集積回路設計技術· 次世代集積回路工学特論

1. 基礎物性とMOSFETモデリングの 基礎

帝京平成大学大学院環境情報学研究科 教授 群馬大学 客員教授 青木 均 2017/7/18(14:20~15:50)

講師の研究・教育分野紹介

- 研究
 - GaN MIS-HEMTによる高速・高耐圧デバイスのモデル
 開発研究
 - MOSデバイスの劣化モデル開発研究
 - IoTデバイスのソフトウエアデザイン研究
- 教育
 - システム・デザイン論(オブジェクト指向プログラミング, C++, C言語)
 - ソフトウエア・プロジェクト・マネジメント論
 - コンピュータリテラシー
 - その他ソフトウエア関連

はじめに

簡単なSPICE用 デバイスコンパクトモデル

基本的なダイオードモデル

MOSFETの物性とモデル化の 基礎

MOSFETの物性とモデル化の基礎

- ・ EDA関連技術研究,海外と日本の違い
- 主なトランジスタモデルの種類
- SPICE用モデルの種類
- 半経験的なCompact Modelの要素
- モデル式の導出
- MOSFETのCompact Model
- BSIMモデルシリーズ
- バルクMOSFET用BSIMモデル
- MOSFET基礎モデル導出
- 実用MOSFETモデル
- 完全なMOSFETモデルの導出
- 等価回路のY-Matrix化
- 演習問題

EDA関連技術研究,海外と日本の違い

- ・シミュレーションツールの90%以上が欧米製品
- 総合LSI設計ツールでは、ほぼ100%が欧米製品
- 欧米ではシミュレーション技術、デバイスモデリング 技術の研究がモチベートされている
 - 大学-UCB, Stanford, MIT...
 - 企業一Motorola, NXP, Xerox, TI, ST-Semicon...
- 日本では、半導体関連研究自体が縮小されている
 - 日本: EDAにおいては, ほとんど行われていない
 - 欧米:EDA関連研究は知的財産

シミュレーション・ソフトウェア・ツール

- LSIプロセス設計(プロセスシミュレータ)
 化学的な行程
- デバイス設計(デバイスシミュレータ)
 - -物理的な行程
- ・
 回路設計(回路シミュレータ)

- 電気的な行程-SPICE互換

システム設計(システムシミュレータ)

- アプリケーションベース(MatLab等で可能)

LSIプロセス設計

MOSFETデバイス設計

LSI回路設計

11 Sector Composed Sotherize			
ファイル(の) 表示(の) 環境(の) プログラム(の) 素(100 ヘルプロ0			
En Se de De Miche			
De De DE DE NE			
	-		
WewSwitch DriveWper 4	1000	south4	0
Top SW/NT	77	IND BERD A	表示(1) 環境(1) 70/54(1) 実行(2)
	8	- 💷 - 🚯 🔍 - 😝	0 E C 1 E E 1 C C C V
Converter	2-2	21-2 #×	sourcelo
Country C		VTarest_WperVob)# source1 MEM_DEFDat source1.c startup	21 # 変数宣言 22 volable signed long timer_int # 歴欠約作時得走時間がつう月 23 volable unsigned long sw_pool # ワイパースイッチボク: 24 25 24
			25 statis Databantorio statismo; 27 ポプロトライブ室: 28 void main(void): ポタイン 29 void sar_main(void): ポライン 30 void wiper_main(void): ポワイパー動作活理 31
			32 void main() 33 a0000034 { 34 a000000 unspred int in0;
			35 // 73 RH (L 37 e0000040 timer_int = 0, 38 e000044 timer_int = 0,
MPU/9/J-0/2/H2 & X MPU MPU MPU MPU MPU MPU MPU MPU			39 40 40 40 41 41 41 41 41 41 41 41 41 41
			0ev#1.1 0 × MPUF/5051485
			支助名 値 型 finer_int Oh kong i stutebrio 0010h struct no Th int
B 🔁 5M	<	and a	exce. An int
- SHTRIR Big Enden	771	NE1- 052E1-	handl. 14h int
	1230	セーク	Running 20 cyc/05 ins)/8333333333335E-05 msec sxph4/240 MHz)
コマンドウ	4 ×	アウトフットウィンドウ	4 :
topM4 🛛 🖌 🚾		📑 出力メッセージ	
Cross Simulate Debugger System-G V4.0 (7316) ZENSIEMG-E-SDURCE, source file not available	< >	SCS-OUTPUT-MESS 7r-1 A-8: CATEMPA SCS-OUTPUT-MESS 7r-1 A-8: CATEMPA	SSAGE 'オジョウトウムの更新日時にあみ込みファイルの更新日時が一致しません。ファイルが編集されている可能性 YMGeneTaxee('')Experiestation SSAGE 'オジョンShrolの更新日時にあみ込みファイルの更新日時が一致しません。ファイルが編集されている可能性 YMGeneTaxee(',WgeneTaxecolic'
	Erner	¢	A Constant of the second of th
		E-F:Simulation	(* MRE-F: #4 OC: MRE) .

半導体デザインのT-CADツール

主なトランジスタモデルの種類

	デバイスの種類	一般的なモデル	最新モデル(β版を含む)
ユニポーラ・ デバイス	JFET	UCBモデルの改良型	_
	バルク MOSFET	BSIM3, EKV2.0, SP2000 BSIM4, EKV3.0 RFマクロモデル	PSP - 表面電位型 HiSIM2 - 表面電位型 BSIM6 - 電荷ベース
	UTB MOSFET	_	BSIM-IMG
	Fin-FET, DG-MOSFET	_	BSIM-CMG
	SOI MOSFET	BSIMSOI3, BSIMSOI4	HiSIM-SOI, BSIMSOI, Florida-SOI, PSP-SOI
	DMOS, LDMOS, HVMOS, IGBT, SiC JFET	HiSIM-HV, カスタム・マクロモデル	HiSIM-IGBT, A-IGBT, A-LDMOS, A-SiC-JFET, A-Self-heat
	TFT	RPI-TFT (p-Si), HP-ATFT (a-Si), RPI-aTFT	UO-TFT(有機TFT用), AA-TFT (a-Si)
	GaAs MESFET, HEMT	Curtice, Statz, Root, Parker, Angelov, Tajima, その他多く存在	_
バイポーラ・ デバイス	InP, GaAs HBT	UCSD, Agilent HBT	MEXTRAM504.7
	BJT, SiGe BJT	HiCUM2.1, MEXTRAM504, SPICE - Gummel - Poon	A-Scalable BJT, MEXTRAM, HiCUM2.3, Kull's Enhanced G-P

