6. 降圧形電源の実測

- 6-1 特性式と実測
 - (1) 定常特性(電圧変換率、定常リプル、出力Z)
 - (2) 動特性(負荷応答特性)
 - (3) サーボアナライザの使用方法
- 6-2 安定性と位相補償
 - (1) ESRと安定性・定常電圧リプル
 - (2) 位相補償による安定化
 - (3) サーボアナライザの使用方法
- 6-3 性能検討
 - (1) スイッチング・ノイズ
 - (2) 入力コンデンサとノイズ
 - (3) レイアウトと出力リプル
 - (4) 負荷電流と効率

6. スイッチング電源の実測-1 (降圧形電源)

6-1 特性式と実測

(1) 定常特性

- (A)電圧変換式
 - 理論式(2-56)

* デューティ:実測D、理論値:M=Vo/Vi

Zo=r=rL+D·rs+D'·rd

Zo:カタログ値、実測値より求める

●実測値:

M=D/(1+Zo/R) に実測値代入 Zo =(D/M-1)·R (6-1)

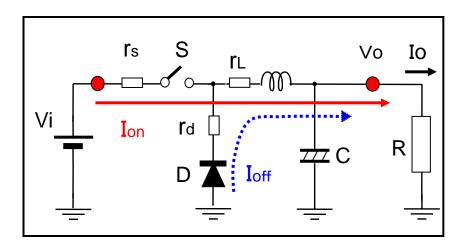


図6.1 降圧型スイッチング電源

表6.1 降圧型電源の実測値

Ro=	7.2	Ω(7.17~7.21) [r				$[m\Omega]$	
I	Vi [V]	Vo [V]	実測M	実測D	実測Zo	計算Zo	計算M
0.7	7.1	5.02	70.7	75.0	0.437	0.227	72.7
0.7	10	5.03	50.3	53.5	0.454	0.315	51.2
0.7	13	5.04	38.8	41.7	0.538	0.363	39.7
0.7	16	5.05	31.6	34.7	0.721	0.392	32.9

- 電圧変換率の実測値(試作回路)
 - *右図:類似傾向 Dに対し、実測Mはやや小さい
 - *内部抵抗:
 - ・実測抵抗はかなり大きい
 - 平均内部抵抗 r (4値Vi:7~16V) ro7=0.624Ω @lo=0.70A ro3=1.96 Ω @lo=0.28A

- *素子内部抵抗の算出
 - •rL=0.084 Ω (@100Hz)
 - •rs=0.08 Ω @2V, 0.045 Ω @11V
 - •rd=0.5 Ω @0.7A、1.0 Ω @0.3A

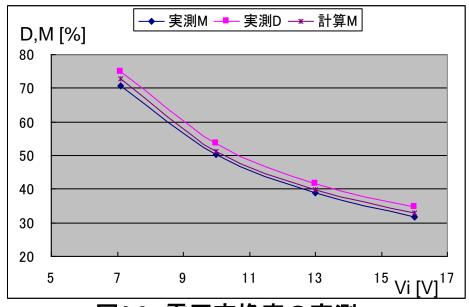


図6.2 電圧変換率の実測

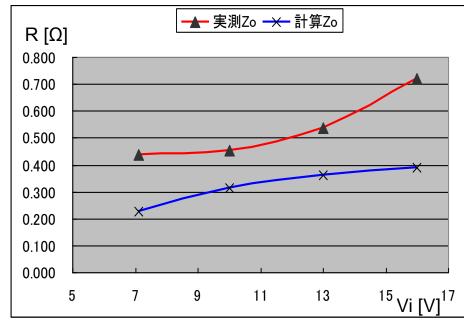


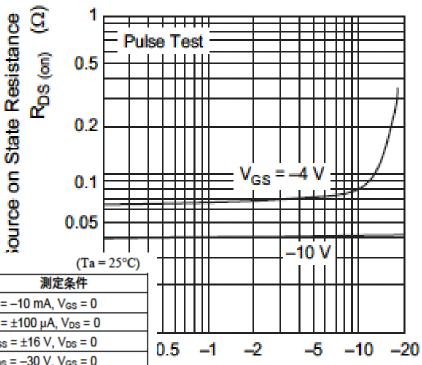
図6.3 内部抵抗の実測

PチェネルMOSFET

(ルネサス: HAT1020R) 30V、5A

● ON抵抗

- *5A 以下では、ほぼ一定
- * Vgs で変化 (0.7A、直線近似)


 $Ron = 90 - 5 \cdot VGS [m\Omega]$

(6-2)

