon_{OX}}{t_{OX}}$ (Fcm⁻²) $C_{ILOX} = \frac{\varepsilon_{OX}}{t_{ILOX}}$ (Fcm⁻²) ε_{OX} :酸化膜誘電率(3.84×8.854×10⁻¹⁴ Fcm⁻¹) t_{OX}:酸化膜厚(cm)

t_{ILOX}: 層間酸化膜厚(cm)

U-MOSFET構造の容量(2)

 $MOSFETのゲート・ドレイン間容量(セル当たり)
 C_{GD} = [W_T + 2(t_T - x_{JP})]Z \frac{C_{OX}C_{S,M}}{C_{OX} + C_{S,M}} (F)
 特性ゲート・ドレイン間容量(単位面積に換算)
 C_{GD,SP} = \frac{[W_T + 2(t_T - x_{JP})]Z}{W_{Cell}Z} \frac{C_{OX}C_{S,M}}{C_{OX} + C_{S,M}}
 = \left[\frac{W_T + 2(t_T - x_{JP})}{W_{Cell}}\right] \frac{C_{OX}C_{S,M}}{C_{OX} + C_{S,M}} (Fcm^{-2})$

 $C_{S.M}$:半導体空乏層容量(Fcm⁻²)

<u>MOSFETの出力(ドレイン・ソース間)容量(セル当たり)</u> $C_o = W_M ZC_{S,J}$ (F) 特性出力(ドレイン・ソース間)容量(単位面積に換算)

$$C_{O} = \frac{W_{M}Z}{W_{Cell}Z}C_{S,J} = \left(\frac{W_{M}}{W_{Cell}}\right)C_{S,J} \text{ (Fcm}^{-2})$$
$$\Rightarrow C_{O} = \left(\frac{W_{M} - 2K_{S}(t_{T} - x_{JP} - t_{OX})}{W_{Cell}}\right)C_{S,J} \text{ (Fcm}^{-2})$$

$$C_o$$
の実効面積
 $A_{EFF} = [W_M - 2K_S(t_T - x_{JP} - t_{OX})]Z \text{ (cm}^2)$
 $K_S: スクリーニング・パラメータ$
(トレンチ深さがpベースより深いため、
 C_o の接合面積は $W_M Z$ から狭まる)

 Q_{GS1} : しきい値前ゲート電荷 Q_{GS2} : しきい値後ゲート電荷 Q_{GS2} : ゲート電荷 Q_{GS} : ゲート電荷 Q_{GD} : ゲート・ドレイン電荷 Q_{SW} : ゲート・スイッチング電荷 Q_{G} : 全ゲート電荷

*C_{DS}:ドレイン・ソース間容量*をセル面積で割った値

 $Q_{GS} = Q_{GS1} + Q_{GS2}$ $Q_{SW} = Q_{GS2} + Q_{GD}$

上記 Q はセル面積で割った値(単位面積換算値)

ゲート電荷(2)

0~t₂: ゲート電圧は線形に上昇(ゲート・ドレイン間容量一定)

 $\frac{dv_{GS}}{dt} = \frac{J_G}{C_{GS} + C_{GS}(V_{DS})} \quad \Rightarrow \quad v_{GS}(t) = \frac{J_G t}{C_{GS} + C_{GS}(V_{DS})}$ t₁:ゲート電圧はしきい値に到達 J_G :ゲート電流をセル面積で割った単位面積当たりの値 $t_1 = \frac{V_{TH} \left[C_{GS} + C_{GD} \left(V_{DS} \right) \right]}{J_C}$ t₄~t₃:ドレイン電流(飽和状態)上昇 $j_D(t) = \frac{g_m}{2} \left[v_{GS}(t) - V_{TH} \right] \quad j_D(t): F \cup T \rightarrow \mathbb{R}$ る 他 の 最 で 割った 単位 面積 当たりの 値 (ピンチオフによる 他 和 の 場合) $g_{m} = \frac{2\mu_{ni}C_{OX}Z}{(W_{GN}Z)L_{GN}} [v_{GS}(t) - V_{TH}] = \frac{2\mu_{ni}C_{OX}}{W_{GN}L_{GN}} [v_{GS}(t) - V_{TH}]$ (セル当たり対のMOSFET) $j_{D}(t) = \frac{\mu_{ni}C_{OX}}{W_{GS} + L_{CT}} \left[v_{GS}(t) - V_{TH} \right]^{2} \qquad \Rightarrow \qquad j_{D}(t) = \frac{\mu_{ni}C_{OX}}{W_{GS} + L_{CT}} \left| \frac{J_{G}t}{C_{SS} + C_{SS}} - V_{TH} \right|^{2}$

ゲート電荷(3)

t₂:オン状態のドレイン電流に到達(ゲート・プラトー領域開始)

J_{ON}(t):オン状態のドレイン電流をセル面積で割った単位面積当たりの値

$$t_{2} \sim t_{3}: \mathcal{F} - \mathbf{h} \cdot \mathbf{F} \cup \mathbf{f} \vee \mathbf{h}$$