注▶赤字:日本で多く使用,太字:筆者が開発.

a-Si : amorphous Silicon **BJT** : Bipolar Junction Transistor **BSIM-CMG** : BSIM-Common MultiGate **BSIM** : Berkeley Shortchannel IGFET Model **CMC** : Compact Model Coalition **DG-MOSFET** : Double Gate MOSFET **DMOS** : Double-Diffused MOS **EKV** : Enz, Krummenacher, Vittoz **FET** : Field Effect Transistor **Fin-FET** : Fin-shaped FET **HBT** : Heterojunction Bipolar Transistor **HEMT** : High Electron Mobility Transistor **HiCUM** : High-CUrrent Model **HiSIM-HV** : HiSIM High Voltage **HiSIM** : Hiroshima-Univeristy STARC IGFET Model **HVMOS** : High Voltage MOS **IGBT** : Insulated Gate Bipolar Transistor **IMG** : Independent Multi-Gate model **JFET** : Junction FET **LDMOS** : Laterally Diffused MOS **MESFET** : MEtal Semiconductor Field Effect Transistor **MOS** : Metal Oxide Semiconductor **MXTRAM** : Most EXquisite TRAnsistor Model **p-Si** : poly-Silicon **PSP** : Philips + SP2000 **SP2000** : Advanced Surface-Potential-based compact MOSFET Model 2000 **RPI-TFT** : Rensselaer Polytechnic Institute TFT **SiC JFET** : Silicon Carbide JFET **SOI** : Silicon On Insulator **TFT** : Thin Film Transistor **UCSD** : University of California San Diego **UO-TFT** : Universal Organic Thin Film Transistor **UTB** : UltraThin-Body

SPICE用モデルの種類

• CAD(Function) Model

Macro Model

gate c

(表参照型)

- SPICEのエレメントの
 みで作成
 - サブサーキット

anode

cathode

Table-lookup Model

シミュレーションするす

ついての測定を行う.

測定データ間に値は.

多項式で内挿する

データベース化

べてのドメイン、範囲に

- Compact Model
 - ▶ 物理的なモデル
 - ▶ 経験的なモデル
 - ▶ 半経験的なモデル

$$\eta = 2\alpha T_d \gamma \sqrt{I_{nc}}$$

$$\alpha^2 = \frac{I_{sc}}{\left[qA\eta L \tanh\left(\frac{W}{2L}\right)\right]^2}$$

$$F_3 = 1 + \frac{Td}{\tau_b}$$

$$Q_{bd} = Q_b + T_d I_{nc}.$$
15

半経験的なCompact Modelの要素

- ・物理式に基づいた方程式
 - 指数項、対数項が少ない
 - 微分方程式は境界条件を与える必要あり
 - 不連続点が出にくい
 - 多項式近似やテーラー展開などの関数により収 東性を上げる
- ・ 等価回路のY-Matrix
 - どのデバイス・ノードを基準に作成するか
 - 対称型の方が収束有利

モデル式の導出

- デバイス構造、物性などから物理式を導出
- 多くのプロセスデバイスの 測定データを元に、二次効 果などを加える(不確定項 はモデル・パラメータとする)
- シミュレーション確度にあまり影響しない、方程式の項を定数化
- ・ 関数を簡略化 (Polynominal近似、テー ラー展開など)
- モデルパラメータを、測定
 データから抽出・最適化して
 シミュレーション結果を測定
 と比較

MOSFETのCompact Model

BSIMモデルシリーズ

WCM2012より

バルクMOSFET用BSIMモデル

- BSIM1
 - サブミクロン用解析モデル(L > 0.8µmを保証)
 - BSIM2

基準

ĸ

バルク基準

- ディープサブミクロンCADモデル(非線形近似)(L > 0.2μ mを保証)
- BSIM3(Hewlett-Packard社協力)
 - しきい値電圧ベースのディープサブミクロン物理モデル(L>0.1µmを保証)
 - 最初のCMC標準モデル
- BSIM4
 - 微細加工のMOSに対応のためサポートする物性を拡張した、しきい値電圧 ベースのMOSモデル
 - RF-MOSFETをサポートのため小信号AC等価回路を拡張
- BSIM6
 - チャージ(電荷)ベースの対象型MOSFETモデル
 - 電荷を中心にモデル式を導出
 - BSIM4の物性とモデルパラメータをサポート
 - CMC標準モデル
 - Verilog-Aコード供給

MOSFET基礎モデル導出

垂直電界からの導出 (L_{mask} > 1.5μm)

MOSFETの基本物理モデル

NチャネルMOSFETのチャネルピンチオフ状態での断面図

UCB MOSFET レベル2 モデルの例

- 基板バイアス効果、短チャネル・狭チャネル効果、ドレインからゲートへの静電帰還効果のしきい値電圧への影響
- キャリアのドリフト速度飽和と、有限の電圧依存出 カコンダクタンスによる飽和特性
- 表面電界依存の移動度
- 弱反転状態での導電特性