表6.2 PMOSの諸特性

項目	記号	Min	Тур	Max	単位	測定条件
ドレイン・ソース破壊電圧	V (BR) DSS	-30	_	_	V	$I_D = -10 \text{ mA}, V_{GS} = 0$
ゲート・ソース破壊電圧	V (BR) GSS	±20	_	_	V	$I_G = \pm 100 \mu\text{A}, V_{DS} = 0$
ゲート遮断電流	I _{GSS}	_	_	±10	μΑ	$V_{GS} = \pm 16 \text{ V}, V_{DS} = 0$
ドレイン遮断電流	IDSS	_	_	-10	μA	$V_{DS} = -30 \text{ V}, V_{GS} = 0$
ゲート・ソース遮断電圧	V _{GS (off)}	-1.0	_	-2.5	V	$V_{DS} = -10 \text{ V}, I_D = -1 \text{ mA}$
ドレイン・ソースオン抵抗	R _{DS (on)}	_	0.04	0.07	Ω	$I_D = -3 \text{ A}, V_{GS} = -10 \text{ V}^{\frac{12}{3}}$
	R _{DS (on)}	_	0.07	0.13	Ω	I _D = −3 A, V _{GS} = −4 V ^{注 3}
順伝達アドミタンス	y _{fs}	5.0	7.5	_	S	I _D = -3 A, V _{DS} = -10 V ^{注 3}
入力容量	Ciss	_	860	_	pF	V _{DS} = -10 V
出力容量	Coss	_	560	_	pF	V _{GS} = 0
帰還容量	Crss	_	165	_	pF	f = 1 MHz
ターン・オン遅延時間	t _{d (on)}	_	30	_	ns	$V_{GS} = -4 V, I_D = -3 A,$
上昇時間	tr	_	170	_	ns	$V_{DD} \cong -10 \text{ V}$
ターン・オフ遅延時間	t _{d (off)}	_	40	_	ns	
下降時間	tr	_	65	_	ns	
ダイオード順電圧	V _{DF}	_	-0.9	-1.4	٧	I _F = -5 A, V _{GS} = 0 ^{注3}
逆回復時間	trr	_	55	_	ns	I _F = -5 A, V _{GS} = 0
						di _F /dt = 20 A/μs

Static Drain to Source on State Resistance vs. Drain Current

Drain Current I_D (A)

図6.4 PMOSの内部抵抗

順電比特性 FORWARD CURRENT VS. VOLTAGE

流

(A)

ショットキー・ダイオード (日本インター: EC10QS03L) 30V、1A

- * 順方向電圧VF: 電流依存性 温度依存性も大
- * 繰返しピーク逆電圧: VRRM (Repetitive Peak Reverse V)

表6.3 SBDの諸特性

■最大定格 Maximum Ratings

Item	Symbol	Conditions				
くり返しピーク逆電圧 Repetitive Peak Reverse Voltage	V _{RRM}	30			V	
平均整流電流	T.	50Hz、正弦半波通電抵抗負荷	Ta=28℃*1	1.0	A	
Average Rectified Forward Current	Io	50Hz Half Sine Wave Resistive Load	Ta=58℃*2	1.0	Α	
実 効 順 電 流 R.M.S. Forward Current	I _{F(RMS)}	1.57				
サージ順電流 Surge Forward Current	IFSM	20 50Hz正弦半波、1 サイクル、非くり返し 50Hz Half Sine Wave, 1 cycle, Non-repetitive			A	

INSTANTANEOUS FORWARD VOLTAGE (V)

図6.5 SBDのV-I特性

■APPROX. NET WEIGHT:0.06 g

■電気的・熱的特性 Electrical/Thermal Characteristics

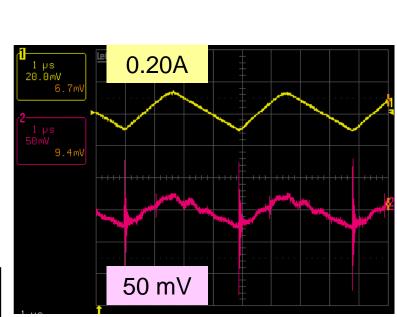
CAT								
Item		Symbol	Conditions			Тур.	Max.	Unit
ピーク遊電 Peak Reverse Current	流	I _{RM}	$T_j=25^{\circ}C, V_{RM}=V_{RRM}$			_	1	mA
ピーク順電 Peak Forward Voltage	圧	V_{FM}	$T_j=25^{\circ}C$, $I_{FM}=1A$			_	0.45	V
熱抵	抗	D	接合部·周囲間	Glass Epoxy Substrate Mounted*1	_	-	157	°C/W
Thermal Resistance		R _{th (j-a)}	Junction to Ambient	Alumina Substrate Mounted*2	_	_	108	°C/W