($\mathcal{F} - \mathbf{h} \cdot \mathbf{y} - \mathbf{x}$ 間容量に電流は流れない :: V_{GS} 一定)
$$\frac{dv_{D}}{dt} = -\frac{J_{G}}{C_{GD}(v_{D})}$$
$$C_{GD}(v_{D}) = K_{G} \left(\frac{C_{OX}C_{S,M}}{C_{OX} + C_{S,M}}\right)$$

K_G: 形状ファクター

$$K_{G}(\text{VD-MOSFET}) = \left(\frac{W_{G} - 2x_{PL}}{W_{Cell}}\right)$$
$$K_{G}(\text{U-MOSFET}) = \left[\frac{W_{T} + 2(t_{T} - x_{JP})}{W_{Cell}}\right]$$

ゲート電荷(4)

 t_3 :ドレイン電圧が V_{DS} からオン状態ドレイン電圧 V_{ON} まで低下

$$-\frac{K_{G}C_{OX}}{J_{G}}\sqrt{\frac{q\varepsilon_{S}N_{D}}{q\varepsilon_{S}N_{D}+2v_{D}(t)C_{OX}^{2}}}}dv_{D} = dt$$

$$t_{3}-t_{2} = \frac{K_{G}q\varepsilon_{S}N_{D}}{J_{G}C_{OX}}\left(\sqrt{1+\frac{2V_{DS}C_{OX}^{2}}{q\varepsilon_{S}N_{D}}}-\sqrt{1+\frac{2V_{ON}C_{OX}^{2}}{q\varepsilon_{S}N_{D}}}\right)$$

$$v_{D}(t) = \frac{q\varepsilon_{S}N_{D}}{2C_{OX}^{2}}\left[\sqrt{1+\frac{2V_{DS}C_{OX}^{2}}{q\varepsilon_{S}N_{D}}}-\frac{J_{G}C_{OX}(t-t_{2})}{K_{G}q\varepsilon_{S}N_{D}}}\right]^{2}-1\right]$$

 $t_3 \sim t_4$: ゲート電圧が再び線形に上昇(ゲート・ドレイン間容量一定)

$$\frac{dv_{GS}}{dt} = \frac{J_G}{C_{GS} + C_{GD}(V_{ON})} \qquad \Rightarrow \qquad v_{GS}(t) = \frac{J_G t}{C_{GS} + C_{GD}(V_{ON})}$$

 t_4 : ゲート電圧がゲートへの供給電圧 V_{GS} に到達

$$t_4 - t_3 = \frac{V_{GS} - V_{GP}}{J_G} [C_{GS} + C_{GD}(V_{ON})]$$

$$\begin{split} &Q_{GS1} = J_{G}t_{1} = V_{TH} \Big[C_{GS} + C_{GD}(V_{DS}) \Big] \\ &Q_{GS2} = J_{G} \Big(t_{2} - t_{1} \Big) = \Big[C_{GS} + C_{GD}(V_{DS}) \Big] \sqrt{\frac{J_{ON} W_{Cell} L_{CH}}{\mu_{nl} C_{OX}}} \\ &Q_{GS} = J_{G} t_{2} = \Big[C_{GS} + C_{GD}(V_{DS}) \Big[V_{TH} + \sqrt{\frac{J_{ON} W_{Cell} L_{CH}}{\mu_{nl} C_{OX}}} \Big] \\ &Q_{GD} = J_{G} \Big(t_{3} - t_{2} \Big) = \frac{K_{G} q \varepsilon_{S} N_{D}}{C_{OX}} \Big(\sqrt{1 + \frac{2V_{DS} C_{OX}^{2}}{q \varepsilon_{S} N_{D}}} - \sqrt{1 + \frac{2V_{ON} C_{OX}^{2}}{q \varepsilon_{S} N_{D}}} \Big) \\ &Q_{SW} = J_{G} \Big(t_{3} - t_{1} \Big) = \Big[C_{GS} + C_{GD} (V_{DS}) \Big] \sqrt{\frac{J_{ON} W_{Cell} L_{CH}}{\mu_{nl} C_{OX}}} + \frac{K_{G} q \varepsilon_{S} N_{D}}{C_{OX}} \Big(\sqrt{1 + \frac{2V_{DS} C_{OX}^{2}}{q \varepsilon_{S} N_{D}}} - \sqrt{1 + \frac{2V_{ON} C_{OX}^{2}}{q \varepsilon_{S} N_{D}}} \Big) \\ &Q_{G} = J_{G} \Big(t_{3} - t_{1} \Big) = \Big[C_{GS} + C_{GD} (V_{DS}) \Big] \sqrt{\frac{J_{ON} W_{Cell} L_{CH}}{\mu_{nl} C_{OX}}} + \frac{K_{G} q \varepsilon_{S} N_{D}}{C_{OX}} \Big(\sqrt{1 + \frac{2V_{DS} C_{OX}^{2}}{q \varepsilon_{S} N_{D}}} - \sqrt{1 + \frac{2V_{ON} C_{OX}^{2}}{q \varepsilon_{S} N_{D}}} \Big) \\ &Q_{G} = J_{G} \Big(t_{4} = \Big[C_{GS} + C_{GD} (V_{DS}) \Big] V_{GP} + \frac{K_{G} q \varepsilon_{S} N_{D}}{C_{OX}} \Big(\sqrt{1 + \frac{2V_{DS} C_{OX}^{2}}{q \varepsilon_{S} N_{D}}} - \sqrt{1 + \frac{2V_{ON} C_{OX}^{2}}{q \varepsilon_{S} N_{D}}} \Big) \\ &+ \Big[C_{GS} + C_{GD} (V_{ON}) \Big] [V_{G} - V_{GP} \Big) \\ \end{pmatrix} \end{aligned}$$