ドレイン・ソース間の電流は、

$$I_{DS} = -\frac{Z\overline{\mu}_n}{L} \int_0^{V_D} Q_n(y) dy$$

ここでQn(y)は、チャネルに沿った方向の反転層における電荷であった。 Qn(y)に、表面空乏層における電荷Qsc(y)を考慮して表すと、

$$Q_{n}(y) = -C_{ox}(V_{G} - V_{T} - \phi) - Q_{sc}(y)$$

$$Q_{sc}(y) = -q \cdot N_{a} \cdot W_{max} = -\sqrt{2\varepsilon_{s} \cdot q \cdot N_{a}} \left[V(y) + 2\phi_{B}\right]$$

$$= \frac{W}{L} \cdot \mu_{n} \cdot C_{ox} \left\{ \left[V_{G} - V_{T} - \frac{V_{D}}{2}\right] V_{D} - \frac{2\sqrt{2 \cdot \varepsilon_{s} \cdot q \cdot N_{a}}}{3} \left[\left(V_{D} + 2\phi_{B}\right)^{\frac{3}{2}} - \left(2\phi_{B}\right)^{\frac{3}{2}}\right] \right\}$$

しきい値電圧

しきい値電圧 V_T はチャネル幅の変化によって空乏電荷が変化することから,式 (2.15)のようになる.

$$V_{T} = V_{FB} + 2\phi_{B} + \delta \frac{\pi \cdot \varepsilon_{si}}{4 \cdot C_{ox}} (2\phi_{B} - V_{BS}) + \gamma \sqrt{2\phi_{B} - V_{BS}}$$
(2.15)

またさらに,式(2.15)中のyはドレインからゲートへの静電帰還によって,以下のように置き換えられる.

$$\gamma = \gamma' \Big(1 - \alpha_s - \alpha_D \Big) \tag{2.16}$$

ここで、 a_{S} , a_{D} はそれぞれソース、ドレインでの空乏電荷用補正係数である.こ れらは、

$$\alpha_{s} = \frac{1}{2} \frac{X_{J}}{L} \left[\sqrt{1 + 2 \frac{W_{ss}}{X_{J}}} - 1 \right]$$
(2.17)

$$\alpha_{D} = \frac{1}{2} \frac{X_{J}}{L} \left[\sqrt{1 + 2 \frac{W_{SD}}{X_{J}}} - 1 \right]$$
(2.18)

となっている.ここで X_J は接合の深さ、空乏層幅 W_{SS}, W_{SD} はそれぞれ、

$$W_{SS} = X_d \sqrt{2\phi_B - V_{BS}}$$
(2.19)

$$W_{SD} = X_d \sqrt{2\phi_B - V_{BS} + V_{DS}}$$
(2.20)

$$X_d = \sqrt{\frac{2\varepsilon_{si}}{q \cdot N_a}} \tag{2.21}$$

飽和領域でのドレイン電流

飽和領域では、X=L'のドレイン端での電荷は大体ゼロである.つまり、

$$Q_{n}(L') = \left(V_{GS} - V_{DSAT} - 2\phi_{B} - V_{FB}\right)C_{ox} - \gamma \cdot C_{ox}\sqrt{V_{DSAT} - V_{BS} + 2\phi_{B}} = 0$$
(2.22)

これを V_{DSAT}について整理すると,

$$V_{DSAT} = V_{GS} - V_{FB} - 2\phi_B + \gamma^2 \left[1 - \sqrt{1 + \frac{2}{\gamma^2} \left(V_{GS} - V_{FB} - V_{BS} \right)} \right]$$
(2.23)

この V_{DSAT} でのドレイン電流を式(2.14)から求めれば、 I_{DSAT} が求まる. 飽和領域での出力コンダクタンスは、チャネル長とチャネル幅の比によって左右される. チャネル長変調によって Lは ΔL だけ短くなるので、

$$\frac{W}{L - \Delta L} = \frac{W}{L \cdot \left(1 - \lambda \cdot V_{DS}\right)}$$
(2.24)

$$\lambda = \frac{\Delta L}{L \cdot V_{DS}} \tag{2.25}$$

飽和領域のドレイン電流は,

$$I_{DS} = I_{DSAT} \frac{1}{1 - \lambda V_{DS}}$$

$$(2.26)$$

弱反転領域でのドレイン電流

弱反転領域から強反転領域をスムーズにモデル化するため、もう1つのしきい値 電圧として *V_{ON}*を定義する.これは図 2.3 に示すように、*V_{TH}*より高い電流が流れる 電圧にとり、電流の傾きが徐々に変化できるように指定される.

$$V_{ON} = V_T + \frac{nkT}{q}$$

$$z = \mathcal{C},$$
(2.30)

 $I_{DS}[mA]$

4.0

2.0

0.0

0.0

0.4

0.2

Ш

õ

$$n = 1 + \frac{C_{FS}}{C_{ox}} + \frac{C_D}{C_{ox}}$$
(2.31)

$$C_{FS} = q \times N_{FS} \tag{2.32}$$

$$C_D = \frac{\partial Q_B}{\partial V_{BS}}$$
(2.33)

 N_{FS} は物理的な意味はなく、フィッティング・パラメータである.弱反転領域での電流式は、 $V_{GS} < V_{ON}$ の条件下で、

$$V_{GSS} [V] V_{GSS} = \mu_{S} \cdot C_{ox} \cdot \frac{W}{L} \left\{ \left(V_{ON} - V_{T} - \frac{\eta V_{DS}}{2} \right) \cdot V_{DS} - \frac{2}{3} \gamma_{S} \left[\left(2\phi_{B} - V_{BS} + V_{DS} \right)^{\frac{3}{2}} - \left(2\phi_{B} - V_{BS} \right)^{\frac{3}{2}} \right] \right\} \times e^{\frac{q}{nkT} (V_{GS} - V_{ON})}$$

(2.34)

実用MOSFETモデル

BSIM3 (Lmask > 0.1mm) ナノスケールMOSモデル

注目したデバイス物性

- ・ デバイス構造例
- QM効果(近似的)
- ポリシリコンゲート空乏効果
- ・ ドレイン電流式の導出
- 不均一ドープによるしきい値電圧
- 縦方向電界による移動度劣化
- ・ オフ領域のもれ電流
- ・ キャリアの速度飽和
- ・ チャンネル長変調
- ・ DIBL効果
- SCBE効果
- チャンネル抵抗

