群馬大学アナログ集積回路研究会

2021年7月29日 KIOXIA 株式会社 メモリ設計統括部 第三メモリ設計部 主幹 吉富貞幸

Head of Information Owner Section

3rd Circuit designing Dept.

© 2021 KIOXIA Corporation. All Rights Reserved.

出身

長崎県佐世保市生まれ(小1夏まで)→鹿児島市(中三)→熊本市(高三から)

家族

妻1人(イスラエル国籍)、娘2人

大学での専攻

Dominus Flevit Churchの窓を通してみた エルサレム旧市街 (2014年12月小生撮影)

博士電気工学(論文液相堆積法を用いた二酸化シリコン膜のSIMOS集積回路への応用横浜国立大学)

趣味

アマチュア無線、写真撮影、窯元/骨董屋巡り

仕事

1993年 株式会社東芝研究開発センター入所、高周波C/Bi-CMOSデバイス開発,システムLSI設計に従事。 2008年から 同システムLSI事業部で高周波CMOS製品開発向け設計環境開発(高周波SPICEモデル開発) 2016年から 現KIOXIA株式会社でBiCS FLASH™周辺CMOS回路設計環境(Process Design Kit)開発

Footprints of CMOS Technology Innovation [1]

Prologue

Compact modeling technology in 3D-NAND flash memory development

回路設計者の抱える痛み

微細化と高速動作化が進むにつれて広がるマージン→広くなるほど設計難易度は上がる 高速動作→**高周波動作を高精度に表現できるSPICEモデル**が治療薬の1つ。

高周波動作を高精度に表現するモデル??

低周波数の世界 高周波の世界 DC~ hundreds MHz RF/mm-wave/THz Port Port L2 P1 P2 L=Ls Num=1 Num=2 С C4 C3 C=COX C=COX 基板との容量 表皮効果 L1 Rsr L=Lsr . R4 ≧漏れ信号による損失 C1 R3 R=RSUB S R=RSUB C=CSUB 見えないものが見えてくる!

半導体基板上に作成された素子の特性を電気モデルで表現し SPICE系回路シミュレータで動作させたい。

高周波CMOS回路設計で使う素子のSPICEモデル一覧

見えないものを見よう。 道具 Y行列

測定 推定 モデル化そして確定

測定→道具立て

For S-parameter Measurement

Keysight Technologies Rhode & Schwartz ANRITSU 等がある。

2Probe Station

Semi-Auto Prober

latest model to access Wafer

特殊な治具を必要とする。

近年ソフトと画像認識技術が発展し、全自動でSパラメータ測定ができるようになった

推定 → 単純な配線なのに何か違う??

推定 → 何が違う??

R+1/(*jwC*)

R+jwL

今回のデータは右図のR+jwLに従った特性を示しているようだ。

推定 → 寄生容量・抵抗どうつながっている??

Cox, Csub and Rsub represent equivalent circuit of Si substrate in most cases.

モデル化そして確定 全てはPI型・Tee型変換で。

PI型 等価回路を使ってみる

Conversiion from S-parameter to Y-parameters.

Generation of "pi-equivalent" circuit using Y-parameters.

Step 1

Low frequency

- Assumption "CSUB" << "COX" is valid in most cases.
- CSUB node can be treated as "OPEN" at low frequency.

- Define "ZSUB" by subtracting Cox impedance from 1/Y1.
- "RSUB" and "CSUB" defined by real and imaginary part of "ZSUB" respectively.

Complete formula

大きなサイズ→分割アプローチを利用し精度向上

長い、広い構造の特性を表現する場合→ざっくり求めて詳細に分割するとよい。

設計を悩ませる微細効果

- 1 ゲートリーク (漏れ) 電流
- 2 ストレス効果
- 4 Well 近接効果 (Well Proximity Effect)

最近のコンパクトモデルでは取り込まれている。

MOSFETとは何か?