^{*1:}プリント基板実装/Glass-Epoxy Substrate mounted (Soldering Lands-2×2 mm , Both Sides)

⁶⁻⁵

(B) 定常リプル

● 理論式(2-69)(2-70)


- 実測値1: 写真より
 - ① $\triangle V_{co} = 0.25 \cdot \angle ic = 0.05 V$ (>0.0021 · $\triangle ic \cdot \cdot \cdot \cdot 100$ 倍)

なぜ こんなに大きいか?・・・

②ESRの検討(検討)

・実際のリプルは少し小さいことより、 ESRは 250mΩ 程度

ESRを小さくしたら リプルは減るか?

 $L=47\mu H$

To=7.2µs

 C_{τ} =432μF+344m Ω

 $Cos=109\mu F+88m\Omega$

図6.6 電圧リプル(ケミコン時)

● 実測値2: 写真より

- C_τ = 432μF+344mΩ Cos = 109μF+88mΩ (F=1kHz の実測時)
- *OSコン接続時
- ∠Vco=0.088 · 0.2= 0.018 V
- 実測波形:電圧リプル(三角波成分)は微小
- •F=10kHzでのESR:テスターでは実測不可 (カタログ値:ESR=30mΩ @300kHz)

OSコンでは、リプルは激減する

- 実測値3:
 - * さらに セラコンを並列接続
 - 細かなノイズも低減
- ●スイッチング時のスパイク状ノイズ
 - *LC の高周波振動・・・対策困難

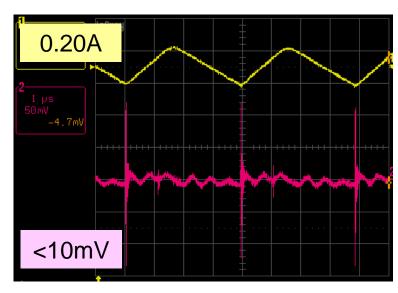


図6.7 電圧リプル(OSコン時)

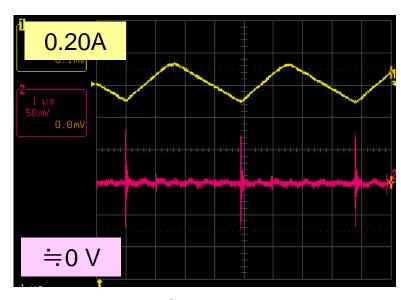
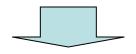



図6.8 電圧リプル(OS+セラコン時)

● 配線抵抗と出カリプルの関係

- * 上記(図6.8)に 配線抵抗を追加 電圧リプルは増えるか?
- * 直列(配線)抵抗 =0.1 Ω
- *リプル: **//**V=25mV(実測)
 - •計算值: Vr=0.1 * 0.2=0.02 V
 - ほぼ 理論値と合っている

コンデンサのリード線、配線抵抗に注意!

では、配線抵抗とは どこからどこまで?

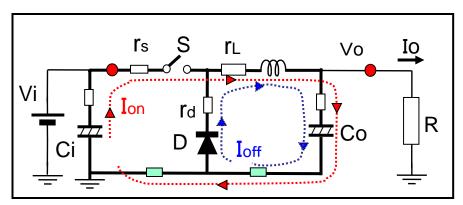


図6.11 降圧型スイッチング電源

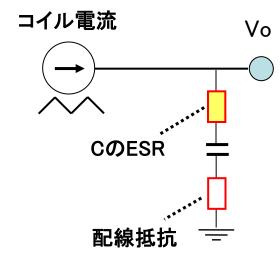


図6.9 コンデンサの配線抵抗

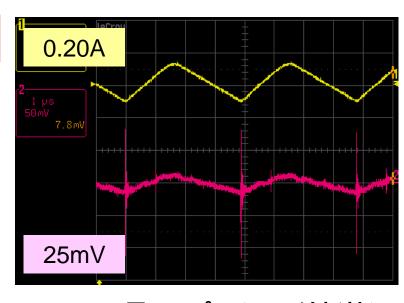


図6.10 電圧リプル(+配線抵抗)

(C) 入力電圧と出カリプル

・理論式: ⊿ic =(D' To/L){1+(rL+rd)/R}Vo

⇒
$$\angle$$
ic \propto \angle iL \propto (1-D)=1 -Vo/Vi (6-4)

- 入力電圧が上がると、電流リプルが増え、出力電圧リプルは増える
- ・実測グラフ(p.2 の実測:ケミコン使用)
- ・しかし、Viがより大きくなると、やや電圧リプルは低下する
 - ∴ p3. Zo特性より、Zo もアップ
 抵抗分割比で △Voは少し減少