BSIM3モデル概要

NチャネルMOSFETのデバイス構造例

d = 62 nm

Tox = 4.5 nm

Tre-ox = 16 nm Xj (sh) = 50 nm

Xj(N+) = 150 nm

ポリシリコンゲート空乏効果

ポリシリコンゲート空乏効果式

$$V_{poly} = \frac{1}{2} \cdot X_{poly} \cdot E_{poly} = \frac{gN_{gate} \cdot X_{poly}^{2}}{2\varepsilon_{si}} \qquad \varepsilon_{ox} \cdot E_{ox} = \varepsilon_{si}E_{poly} = \sqrt{2 \cdot q \cdot \varepsilon_{si} \cdot N_{gate} \cdot V_{poly}}$$

$$\frac{V_{GS} - V_{FB} - \phi_{S} = V_{poly} + V_{ox}}{\varepsilon_{ox}^{2}} \qquad V_{Geff} = V_{FB} + \phi_{S} + \frac{q \cdot \varepsilon_{si} \cdot N_{gate} \cdot T_{ox}^{2}}{\varepsilon_{ox}^{2}} \left(\sqrt{1 + \frac{2\varepsilon_{ox}^{2}(V_{GS} - V_{FB} - \phi_{S})}{q \cdot \varepsilon_{si} \cdot N_{gate} \cdot T_{ox}^{2}}} - 1\right)$$

ドレイン電流式の導出-1

長チャンネルデバイス

$$J_{N} = q\mu_{n}nE + qD_{N}\nabla n$$
垂直電界のみ考慮

$$J_{N} \cong J_{Ny} = q\mu_{N}nE_{y} = -q\mu_{N}n\frac{d\phi}{dy}$$

$$I_{d} = -\iint J_{Ny}dxdz = -W\int_{0}^{x_{s}(y)} J_{Ny}dx = -W\mu_{n}Q_{m}\frac{d\phi}{dy} \qquad Q_{gase} = -Q_{m} - Q_{D} - Q_{s} = C_{ax}(V_{g} - V_{s} - \phi_{gs})$$

$$Q_{D} = -qN_{sub}X_{D} \qquad X_{D} = \sqrt{\frac{2\varepsilon_{si}}{qN_{sub}}}\sqrt{V_{s}} \qquad Q_{m} = -C_{ax}(V_{g} - V_{s} - \phi_{gs}) - Q_{ss} + \sqrt{2\varepsilon_{st}qN_{sub}}V_{s}$$

$$\int_{0}^{L} I_{d}dy = I_{d}L = -W\int_{0}^{V_{d}}\mu_{n}Q_{m}d\phi$$

$$I_{d} = \mu_{n}\frac{W}{L}\left[\left(V_{g} - V_{LB} - 2\phi_{f}\right)V_{ds} - \frac{V_{ds}^{2}}{2} - \frac{\sqrt{2\varepsilon_{st}qN_{sub}}}{C_{ax}}\frac{2}{3}\left\{\left(V_{d} + 2\phi_{f}\right)^{\frac{3}{2}} - \left(V_{s} + 2\phi_{f}\right)^{\frac{3}{2}}\right\}\right]$$
(UCB MOSFET V

ドレイン電流式の導出ー2

$$I_{ds} = W_{eff} C_{ox} (V_{gst} - A_{bulk} V(y)) V(y) \qquad I_{ds} = \frac{V_{ds}}{R_{total}} = \frac{V_{ds}}{R_{ch} + R_{ds}}$$

不均一ドープによるしきい値電圧

$$V_{TH} = V_{FB} + \phi_{s} + \gamma \sqrt{\phi_{s} - V_{BS}} = V_{TO} + \gamma \left(\sqrt{\phi_{s} - V_{BS}} - \sqrt{\phi_{s}} \right) \qquad \gamma = \frac{\sqrt{2 \cdot \varepsilon_{si} \cdot q \cdot N_{a}}}{C_{ox}}$$
$$\phi_{s} = 2 \frac{kT}{q} \ln \left(\frac{N_{a}}{n_{i}} \right)$$
$$K_{1} = \gamma_{2} - 2K_{2}\sqrt{\phi_{s} - V_{bm}}$$

$$V_{TH} = V_{TO} + K_1 \left(\sqrt{\phi_s - V_{BS}} - \sqrt{\phi_s} \right) - K_2 V_{BS} + K_1 \left(\sqrt{1 + \frac{N_{Ly}}{L_{eff}}} - 1 \right) \sqrt{\phi_s}$$

$$V_{TH} = V_{TO} + K_1 \left(\sqrt{\phi_s - V_{BS}} - \sqrt{\phi_s} \right) - K_2 V_{BS} + K_1 \left(\sqrt{1 + \frac{N_{Ly}}{L_{eff}}} - 1 \right) \sqrt{\phi_s} - \Delta V_{THL}$$

L,W依存によるしきい値電圧式の変化図

L, W依存によるしきい値電圧式の変化1

$$I_{t} = \sqrt{\frac{\varepsilon_{si} \cdot I_{ox} \cdot X_{dep}}{\varepsilon_{ox}}} \left(1 + D_{vt2} \cdot V_{BS}\right) \qquad \frac{\pi \cdot q \cdot N_{a} \cdot X_{d \max}^{2}}{2 \cdot C_{ox} W} = 3\pi \frac{T_{ox}}{W} \phi_{S}$$

$$\frac{\pi \cdot q \cdot N_a \cdot X_{d \max}^2}{2C_{ox}W} = \left(K_3 + K_{3b} \cdot V_{BS}\right) \frac{T_{ox}}{\left(W_{eff} + W_o\right)} \phi_S$$

$$\Delta V_{THW} = -D_{vTOW} \left(e^{\frac{-D_{vT1W} \cdot W_{eff} \cdot L_{eff}}{2I_{tW}}} + 2 \cdot e^{\frac{-D_{vT1W} \cdot W_{eff} \cdot L_{eff}}{I_{tW}}} \right) \left(V_{bi} - \phi_s \right)$$

$$V_{TH} = V_{TO} + K_1 \left(\sqrt{\phi_s - V_{BS}} - \sqrt{\phi_s} \right) - K_2 V_{BS} - K_1 \left(\sqrt{1 + \frac{N_{Ly}}{L_{eff}}} - 1 \right)$$
$$+ \left(K_3 + K_{3b} \cdot V_{BS} \right) \frac{T_{ox}}{W_{eff} \cdot W_o} \cdot \phi_s - \Delta V_{THL} - \Delta V_{THW}$$