VD-MOSFETターン・オン特性(BV_{DS}=60Vのサンプル)

 $W_{Cell} = 4.6 \,\mu m$ $t_{ILOX} = 0.2 \,\mu m$ $L_{CH} = 0.35 \,\mu m$ $W_G = 3.0 \,\mu m$ $x_{JP} = 0.6 \,\mu m$ $V_{TH} = 1.38 \,V$ (JFET領域の濃度 > ドリフト領域の濃度)

U-MOSFET**ターン・オン特性**(BV_{DS}=60Vのサンプル)

 $W_{Cell} = 2.5 \,\mu\text{m} \qquad t_T = 0.8 \,\mu\text{m} \qquad t_{ILOX} = 0.2 \,\mu\text{m} \qquad L_{CH} = 0.35 \,\mu\text{m}$ $W_T = 0.8 \,\mu\text{m} \qquad x_{JP} = 0.6 \,\mu\text{m} \qquad t_{SUB} = 200 \,\mu\text{m} \qquad V_{TH} = 1.38 \,\text{V}$

47

特性ゲート電荷とFOM値

特性ゲート電荷をVD-MOSFETとU-MOSFETで比較

特性ゲート電荷(1)	VD-MOSFET	U-MOSFET	単位
Q _{GS1}	1.64E-07	1.98E-07	Ccm ^{−2}
Q _{GS2}	2.32E-08	2.06E-08	Ccm ^{−2}
Q _{GS}	1.87E-07	2.18E-07	Ccm ^{−2}
Q _{GD}	4.19E-07	1.52E-07	Ccm ^{−2}
Q _{SW}	4.43E-07	1.73E-07	Ccm ^{−2}
Q _G	1.27E-06	1.01E-06	Ccm ^{−2}

FOMをVD-MOSFETとU-MOSFETで比較

FOM ⁽²⁾	VD-MOSFET	U-MOSFET	単位
R _{ON} *Q _{GD}	134	38	mΩ∙nC
R _{ON} *Q _{SW}	141	44	mΩ∙nC
R _{ON} *Q _G	405	255	mΩ∙nC

BV_{DS}=60Vのサンプル J_G =10 A/cm² J_{ON} =300 A/cm² V_{DS} =40 V V_{GS} =5 V

(1) 各ゲート電荷をセル面積で割った値

(2) FOMの中の R_{ON} はセル当たりの全抵抗値にセル面積を掛けた値

スイッチング特性

- S₁: オン⇒MOSFETターンオン
 - 負荷インダクタンスにエネルギー蓄積 (*i_D*増大)
- S₂: オン⇒MOSFETターンオフ

ターンオン過渡特性(1)

0~t₁:ターンオン開始からドレイン電流が流れるまでの遅延時間

$$v_{G}(t) = V_{GS} \left\{ 1 - e^{-t/R_{G} [C_{GS} + C_{GD}(V_{DS})]} \right\}$$
$$t_{1} = R_{G} [C_{GS} + C_{GD}(V_{DS})] \ln \left(\frac{V_{GS}}{V_{GS} - V_{TH}} \right)$$

t₁~t₂:ドレイン電流が流れ始めてから負荷電流に到達するまでの時間 (ダイオード電流がドレイン電流へ移行)

ターンオン過渡特性(2)

 $t_{2} \sim t_{3}: \vec{r} - \mathbf{h} \cdot \vec{r} - \mathbf{h} \cdot \vec{r} - \mathbf{h} \cdot \vec{r} + \mathbf{h} \cdot \vec{r} - \mathbf{h} \cdot \vec{r} + \mathbf{h}$

ドレイン電圧依存性のある $C_{GD}(v_D)$ を平均的な一定値 $C_{GD,AV}$ で近似

$$v_{D}(t) = V_{DS} - \frac{(V_{GS} - V_{GP})t}{R_{G}C_{GD,AV}} \qquad \Rightarrow \qquad t_{3} - t_{2} = \frac{R_{G}C_{GD,AV}}{V_{GS} - V_{GP}} [V_{DS} - I_{L}R_{ON}(V_{GP})]$$

 $v_D(t_3) = I_L R_{ON}(V_{GP})$

ターンオフ過渡特性(1)