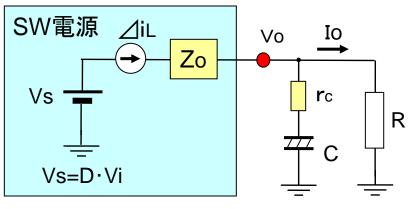


図6.12 入力電圧と出力リプル

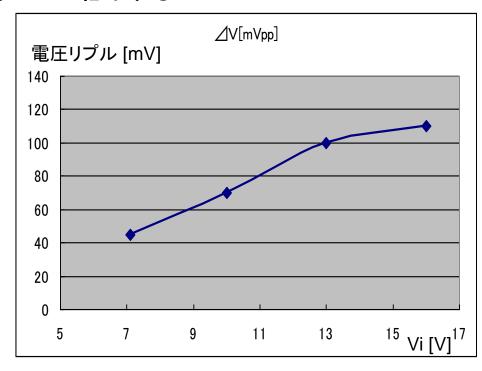


図6.13 入力電圧と出力リプル

(D) 出カインピーダンス

1)理論式

$$(RGvro/Vo) = \frac{Zo/R}{1+Zo/R} \qquad Gvdo = \frac{Vo}{D} \frac{1 + \frac{rd+rL}{R}}{1+Zo/R}$$

$$|z(s)| = \frac{R \cdot (RG_{Vro}/V_0)}{(1 + KG_{Vdo} - RG_{Vro}/V_0)P''(s)} = \frac{Z(0)}{P''(s)}$$
 (2-104)

$$Z(0) = \frac{Zo}{1 + (KVo/D)\{1 + (rd + rL)/R\}} = \frac{r}{1 + (KVo/D)(1 + r/R)}$$
(6-5)

2)実測結果

Zpeak=(23.5+7)dB \cdot 0.045 = $33.5\cdot$ 0.045 = 1.51Ω (@ 83.2kHz)

Fck=140kHz 以上は意味なし

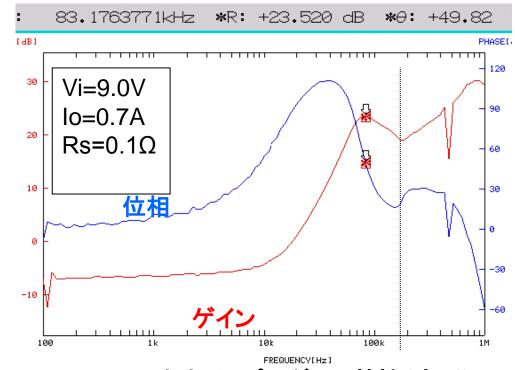


図6.14 出力インピーダンス特性(実測)

(2) 動特性(負荷応答特性)

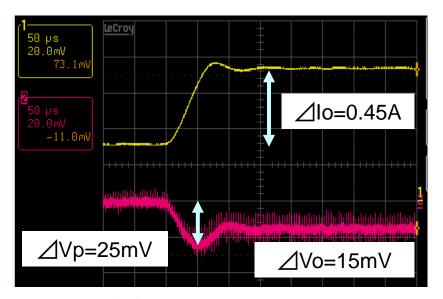
ダイナミック・ロード・レギュレーション

(A) 電流ステップと電圧ドロップ

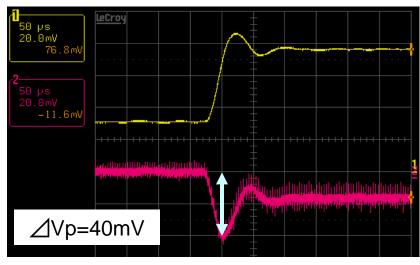
- 実測波形1 (Vi=13V)
 - •条件: ⊿Io=0.45A、di/dt=7mA/us
 - •実測性能:

オフセット: ∠Vo=-15mV

ドロップ : **∠**Vp=25mV ∕ 50us


● 実測波形2

•条件: ⊿Io=0.45A、di/dt=20mA/us


•実測性能:

オフセット: ∠Vo=-15mV(同じ)

ドロップ : **△**Vp=40mV **/** 25us

(a) di/dt=7mA/us

(b) di/dt=20mA/us

図6.15 負荷応答特性(+∠I)

● 実測波形3:電流減少

•条件: ⊿Io=-0.45A、di/dt=10mA/us

•実測性能:

オフセット: ∠Vo=-15mV(同じ)