L, W依存によるしきい値電圧式の変化2

$$\Delta V_{TH}(V_{DS}) = \Theta_{dibl}(L) \cdot (E_{ta0} + V_{tab} \cdot V_{BS}) \cdot V_{DS}$$

$$V_{TH} = V_{TO} + K_1 \left(\sqrt{\phi_s - V_{BS}} - \sqrt{\phi_s} \right) - K_2 V_{BS} - K_1 \left(\sqrt{1 + \frac{N_{Ly}}{L_{eff}}} - 1 \right)$$
$$+ \left(K_3 + K_{3b} \cdot V_{BS} \right) \frac{T_{ox}}{W_{eff} \cdot W_o} \cdot \phi_s - \Delta V_{THL} - \Delta V_{THW} - \Delta V_{TH} \left(V_{DS} \right)$$

縦方向電界による移動度劣化

縦方向電界による移動度劣化式

$$\mu_{eff} = \frac{\mu_0}{1 + \left(E_{eff} / E_0\right)^{\nu}} \qquad E_{eff} = \frac{V_{GS} + V_{TH}}{6T_{ox}} \qquad E_{eff} = \frac{Q_B + \left(Q_{H/2}\right)}{\varepsilon_{si}}$$

$$\mu_{eff} = \frac{\mu_0}{1 + \left(U_a + U_c \cdot V_{BS}\right) \left(\frac{V_{gst}}{T_{ox}}\right) + U_b \left(\frac{V_{gst}}{T_{ox}}\right)^2} \qquad (ディプレッション型)$$

$$\mu_{eff} = \frac{\mu_0}{1 + \left[U_a \left(\frac{V_{gst} + 2V_{TH}}{T_{ox}} \right) + U_b \left(\frac{V_{gst} + 2V_{TH}}{T_{ox}} \right)^2 \right] \left(U_a + U_c \cdot V_{BS} \right)$$
(基盤バイアス依存)

オフ領域のもれ電流

ゲートからの電子のF-N
 トンネリングと、ホット・ホールの注入が原因となる。

オフ領域のもれ電流式

$$I_{DS} = I_{S0} \left(1 - e^{-\frac{V_{DS}}{v_t}} \right) \cdot e^{\frac{V_{GS} - V_{TH} - V_{off}}{n \cdot v_t}} \qquad I_{S0} = \mu_0 \frac{W_{eff}}{L_{eff}} \sqrt{\frac{q\varepsilon_{si} N_{ch}}{2\phi_s}} v_t^2$$

$$n = 1 + N_{factor} \frac{C_d}{C_{ox}} + \frac{C_{it}}{C_{ox}} + \frac{C_{it}}{C_{ox}} + \frac{C_{it}}{C_{ox}} + \frac{C_{it}}{C_{ox}} + C_{dscd} \cdot V_{DS} + C_{dscb} \cdot V_{BS} \left(e^{-D_{VT1} \frac{L_{eff}}{2 \cdot I_t}} + 2 \cdot e^{-D_{VT1} \frac{L_{eff}}{I_t}} \right) C_{ox}$$

キャリアの速度飽和

V_d > V_{dsat}の条件で、電界はE_{sat}を超えると
 連続的に増加ーキャリアは速度飽和

キャリアの速度飽和式

$$v = \frac{\mu_{eff} \cdot E}{1 + (E/E_{sat})}$$

$$\mathbf{v} = \mathbf{v}_{\scriptscriptstyle sat}$$

$$E_{sat} = \frac{2v_{sat}}{\mu_{eff}}$$

PMOSの速度非飽和効果

$$\lambda = A_1 \cdot V_{gst} + A_2$$

飽和領域のドレイン電流と出力抵抗

飽和領域のアーリー電圧

チャンネル長変調

速度飽和(VSR)領域により実効チャンネル長が短くなり、
 ドレイン電流が増加

チャンネル長変調式

$$V_{ACLM} = I_{DSAT} \left(\frac{\partial I_{DS}}{\partial L_o} \cdot \frac{\partial L_o}{\partial V_{DS}} \right)^{-1} = \frac{A_{bulk} \cdot E_{sat} \cdot L_o + V_{gst}}{A_{bulk} \cdot E_{sat}} \left(\frac{\partial \Delta L}{\partial V_{DS}} \right)^{-1}$$

$$V_{ACLM} = \frac{A_{bulk} \cdot E_{sat} \cdot L_o + V_{gst}}{A_{bulk} \cdot E_{sat} \cdot I} \left(V_{DS} - V_{DSAT} \right)$$

$$V_{ACLM} = \frac{1}{P_{clm}} \frac{A_{bulk} \cdot E_{sat} \cdot L_o + V_{gst}}{A_{bulk} \cdot E_{sat} \cdot I} \left(V_{DS} - V_{DSAT} \right)$$

DIBL効果

 短チャンネルデバイスでは、チャンネルに沿った電子障壁が V_{ds}に依存し低下

MOSFET**のスイッチ動作が,可能か否かを判定するため,** 重要!