オーバードライブ電圧でMOSFETを語ることが出来る

CMOSトランジスタモデルの変遷

Gate leak current is not ignorable due to the higher tunneling probability of thinner gate oxide

In latest CMOS compact model, several current sources as I_{gb} , I_{gs} , I_{gd} , $I_{gc}(I_{gcs}, I_{gcd})$ having Vg dependency, which gives bias dependence, and mathematical smoothing transforming function from accumulation to inversion mode, via depletion.

ストレス効果

トランジスタが横・縦方向にあるべつの材料から押されたり引っ張られたりする(ストレス)と 電気的特性が変わる。

This was focused as a big-problem to degrade Transistor performance from 130nm generation.

STI stress effectの事例 _VTH shit of 130nm CMOS-

同じゲート長なのに閾値電圧が変化し、電流値が変動

ウェル近接効果

MOSFET with adjacent well boundary tends have higher Vth. This is due to the highly doped area generated by back-scattering of impurity atoms against photo resists. Which occur in the Well Ion Implantation process.

最近のCMOSトランジスタモデル開発 の技術紹介

Trモデルの開発手順

High Volume measurement

Issues of high volume millimeter-wave measurement. [1]

手動測定の時代は終わり、SパラのBigData取得が可能に。

Design of scribe-type GSG test structure.

Compatibility kept upto 35GHz. Needs improvement.

Conventional GSG

Optimized layout has been determined by SOLT deembedding with simulated data of SHORT, OPEN and DUT patterns.

Test structure design for high volume measurement.

Test structure for ONE GENERATION

- s-parameter evaluation for Inductor \rightarrow Equivalent circuits model
- →Electro-magnetic analysis model

DC/s-parameter evaluation for MOSFETs →Equivalent circuits model →Spice parameter extraction →Noise model (Flicker and RF noise)

s-parameter evaluation for resistors →Equivalent circuits model

s-parameter evaluation for capacitors \rightarrow Equivalent circuits model

CV/s-parameter evaluation for varactors →Equivalent circuits model →Spice parameter extraction

Metal-Line Evaluation →Equivalent circuits model →Transmission line model

GSG-Test Structure for Device Modeling

© 2021 KIOXIA Corporation. All Rights Reserved. 37

Complete Set for Precise Device Modeling

Simply remove device cell from DUT, Chop signal line at the point of reference

Adjust Left and Right pattern to configure THRU line.

OPEN and SHORT De-embedding の手順

De-embedding (STEP2)

OPEN pattern simply contain PAD related parasitic.

De-embedding (STEP3)

Y(DUT)-Y(OPEN) でPADの容量を減ずる

De-embedding (STEP4)

$$\begin{split} Y' &\to Z' \\ Z' = \begin{bmatrix} Z_{11}' & Z_{12}' \\ Z_{12}' & Z_{22}' \end{bmatrix} = \begin{bmatrix} Z_{11SHORT}' + Z_{11INT} & Z_{12SHORT}' + Z_{12INT} \\ Z_{12SHORT}' + Z_{12INT} & Z_{22SHORT}' + Z_{22INT} \end{bmatrix} \end{split}$$

De-embedding (STEP5)

配線成分を見える化

De-embedding (STEP6)

Ready for unveil device behavior !

03 Fab-linked scalable compact model.

- How is the typical model specs ?
- Linking MC model and In-line data.
- How to corporate with factory for high yield.

What is needed for RF-CMOS compact model ?

Scalable and compact

For portability, parasitic elements should be scalable function of

Lg (Gate Length) and Wf (Finger Length)

NF (Finger Numbers)

Length Of Diffusion (SA,SB,SD)

Accurate for all design purpose

LNA (NQS effect, Thermal noise)

Linear: S-parameters > 100GHz

De-embedding: SOLT ? TRL ?

VCO and Mixer (Harmonic distortion, Flicker noise)

Flicker noise close to the carrier.