0: ~t_s:ターンオフ開始からドレイン電圧が立上るまでの遅延時間 $v_G(t) = V_{GS} e^{-t/R_G [C_{GS} + C_{GD}(V_{ON})]}$ $t_5 = R_G \left[C_{GS} + C_{GD} (V_{ON}) \right] \ln \left(\frac{V_{GS}}{V_{GP}} \right)$ t₅~t₆: ゲート・プラトー領域(ゲート・ドレイン間容量放電) この領域のゲート電流: *i_{GP}*(一定) $i_{GP}(t) = \frac{V_{GP}}{R_{C}} = \frac{1}{R_{C}} \left(\sqrt{\frac{2I_{L}L_{CH}}{\mu_{L}C_{OX}Z}} + V_{TH} \right)$ ドレイン電圧の時間変化=ゲート・ドレイン間電圧の時間変化 $\frac{dv_D}{dt} = \frac{dv_{GD}}{dt} = \frac{i_{GP}}{C_{GD}(v_D)}$

ターンオフ過渡特性(2)

ドレイン電圧依存性のある $C_{GD}(v_D)$ を平均的な一定値 $C_{GD,AV}$ で近似

$$v_{D}(t) = V_{ON}(V_{GP}) + \frac{1}{R_{G}C_{GD,AV}} \left(\sqrt{\frac{2I_{L}L_{CH}}{\mu_{ni}C_{OX}Z}} + V_{TH} \right) (t - t_{5}) \qquad \Rightarrow \qquad t_{6} - t_{5} = R_{G}C_{GD,AV} \frac{V_{DS} - V_{FD} - V_{ON}(V_{GP})}{V_{GP}}$$
$$v_{D}(t) \text{ if } V_{DS} - V_{FD} i: \text{ Jif } V_{FD}: \text{ Jif } T - \text{ Kight for a field of the set of$$

t₆~t₇:ドレイン電流がダイオードへ移行(ドレイン電流⇒ゼロ)

$$v_{G}(t) = V_{GP} e^{-(t-t_{6})/R_{G}[C_{GS}+C_{GD}(V_{DS})]}$$
ゲート電圧の時間変化 $(C_{GS} \geq C_{GD}(V_{DS})$ の放電)
 \downarrow $t_{7} - t_{6} = R_{G} \Big[C_{GS} + C_{GD}(V_{DS}) \Big] ln \Big(\frac{V_{GP}}{V_{TH}} \Big)$ $: v_{G}(t_{7}) = V_{TH}$ ドレイン電流: ゼロ ⇒ ゲート電圧: V_{TH}

t₇~: ゲート電圧が指数関数的に低下(⇒ゼロ)

この場合の時定数 \Rightarrow t₆~t₇間のゲート電圧低下の時定数と同じ

スイッチング損失

全損失電力(各セル当たり)

Q₃ゲート充放電による損失エネルギー(各セル当たり) ①と②それぞれで損失(Q₁とQ₂で損失) $E_{ON} = E_{OFF} = \frac{1}{2}Q_G V_{GS} \approx \frac{1}{2}C_{IN}V_{GS}^2$ スイッチング時の導通による損失エネルギー(各セル当たり) ターンオン $\Rightarrow E_{turn-on} = \int i_D v_D dt$ ターンオフ $\Rightarrow E_{turn-off} = \int i_D v_D dt$ transien transient オン状態での損失エネルギー(各セル当たり) $\left(V_{GS} = V_{DS1}, I_L \cong \frac{V_{DS2}}{R_L}\right)$ $DR_{ON}I_L^2$ D: デューティ比 f: スイッチング 周波数

dV_D/dt耐性(容量性ターンオン)(1)

降圧DC-DCコンバータ

制御FET: 高速スイッチング必要

⇒制御FETオンオフ時の早い電圧変化が同期整流FETへ影響

同期整流FET:低オン抵抗(低入力容量)必要

制御FETの高速ターンオン ⇒同期整流FETのドレイン電圧変化によるゲート電圧変化 (ゲート・ソース容量のインピーダンス \ll ゲート抵抗 R_G)

$$v_G(t) = \frac{C_{GD}}{C_{GD} + C_{GS}} \left(\frac{dV_D}{dt}\right) t$$

⇒ゲートに誘起される最大電圧

$$v_{G,MAX} = \frac{C_{GD}}{C_{GD} + C_{GS}} V_{IN}$$
 V_{IN}:入力電圧

(寄生インダクタンスによる電圧のリンギングを無視)

dV_D/dt耐性(容量性ターンオン)(2)

制御FETの高速ターンオン

⇒同期整流FETのドレイン電圧変化によるゲート電流変化 (ゲート・ソース容量のインピーダンス ≫ ゲート抵抗 R_{G})

$$i_{GD}(t) = C_{GD}\left(\frac{dV_D}{dt}\right)$$

⇒ゲートに誘起される電圧

$$v_{G} = R_{G}i_{GD} = R_{G}C_{GD}\left(\frac{dV_{D}}{dt}\right)$$
$$v_{G} > V_{TH}$$