$$V_{ADIBLC} = I_{DSAT} \cdot \left(\frac{\partial I_{DS}}{\partial V_{TH}} \cdot \frac{\partial V_{TH}}{\partial V_{DS}}\right)^{-1} = \frac{V_{gsteff} + 2V_t}{\theta_{rout} \left(1 + P_{diblob} \cdot V_{BS}\right)} \left(1 - \frac{A_{bulk} \cdot V_{DSAT}}{A_{bulk} \cdot V_{DSAT} + V_{gsteff} + 2V_t}\right)$$

$$\theta_{rout}(L) = P_{diblc1}\left(e^{\frac{-D_{rout} \cdot L_{eff}}{2lt}} + 2 \cdot e^{\frac{-D_{rout} \cdot L_{eff}}{lt}}\right) + P_{diblc2}$$

・ ホットエレクトロンによるI_{sub}で、V_{bs}が増加し、V_{th}が上がる

SCBE効果式1

$$V_{DSAT} = \frac{E_{sat} \cdot L_{eff} + V_{DSAT} + 2R_{DS} \cdot v_{sat} \cdot C_{ox} \cdot W_{eff} \left(V_{gst} - A_{bulk} \cdot V_{DS/2} \right)}{1 + A_{bulk} \cdot R_{DS} \cdot v_{sat} \cdot C_{ox} \cdot W_{eff}}$$

$$V_{A} = V_{ASAT} + \left(\frac{1}{V_{ACLM}} + \frac{1}{V_{ADIBL}}\right)^{-1} \cdot \left(1 + \frac{P_{vag} \cdot V_{GS}}{E_{sat} \cdot L_{eff}}\right)$$

$$I_{DS0} = W_{eff} \cdot v_{sat} \cdot C_{ox} \left(V_{gst} - A_{bulk} \cdot V_{DSAT} \right) \left(1 + \frac{V_{DS} - V_{DSAT}}{V_{A}} \right)$$

$$I_{SUB} = \frac{\alpha_o}{L_{eff}} \left(V_{DS} - V_{DSeff} \right) e^{-\frac{\beta_0}{V_{DS} - V_{DSeff}}} \cdot \frac{I_{DS0}}{1 + \frac{R_{DS} \cdot I_{DS0}}{V_{DSeff}}} \left(1 + \frac{V_{DS} - V_{DSeff}}{V_A} \right)$$

SCBE効果式2

$$V_{DSeff} = V_{DSAT} - \frac{1}{2} \left(V_{DSAT} - V_{DS} - \delta + \sqrt{\left(V_{DSAT} - V_{DS} - \delta \right)^2 + 4\delta V_{DSAT}} \right) \qquad I_{DS} = I_{DS0} + I_{SUB}$$
$$I_{DS} = W_{eff} \cdot v_{sat} \cdot C_{ox} \left(V_{gst} - A_{bulk} \cdot V_{DSAT} \right) \left(1 + \frac{V_{DS} - V_{DSAT}}{V_A} \right) \left(1 + \frac{V_{DS} - V_{DSAT}}{V_A} \right) \left(1 + \frac{V_{DS} - V_{DSAT}}{V_{ASCBE}} \right)$$

$$V_{ASCBE} = \left(\frac{P_{scbe2}}{L_{eff}} \cdot e^{-\frac{P_{scbe1}}{V_{DS} - V_{DSAT}}}\right)^{-1} \qquad I = \sqrt{\varepsilon_{si}} \cdot T_{ox} \cdot X_{i/\varepsilon_{ox}}$$

チャンネル抵抗

ナノスケールMOSFETモデル概要

Pao&Sahのチャージシート近似モデル

"反転層は限りなく薄く, チャネルの厚さによって電位は変化しない"

ドリフト電流と拡散電流(1)

$$I(x) = I_{drift}(x) + I_{diff}(x)$$

 $x \ge x + Dx$ 間の電位差は,

 $\Delta \psi_{s}(x) = \psi_{s}(x + \Delta x) - \psi_{s}(x)$

この表面電位差と、表面移動度 (μ)、反転電荷 (Q'_I)、チャネル幅 (W)を使って I_{drift} を表すと、

$$I_{drift}(x) = \mu \left(-Q'_{I}\right) \frac{W}{\Delta x} \Delta \psi_{x}(x) \xrightarrow{\Delta x \to 0} I_{drift}(x) = \mu W \left(-Q'_{I}\right) \frac{d\psi_{s}}{dx}$$
$$I_{diff}(x) = \mu W \phi_{t} \frac{dQ'_{I}}{dx} \quad (\phi_{t} \text{lt} \text{Re})$$

$$I_{DS} = \mu W \left(-Q'_{I} \right) \frac{d\psi_{s}}{dx} + \mu W \phi_{t} \frac{dQ'_{I}}{dx}$$

ドリフト電流と拡散電流(2)

ここでチャネルのソース端 (*x* = 0)における表面電位を ψ_{s0} そこでの $Q_{I}^{'} \epsilon Q_{I0}^{'} \epsilon A$ く. 同様にドレイン端(*x* = *L*)における表面電位を ψ_{sL} そこでの $Q_{I}^{'} \epsilon Q_{IL}^{'} \epsilon A$ く. I_{DS} を*x* = 0から*x* = *L*まで積分すると以下のようになる.

$$\int_{0}^{L} I_{DS} dx = W \int_{\psi_{s0}}^{\psi_{sL}} \mu (-Q'_{I}) d\psi_{s} + W \phi_{I} \int_{Q'_{I0}}^{Q'_{IL}} \mu dQ'_{I}$$

$$I_{DS} = \frac{W}{L} \left[\int_{\psi_{s0}}^{\psi_{sL}} \mu (-Q'_{I}) d\psi_{s} + \phi_{I} \int_{Q'_{I0}}^{Q'_{IL}} \mu dQ'_{I} \right]$$

$$I_{DS} = I_{DS1} + I_{DS2}$$

$$I_{DS1} = \frac{W}{L} \mu \int_{\psi_{s0}}^{\psi_{sL}} (-Q'_{I}) d\psi_{s} \qquad \stackrel{\texttt{truppo}8 \text{ sub} \texttt{E}^{\texttt{MFTTAL}} \texttt{truppo}}{\texttt{clasurc-related}}$$

$$I_{DS2} = \frac{W}{L} \mu \phi_{I} (Q'_{IL} - Q'_{I0})$$

逐次チャネル近似

 I_{DSI} と I_{DS2} を解析するために、 Q'_I を ψ_s の関数として求める必要がある。逐次 テャネル近似 (Gradual Channel Approximation)を思い出して、UCB MOSFETレベル2の導出をBulk基準に応用すると

$$Q'_{I} = -C'_{ox} \left(V_{GB} - V_{FB} - \psi_{s} + \frac{Q'_{B}}{C'_{ox}} \right)$$