ACPR, EVM

Power amplifier

Self Heating

Load-pull

Physical configuration of RF MOSFET

Cold measurement helps to extract layout parasitic. [1]

Good indicator of transistor monitoring.

Scalable parasitic model vs. measurement data [1]

Layout dependency works well with many CMOS generations (130nm to 40nm.)

Q1 Does RG scaling follows classical ohmic-law?

$$R_G = \rho_{rg} k \cdot \frac{Wf}{Lg \cdot Nf}$$

K : constant depending on the configuration of gate contact

NO : Gate resistance behaves complex behavior

Scaling dependence of **Rg** on gate-length (**Lg**)

LV NMOSFET

Scaling dependence of Rg on Wf/Nf

Q2 Does capacitance scaling has unique behavior ?

NO : It is NOT unique behavior.

Observation of the RB scaling

RF-CMOS modeling summary

Component name	ltem name	Geometric dependency
NQS Gate resistance	RG	$\frac{K_{RGL1}}{N_f} \left[L_g + \frac{K_{RGL2}}{L_g} \right] \left[W_f + \frac{K_{RGL3}}{W_f} \right]$
G-B capacitance	CGB	$CGB = K_{CGB} \cdot Lg \cdot Nf$
G-D,G-S overlap capacitance	CFGD CFGS	$K_{RCL}W_fN_f$
	RSUB1	
Substrata rasistanaa	RSUB2	$Rsh1 \cdot Lg \cdot \frac{Wf}{M} + Rsh2 \cdot \frac{1}{M}$
Substrate resistance	RSUB3	NF $Wf \cdot NF$
	RSUB4	

 $K_{CGB}, K_{RGL1}, K_{RGL2}, K_{RGL3}, K_{RCL}, K_{Rsh1}, K_{Rsh2}$: Constants

110GHz S-parameter model vs measurement.

fMAX optimization of RF-NMOSFETs

04 Synchronization of compact model with latest FAB output.

Solutions to Support RF circuit production chain.

Fab-link model parameters vs In-line data.

How Process function looks like?

Establish direct link of li-line data with compact model.

Fab-link model vs. measurement at 60GHz. [1]

Fab-link model vs. measurement at 60GHz correlation. [1]

ΚΙΟΧΙΑ

64

Future MOSFET Modeling Challenges

1 : Ultra small dimensional 2 : High Power Characterization effects, 3D structure.

3: Self Heating

4: RF Yield Estimation

Self-Heating degrades matching behavior among adjacent MOSFETs by thermal coupling.

References

- 1 "高速NandFlashメモリを実現するモデリング技術", 吉富貞幸 Keisight Design Forum 2020.
- 2 Franz Sischka, "ICCAP Modeling Handbook", Keysight Technologies
- 3 Gennady Gildenblat, "Compact Modeling" Springer (2010)
- 4 Willy M.C. Sansen, "ANQLOG DESIGN ESSENTIALS", Springer
- 5 C.Enz, "Charge-Based MOS Transistor Modeling: The EKV Model for Low-Power and RF IC Design" Wiley
- 6 Wladyslaw Grabinski,"Transistor Level Modeling for Analog/RF IC Design", Springer
- 7 Yogesh Chauhan," FinFET Modeling for IC Simulation and Design, 1st Edition using the BSIM-CMG Standard" Academic Press 2015.

8 Michael Schröter, Anjan Chakravorty," Compact Hierarchical Bipolar Transistor Modeling with Hicum", World Scientific, 2010.

9 M. Jamal Deen, Tor A. Fjeldly," CMOS RF Modeling, Characterization and Applications" World Scientific (2002)

10 Chemning Hu," Modern Semiconductor Devices for Integrated Circuits 1st Edition", Prentice Hall; 1 edition (April 1, 2009)

MOS Compact Model web site

(Latest) MOS-AK http://www.mos-ak.org/

(BSIM Model) BSIM Group: http://www-device.eecs.berkeley.edu/bsim/