⇒同期整流FETターンオン ⇒入力電源がオン状態の制御FETと 誤動作の同期整流FETを介して短絡 ⇒制御と同期整流FETの破壊 誤動作しない最大の同期整流FETの ドレイン電圧変化

$$\left(\frac{dV_D}{dt}\right)_{\max} = \frac{V_{TH}}{R_G C_{GD}}$$

 $dV_{n}/dt 耐性(寄生バイポーラ・ターンオン)(1)$

ドレイン

R_{PB} R_{PB} C_{DB} B B ちンジスタ 急峻なドレイン電圧変化による変位電流

$$i_D(t) = C_{DB} \left(\frac{dV_D}{dt} \right)$$

上記 *i_D* によるp-ベース内の電圧が N⁺とp-ベース間のビルトイン電位 *V_{bi}* に到達 ⇒寄生NPNトランジスタがオン (BV_{CBO}⇒BV_{CEO}(BVの低下)⇒デバイスの破壊)

ドレイン電圧変化の最大値

$$\left(\frac{dV_D}{dt}\right)_{\max} = \frac{V_{bi}}{R_{PB}C_{DB}} \qquad R_{PB} = \rho_{SQ,PB} \frac{L_{N^+}}{Z}$$

ρ_{SQ,PB}: P-ベース領域のシート抵抗 (ピンチ・シート抵抗)

dV_D/dt耐性(寄生バイポーラ・ターンオン)(2)

P-ベース領域の抵抗低下

$$R_{PB} = \rho_{SQ,PB} \frac{L_{1}}{Z} + \rho_{SQ,P+} \frac{L_{2}}{Z}$$

(注)高温動作時に寄生バイポーラ・トランジスタのターンオンは顕著
 高温
 ⇒ビルトイン電圧の低下
 ⇒シート抵抗の増加により、p-ベース領域での電圧降下増大

dV_D/dtlこよる寄生バイポーラ・ターンオンの対策 ⇒P-ベース領域の抵抗低減(P+領域の追加)

バイポーラ・セカンド・ブレークダウン(1)

寄生NPN

トランジスタ

アバランシェ電圧近傍のドレイン電圧印加
 ⇒インパクトイオン化電流増大
 ⇒P-ベース抵抗によりA点の電位上昇
 ⇒A点の電位が V_{bi} に到達すると寄生NPNオン
 ⇒ブレークダウン発生

$$I_{D} = I_{C} + I_{M}$$

$$I_{S} = I_{E} + I_{M} + I_{B} \approx I_{E} + I_{M}$$

$$I_{C} = \alpha I_{E} = \gamma_{E} \alpha_{T} M I_{E} \approx M I_{E}$$

$$I_{B} = I_{C} - I_{E} \approx (M - 1) I_{E}$$

γ_E: エミッタ注入係数(≒1) α_T: ベース輸送ファクター(≒1) M: 増倍係数

バイポーラ・セカンド・ブレークダウン(2)

R_{PR}による電圧上昇(A点での電位) $V_{A} = R_{PR}I_{R}$ V_A による寄生NPNのエミッタ電流(順方向電流) $I_E = I_0 e^{qV_A/kT}$ *I*₀: 飽和電流 $\Rightarrow I_E = I_0 \exp\left[\frac{qR_{PB}}{kT}(M-1)I_E\right]$ $I_E \approx \frac{I_0}{1 - \frac{qR_{PB}}{kT}(M-1)I_0}$:指数項の一次展開

セカンド・ブレークダウン電圧

$$V_{D,SB} = \frac{BV}{\left(1 + \frac{qR_{PB}I_0}{kT}\right)^{1/6}}$$

 $::(I_E \mathcal{O} \mathcal{O} \mathcal{O} \mathcal{O} \mathcal{O}) = 0 \Rightarrow I_E = \infty$

セカンド・ブレークダウン低下対策 ⇒ P-ベース領域へP⁺の追加

$$M = \frac{1}{1 - \left(V_D / BV\right)^6}$$

BV: PN接合ブレークダウン電圧(BV_{CBO})

MOSセカンド・ブレークダウン

A 点の電位上昇によるドレイン電流増大

$$\gamma_B = \frac{\delta I_D}{\delta V_A}$$
 $\gamma_B:
増大係数$

$$I_{SS} = I_M + \gamma_B V_A = I_M + \gamma_B R_{PB} I_B$$
$$I_B = I_D - I_{SS} = (M - 1) I_{SS}$$
$$\implies I_B = (M - 1) (I_M + \gamma_B R_{PB} I_B)$$
$$\implies I_B = \frac{(M - 1) I_M}{1 - \gamma_B R_{PB} (M - 1)}$$

アバランシェ電圧近傍のドレイン電圧印加
 ⇒インパクトイオン化電流増大
 ⇒P-ベース抵抗によりA点の電位上昇
 ⇒MOSFETのしきい値電圧低下によるドレイン電流増大
 ⇒ブレークダウン発生

ドレイン電流

$$I_{D} = \frac{MI_{M}}{1 - \gamma_{B}R_{PB}(M - 1)}$$
セカンド・ブレークダウン電圧

$$V_{D,SB} = \frac{BV}{(1 + \gamma_{B}R_{PB})^{1/6}} \quad \because (I_{D} \text{ 0} \text{ 0} \text{ 0} \text{)} = 0 \Rightarrow I_{D} = \infty$$
セカンド・ブレークダウン低下対策
⇒ P-ベース領域へP+の追加

ボディ・ダイオード(リバース・リカバリーによるターンオン)