 C'_{ox} は酸化膜容量, V_{GB} はゲート・基盤電圧, V_{FB} はフラットバンド電圧, Q'_{B} は基盤 電荷で,

$$Q'_{B} = -q \cdot d_{B} \cdot N_{A}$$

ここで d_B は空乏層の厚み、 N_A はアクセプタの濃度を表す.

$$d_{B} = \sqrt{\frac{2\varepsilon_{s}}{qN_{A}}}\sqrt{\psi_{s}}$$

逐次チャネル近似

 V_D

微少領域dxの電流密度概念図

チャネルが十分に長い場合, $\xi_x \iff \xi_x$

チャネル長方向の微少部分dxに着目してみる. チャネル 内の電子密度をn (x,y)とするとドリフトによる電流密度は以 下のように与えられる.

$$J_{n} = q\mu_{n}n(x, y)\xi = -q\mu_{n}n(x, y)\frac{dV}{dy}$$

ドレイン電流を J_{n} についてチャネルの境
界面積で積分すれば,

$$I_D = -\int_0^Z dz \int_0^W J_n dx$$

ドリフト電流と拡散電流(3)

前頁より
$$Q'_{B} = -\sqrt{2q\varepsilon_{s}N_{A}}\sqrt{\psi_{s}}$$

$$\gamma = \frac{\sqrt{2q\varepsilon_s N_A}}{C'_{ox}} \longrightarrow Q'_B = -\gamma C'_{ox} \sqrt{\psi_s}$$

前頁の
$$Q_I$$
'は $Q_I = -C_{ox} \left(V_{GB} - V_{FB} - \psi_s - \gamma \sqrt{\psi_s} \right)$ 以上を代入すると、

ドレイン・ソースのドリフト電流は、

$$I_{DS1} = \frac{W}{L} \mu C'_{ox} \left[(V_{GB} - V_{FB}) (\psi_{sL} - \psi_{s0}) - \frac{1}{2} (\psi^2_{sL} - \psi^2_{s0}) - \frac{2}{3} \gamma (\psi^{\frac{3}{2}}_{sL} - \psi^{\frac{3}{2}}_{s0}) \right]$$
ドレイン・ソースの拡散電流は、

$$I_{DS2} = \frac{W}{L} \mu C'_{ox} \left[\phi_t \left(\psi_{sL} - \psi_{s0} \right) + \phi_t \gamma \left(\psi_{sL}^{\frac{1}{2}} - \psi_{s0}^{\frac{1}{2}} \right) \right]$$

表面電位と電荷基準モデル

収束性を向上させコンパクトモデルとして実用的にするために、このチャージ シートモデルを改良、様々な微細デバイスプロセスによる物理現象を取り入れ てできたのが、表面電位(Surface Potential)モデル

HiSIM2, PSP Modelなど

前頁の ψ_{s0}, ψ_{sL} はコンピュータを用いた繰り返し最適化によって求めるため収束問題の可能性有

ソース、ドレインにおける反転電荷に注目し、面積密度関数として表していくのが電荷基準(Charge Based)モデル

BSIM3/4/6 Modelなど

前頁の簡略化した表面電位から、しきい値電圧に置き換えている。物理ベースの解析モデルなので近似的モデル式が多く存在する

今後普及される可能性の高いモデル BSIM6

完全なMOSFETモデル

SPICEでは不可能なアプローチ

シリコンと酸化膜2D Poisson方程式の算出

S_i-S_iO_xインターフェースにおいて境界条件を取り除くには、酸化膜領域を等価なシリコン領域で置き換える、つまり、

 $\left(\frac{\varepsilon_{Si}}{s}\right)t_{ox}\approx 3t_{ox}$

- Nguyen and Plummer, IEDM 1981 [7].
- n Sub-threshold領域において

In AFGH (oxide),

$$\frac{\partial^2 \psi}{\partial x^2} + \frac{\partial^2 \psi}{\partial y^2} = 0$$

In ABEF (silicon),
$$\frac{\partial^2 \psi}{\partial x^2} + \frac{\partial^2 \psi}{\partial y^2} = \frac{q N_a}{\varepsilon_{si}}$$

• 境界条件:

$$\psi(-3t_{ox}, y) = V_g - V_{fb}$$
 Top: GH,
 $\psi(x,0) = \psi_{bi}$ Left: AB,
 $\psi(x,L) = \psi_{bi} + V_{ds}$ Right: EF,
 $\psi(W_d, y) = 0$ Bottom: CD.

2D境界値問題へのアプローチ(1)

 $\psi(x, y) = v(x, y) + u_L(x, y) + u_R(x, y) + u_B(x, y)$

- v(x,y)はNaによる均一でない式を扱い、Topの境界条件を満足するための項
- *固有値u*はラプラス方程式によるソース,ドレインに印加される電位に寄与する量
- $u_L, u_R, u_B lt \psi(x, y)$ が他の境界条件を満足するために用いる均一な式
- Top, Bottom, Rightで: u_L =0. Top, Bottom, Leftで: u_R =0. Top, Left, Right $\mathcal{C}u_B$ =0.