⇒リバース・リカバリー特性良くない

・・ドリフト領域のキャリア寿命長い
 リバース・リカバリー特性改善
 (リバース・リカバリー時間 t_{rr} 短縮)
 ⇒電子照射によりドリフト層のキャリア寿命制御

⇒リバース・リカバリー電流 I_{RR} 発生 p-ベース内の電圧 (R_{PB}I_{RR})がN⁺とp-ベース間 のビルトイン電位 V_{bi} に到達すると 寄生NPNトランジスタがオン (BV_{CBO}⇒BV_{CEO}(BVの低下)⇒デバイスの破壊)

ブレークダウン低下対策 ⇒ P-ベース領域へP⁺の追加

パワーMOSFETのSOA (Safe Operating Area)

$$T_{J,\text{max}} = 150^{\circ}\text{C}$$
 $T_A = 50^{\circ}\text{C}$ $R_{ON} = 5\Omega$
 $Z_{DC} = 2.5^{\circ}\text{C}W^{-1}$ $Z_K = 10^{\circ}\text{C}W^{-1}s^{-1/2}$

① 最大電流
$$I_{D,max}$$
: ワイヤーボンド溶融(ソース側)
② 最大電圧 BV_{DS} : 最大定格電圧
③ 最大接合温度(最大電力)
 $T_J - T_A = P_{Diss}R_\theta = I_D V_D R_\theta$
 $I_D = \frac{T_{J,max} - T_A}{V_D R_\theta}$
 $T_{J,max}$: 最大接合温度 T_A : 周囲温度 t_P : 単-パルス幅
 R_θ : パッケージの熱抵抗
 Z_{DC} : 定常状態でのDC熱インピーダンス Z_K : 係数
④ オン状態 I_D - V_D
 $I_D = V_D/R_{ON}$

温度特性(しきい値電圧と特性オン抵抗)

しきい値電圧の温度依存性 N⁺Poly-Sigate($\phi_f = -0.56$ V) $N_A(Si) = 6 \times 10^{17}$ cm⁻³ $t_{ox} = 12$ nm $D_{ox} = 3 \times 10^{10}$ cm⁻² (界面固定電荷密度) 動作最大接合温度で $V_{TH} > 1$ V 確保

特性オン抵抗の温度依存性

 t_T =0.8 (µm), W_T =0.8 (µm), W_{cell} =2.5 (µm) t=3.0 (µm), t_{SUB} =200 (µm) V_G =5V, V_{TH} =1.38V (at 室温)

VD-MOSFET(4H-SiC)

最小P-ベース厚としきい値電圧の不純物濃度依存性

最小P-ベース厚の不純物濃度依存性

 ④ 4H-SiC の最小P-ベース厚は Si に比べて約7倍
 ② P-ベース厚を Si と 4H-SiC で同程度にすると①により 4H-SiC の不純物濃度を上げるが必要あり、これが しきい値電圧を一層高める
 ③ 4H-SiC のチャネル長は Si に比べて長い

しきい値電圧の不純物濃度依存性 N⁺Poly-Sigate $(\phi_f = -0.56 \text{ V})$ $t_{ox} = 50 \text{ nm}$ $D_{ox}(\text{Si}) = 3 \times 10^{10} \text{ cm}^{-2}$ $D_{ox}(4\text{H}-\text{SiC}) = 3 \times 10^{11} \text{ cm}^{-2}$ (界面固定電荷密度)

ゲート酸化膜中の電界と電流(4H-SiC)

ゲート酸化膜中の電界

$$E_{OX} = \left(\frac{\varepsilon_{Semi}}{\varepsilon_{OX}}\right) E_{Semi} \qquad \frac{\varepsilon_{SiC} / \varepsilon_{OX} \approx 2.5}{\varepsilon_{Si} / \varepsilon_{OX} \approx 3}$$

 $arepsilon_{SiC}$: 半導体の誘電率 $arepsilon_{Si}$: 半導体の誘電率 $arepsilon_{Semi}$: 半導体の誘電率 $arepsilon_{OX}$: 酸化膜の誘電率 E_{Semi} : 半導体界面での電界

しきい値電圧変化

Si < 4H-SiC

$$\begin{split} E_{\max_drift}(\text{Si}) &\approx 3 \times 10^5 \text{ Vcm}^{-1} \implies E_{OX} \approx 9 \times 10^5 \text{ Vcm}^{-1} \quad (信頼性の問題なし) \\ E_{\max_drift}(4\text{H}-\text{SiC}) &\approx 3 \times 10^6 \text{ Vcm}^{-1} \implies E_{OX} \approx 7.5 \times 10^6 \text{ Vcm}^{-1} \text{ (信頼性の問題あり)} \end{split}$$

(酸化膜の信頼性限界: $E_{ox} \approx 3 \times 10^6 \text{ Vcm}^{-1}$)

ゲート酸化膜への電子の注入

半導体伝導体底から酸化膜の障壁: Si > 4H-SiC

⇒酸化膜へのホット・エレクトロン注入: Si < 4H-SiC</p>

⇒ 酸化膜へのFN (Fowler-Nordheim)電流: Si < 4H-SiC 」

シールド型VD-MOSFET(4H-SiC)