2D境界値問題へのアプローチ(2)

電位ψの2D近似解法

*u_B*と高次項*u_L*, *u_R*の消去

$$\psi(x,y) = \psi_s \left(1 - \frac{x}{W_d}\right)^2 + \frac{b_1 \sinh\left(\frac{\pi(L-y)}{W_d + 3t_{ox}}\right) + c_1 \sinh\left(\frac{\pi y}{W_d + 3t_{ox}}\right)}{\sinh\left(\frac{\pi L}{W_d + 3t_{ox}}\right)} \sin\left(\frac{\pi(x+3t_{ox})}{W_d + 3t_{ox}}\right)$$

Long channel

x=0の時, $\sinh z \approx \frac{e^z}{2}$, $u + v \ge 2(uv)^{1/2}$. 表面電位はy=y_cで最小

$$\psi(0, y_c) = \psi_s + 2\sqrt{b_1c_1}e^{-\frac{\pi L/2}{W_d + 3t_{ox}}} \sin\left(\frac{\pi(3t_{ox})}{W_d + 3t_{ox}}\right)$$

$$SCE \sim \exp(-L/l_{0g}),$$

$$Scale length: \quad l_{0g} = \frac{2}{\pi}\left(W_{dm} + \frac{\varepsilon_{si}}{\varepsilon_{ox}}t_{ox}\right)$$

$$L_{\min} \approx 3l_{0g} \quad (Note: b_1 \sim \psi_{bi}, c_1 \sim \psi_{bi} + V_{ds})$$

$$gate-controlled barrier$$

$$drain$$

MOSFETの容量モデル

P-Substrate

Cj

Cox
アクティブなゲート容量

チャネル電荷は電荷保存則より

$$Q_c = -(Q_G + Q_B) \quad \text{stat} \quad Q_c = Q_s + Q_D \quad Q_B = -Q_G$$

として表せる.反転層の電荷を Q_n とすると、 Q_S と Q_D はそれぞれ、

$$Q_{S} = -W \int_{0}^{L} \left(1 - \frac{y}{L}\right) Q_{n} dy$$

$$Q_D = -W \int_0^L \frac{y}{L} Q_n dy$$

以上の関係式から各容量が導ける. 例えば,

$$C_{GS} = \frac{\delta Q_G}{\delta V_S} \qquad C_{GB} = \frac{\delta Q_G}{\delta V_B}$$

接合容量とオーバーラップ容量

【オーバーラップ容量】

チャネル外容量のために<u>基本的には</u>固定容量. フリンジング容量と分割不可能. 例えば線形領域($V_{GS} > V_{on} + V_{DS}$)では, $C_{GB} = C_{GBO} \cdot L$ $C_{GS} = C_0 \left\{ 1 - \left[\frac{V_{GS} - V_{DS} - V_{on}}{2(V_{GS} - V_{on}) - V_{DS}} \right]^2 \right\} + C_{GSO} \cdot W$ $C_{GD} = C_0 \left\{ 1 - \left[\frac{V_{GS} - V_{on}}{2(V_{GS} - V_{on}) - V_{DS}} \right]^2 \right\} + C_{GDO} \cdot W$

74

MOSFETの等価回路

BSIM6の等価回路概略

MOSFETのノイズ源モデル

MOSFETの簡略化等価回路

ソース基準電圧制御電流源

(a)

 $g_m =$

 $=\frac{\partial I_{DS}}{\partial V_{GS}}$

(b) $g_{DS} = \frac{\partial I_{DS}}{\partial V_{DS}}$

 $g_{mBS} = \frac{\partial I_{DS}}{\partial V_{BS}}$

(c)

79

コンダクタンスマトリックス要素

	G	S		D	S		В	S
D	g _m	-g _m	D	g _{DS}	-g _{DS}	D	g _{mBS}	-g _{mBS}
S	-g _m	g _m	S	- g _{DS}	g _{DS}	S	-g _{mBS}	g _{mBS}

MOSFETの複素Yマトリックス

	DX	GX	SX	вх	D	G	S	В
DX	$g_{\scriptscriptstyle D}$				$-g_D$			
GX		j ωC_{OX}				$-j\omega C_{OX}$		
SX			g_{s}				$-g_s$	
BX				j ωC_{B}				$-j\omega C_{B}$
D	$-g_D$				$g_{DS} + g_D$	g_m	$-g_m - g_{DS}$ $-g_{mBS}$	$g_{_{mBS}}$
G		$-j\omega C_{OX}$				j ωC_{OX}		
S			$-g_s$		$-g_{DS}$	$-g_m$	$g_m + g_{DS}$ + $g_{mBS} + g_S$	
В				$-j\omega C_B$				$j\omega C_{B}$

81

演習問題1,2

- 現在日本で集積回路設計において、多く使用されているMOSFETのモデルは何を挙げて、その理由を述べてください(50文字以上)。
- MOSFETの、どのコンパクトモデルにもある 、物理的モデルパラメータを3つ挙げて、そ れぞれ30文字以上で説明してください.

演習問題3

 MOSFETのモデルパラメータを抽出するために、TEGを作成して電気特性を測定する 必要がありますが、どんな測定が必要です か?<u>例以外で</u>4つあげて、どんな特性を求 めるために行うか述べてください.

例:

ドレイン電流対ドレイン電圧直流測定 求める特性一出力抵抗,チャネル長変調係数

演習問題4

4. DC-DCコンバータの回路設計で使用する FETは、DMOS、HVMOS、LDMOS、IGBT SiC-MOSFET、GaN-MIS HEMTのうち、 ① どれが最適と思いますか? ② それはなぜですか?

MOSトランジスタ関連お勧め書籍

- MIT基礎電子工学教科書⟨2⟩半導体素子とモデル (1979年),
 C.L.サール(著), 宇都宮 敏男, 菅野 卓雄(訳)
- Physics of Semiconductor, 2nd (3rdより良い),
 S. M. Sze
- Device Electronics for Integrated Circuits, 2nd, Richard S. Muller, Theodore I. Kamins
- ・ CMOSモデリング技術、青木均ほか、丸善出版
- シリコンFETのモデリング、青木均著、西義雄監修、 アジソン・ウェスレイ・パブリッシャーズ・ジャパン(増 版終了)