①横方向への空乏層広がりによりドレイン電圧による高電界からゲート酸化膜保護

蓄積モード・シールド型VD-MOSFETのしきい値電圧

シールド型U-MOSFET(1)

ドレイン

ブロッキング時 P+シールドの効果① ⇒ゲート酸化膜をドレイン電圧による高電界からシールド (P+シールド領域とドリフト領域接合面に高電界発生)

P+シールドの効果② ⇒高いドレイン電圧でJFETをピンチオフ ⇒P-ベース領域をドレイン電圧による高電界からシールド ⇒P-ベースとドリフト領域接合面は低電界のまま ⇒P-ベースのリーチスルーを緩和 ⇒B領域のゲート酸化膜電界の低減

シールド型U-MOSFET(2)

 W_{Cell} W_T W_{M} ソース・メタル N⁺ソース L_{CH} P-ベース ゲート JFET1 JFET2 P⁺シールド 空乏層 電流通路 45° N-ドリフト t_{SUB} N⁺基板 ドレイン

オン状態の特性抵抗

 $R_{ON,SP} = R_{CH,SP} + R_{JFET1,SP} + R_{JFET2,SP} + R_{D,SP} + R_{SUB,SP} \quad (\Omega \text{cm}^2)$ チャネル領域の特性抵抗 $R_{CH,SP} = \frac{L_{CH}W_{Cell}}{\mu_{ni}C_{OX}(V_G - V_{TH})} \quad (\Omega \text{cm}^2)$

JFET1領域の特性抵抗

$$R_{JFET1,SP} = \rho_{JFET} W_{Cell} \left(\frac{x_{P^+} + W_{J0}}{t_B - 2W_{J0}} \right) \,(\Omega \,\mathrm{cm}^2)$$

JFET2領域の特性抵抗

$$R_{JFET2,SP} = \rho_{JFET} W_{Cell} \left(\frac{t_{P^+} + 2W_{J0}}{W_M - x_{P^+} - W_{J0}} \right) (\Omega \text{ cm}^2)$$

ドリフト領域の特性抵抗

 $R_{D,SP} = \rho_D W_{Cell} \ln \left(\frac{W_{Cell}}{W_M - x_{P^+} - W_{J0}} \right) + \rho_D \left(t - W_T - x_{P^+} - W_{J0} \right) (\Omega \text{ cm}^2)$

基板領域の特性抵抗 $R_{SUB,SP} = \rho_{SUB} t_{SUB} (\Omega \text{ cm}^2)$

 x_{P+} : P⁺シールドの接合深さ W_{J0} : JFETへのゼロバイアス空乏層広がり

シールド型U-MOSFET特性オン抵抗

4H-SiC特性オン抵抗のチャネル長依存性 (シールド・トレンチ・ゲートMOSFET(4H-SiC))

 $BV_{DS} = 3000 \text{ V}$ $W_{M} = 1.25 \,(\mu \text{m}) \qquad W_{T} = 0.4 \,(\mu \text{m})$ $t_{OX} = 50 \,(\text{nm})$ $t_B = 0.7 \,(\mu \text{m})$ $t_{P^+} = 0.4 \,(\mu \text{m})$ $t_{SUB} = 200 \,(\mu m)$ $t = 18 \,(\mu m)$ $\mu_{ni} = 80 \,(\mathrm{cm}^2 \mathrm{V}^{-1} \mathrm{s}^{-1})$ $N_D = 1 \times 10^{16} \, (\mathrm{cm}^{-3})$ (ドリフト領域不純物濃度) $N_A = 5 \times 10^{16} \, (\mathrm{cm}^{-3})$ (P-ベース領域不純物濃度) $N_{IFFT} = 5 \times 10^{16} \, (\mathrm{cm}^{-3})$ (JFET領域不純物濃度) $N_{SUB} = 1 \times 10^{18} \, (\mathrm{cm}^{-3})$ (基板領域不純物濃度)

 $V_G = 10 \text{ V}$ $V_{TH} = 2.8 \text{ V}$
付録

- ・電子・正孔対の発生とアバランシェ破壊条件
- ・理想(従来型)ドリフト領域の特性抵抗と耐圧
- ・電荷結合型ショットキー・ダイオードのドリフト領域の特性抵抗と耐圧
- ED(or LD) MOSのドリフト領域の特性抵抗と耐圧

ED (Extended Drain), LD (Laterally Diffused Drain)

電子・正孔対の発生とアバランシェ破壊条件

電子:*dx* の距離走行中に *α_ndx* 個の電子・正孔対発生 正孔: *dx*の距離走行中に *α_pdx* 個の電子・正孔対発生 *α_n*: 電子のインパクト・イオン化係数 *α_p*: 正孔のインパクト・イオン化係数

Fulop's approximation $\alpha_F(Si) = 1.8 \times 10^{-35} E^7$ E(V/cm) pn接合からの距離 *x* で発生した単一の電子・正孔対 から生み出される空乏層内の電子・正孔対の全数 → *M*(*x*):増倍係数

$$M(x) = 1 + \int_0^x \alpha_n M(x) dx + \int_x^W \alpha_p M(x) dx$$

$$\Rightarrow M(x) = M(0) \exp\left[\int_0^x (\alpha_n - \alpha_p) dx\right]$$

M(0): 空乏層端(pn接合)における電子・正孔対の全数 $\Rightarrow M(0) = \left\{1 - \int_0^W \alpha_p \exp\left[\int_0^x (\alpha_n - \alpha_p) dx\right] dx\right\}^{-1}$ $\Rightarrow M(x) = \frac{\exp\left[\int_0^x (\alpha_n - \alpha_p) dx\right]}{1 - \int_0^W \alpha_p \exp\left[\int_0^x (\alpha_n - \alpha_p) dx\right] dx}$

アバランシェ破壊条件: $M(x) \rightarrow \infty$

$$\int_{0}^{W} \alpha_{p} \exp\left[\int_{0}^{x} (\alpha_{n} - \alpha_{p}) dx\right] dx = 1 \qquad \Longrightarrow \int_{0}^{W} \alpha dx = 1 \qquad \alpha_{n} = \alpha_{p} = \alpha$$

理想(従来型)ドリフト領域と電界分布

理想ドリフト領域の特性抵抗と耐圧の関係

ドリフト領域最適電荷密度(臨界電界(縦方向)時の電束密度)

 $Q_{opt} = qN_D W_D = \varepsilon_s E_C \qquad \qquad E_C = 3 \times 10^5 \text{ V/cm} (\text{at } N_D = 1 \times 10^{15} \text{ cm}^{-3}) \\ \varepsilon_s = 11.7 \times 8.854 \times 10^{-14} \text{ F/cm} (\text{Si} \text{ \mathcal{D}} \text{\mathcal{B}} \text{\mathcal{E}}) \end{bmatrix} \rightarrow N_D W_D (\text{net dose}) \approx 2 \times 10^{12} \text{ cm}^{-2}$

単位面積当たりのドリフト領域抵抗(理想特性抵抗)

$$R_{D,sp} = \rho_D W_D = \frac{W_D}{q\mu_N N_D} \implies R_{D,sp(ideal)} = \frac{W_D^2}{\mu_N Q_{opt}} \quad (\text{Si Limit})$$

 ho_D :ドリフト層の抵抗率 μ_N : N型ドリフト層の移動度

臨界電界(縦方向)と耐圧

$$BV = \frac{1}{2} E_C W_D \quad \Rightarrow \quad W_D = \frac{2BV}{E_C}$$

理想特性抵抗と耐圧との関係

$$R_{D,sp(ideal)} = \frac{4BV^2}{\varepsilon_s \mu_N E_C^3}$$

 $\varepsilon_s \mu_N E_C^3$: Baliga's Figure of Merit for Power Devices

電荷結合型ショットキー・ダイオード

電荷結合型ドリフト領域特性抵抗と耐圧

ドリフト領域最適電荷密度(臨界電界(横方向)時の電束密度)

$$Q_{opt} = qN_D W_N = \varepsilon_s E_C$$

単位面積当たりのドリフト領域抵抗(特性抵抗)

$$R_{D,sp} = \rho_D \left(\frac{t}{W_N Z}\right) p Z = \frac{tp}{q\mu_N N_D W_N} = \frac{tp}{\mu_N Q_{opt}}$$

Z: 断面に垂直方向のデバイス幅

臨界電界(トレンチ方向)と耐圧

$$BV = tE_C \implies t = \frac{BV}{E_C}$$

特性抵抗と耐圧との関係

$$R_{D,sp} = \frac{BV \cdot p}{\mu_N \varepsilon_s E_C^2} \qquad cf. R_{D,sp(ideal)} = \frac{4BV^2}{\varepsilon_s \mu_N E_C^3} \qquad 理想(従来型)ドリフト層$$

ED(or LD)MOSドリフト領域RESURF

RESURF(Reduced Surface Field)

縦と横方向電界の相互作用
→横方向空乏層拡張
→横方向(表面)電界緩和→横方向耐圧増加

ED(orLD)MOSドリフト領域特性抵抗と耐圧

ドリフト領域最適電荷密度(臨界電界(縦方向)時の電束密度)

$$Q_{opt} = qN_D t_{ND} = \varepsilon_s E_C$$

単位面積当たりのドリフト領域抵抗(特性抵抗)

$$R_{D,sp} = \rho_D \left(\frac{L_D}{t_{ND}Z}\right) pZ = \frac{L_D p}{q\mu_N N_D t_{ND}} = \frac{L_D p}{\mu_N Q_{opt}}$$

t_{ND}:ドリフト層の厚み *Z*: 断面に垂直方向のデバイス幅

臨界電界(横方向)と耐圧(RESURF形成時)

$$BV = L_D E_C \quad \Rightarrow \quad L_D = \frac{BV}{E_C}$$

特性抵抗と耐圧との関係

$$R_{D,sp} = \frac{BV \cdot p}{\varepsilon_s \mu_N E_C^2} \implies 電荷結合型ショットキー・ダイオードと同じ形$$