- *電流立下り時の応答特性は、
 - ・コンデンサと負荷電流により決まる
 - ・電流の di/dt には余り影響しない

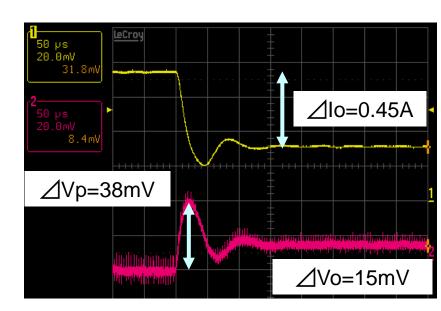


図6.16 負荷応答特性(-△I)

(3) 伝達関数

(A)オープン(開)ループ特性とクローズド(閉)ループ特性

開ループ:
$$Go(s)=K \cdot Gvdo(1-s/wvdz)/P(s) = \frac{KVo}{D \cdot P(s)}$$
 (6-6)

閉ループ:
$$G_c(s) = \frac{G_o(s)}{1 + G_o(s)} = \frac{1}{1 + D/KV_o} \frac{1}{P'(s)}$$
 (6-7)

(B) 実測結果:

- * 特性測定と解析 測定[閉ループ] ⇒ 変換[開ループ]
- *測定例:
 - •Fc=15kHz
 - ·ゲイン余裕:50dB
 - •位相余裕:60度

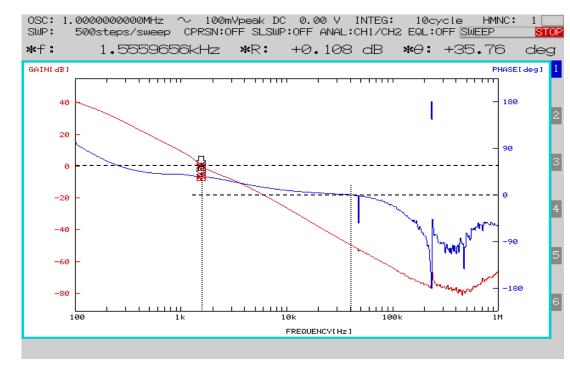


図6.17 オープンループ特性(実測)

6-2 安定性と位相補償

(1) ESRと安定性・定常電圧リプル

- ESRと安定性・出カリプル[pp]の関係
- (A)初期状態 (p.7 上図)
 - * 出力 C = 470uF ケミコン(ESR 約1000mΩ)
 - * 位相遅れ補償: RF=130k、CF=120p、R1=2.35k
- (B)変更1:低ESRコンデンサによるリプル低減 単純な変更では、不安定になる
 - * 出力C ⇒ 200uF OSコン(ESR 40/2mΩ)
 - ⇒ 発振(11kHz、80mV)
 - ⇒ 遅れ補償のFcを高めて対策

*回路条件

Vin=10V、 Io=0.7A Fck=139kHz(R=91k、C=470pF) 入力C=470uFケミコン+2.2uFセラコン

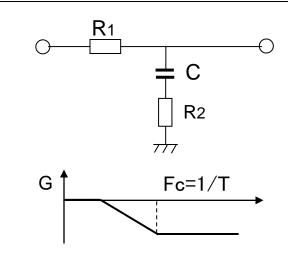


図6.18 位相遅れ補償

$$\begin{cases} G(s) = \frac{1+Ts}{1+\alpha Ts} \\ T = R_2C, \alpha = (R_1+R_2)/R_2 > 1 \end{cases}$$

$$\phi_{MAX} = Sin^{-1} \frac{1-\alpha}{1+\alpha}$$
(6-8)

- * 変更1: 出力C ⇒ 200uF OSコン(ESR 40/2mΩ)
 - ⇒ 発振対策: 遮断周波数の2倍化 (C=68 pF、Fc=18 kHz)

安定化:リプル: △V=12mV(Vi=10V)、15mV(Vi=13V)

(C)変更2:更なるリプル低減に挑戦

出力C ⇒ 2·47uF セラコン(5/2mΩ)+100uF OSコン

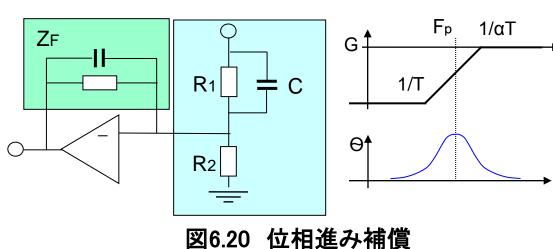
⇒ やはり 発振(12kHz、80mV @Vi=13V)

* 対策: RF を半減 (RF = 65kΩ)

⇒ さらに Fc が2倍、ゲイン半減

安定化:リプル:⊿V=16mV(Vi=10V)、18mV(Vi=13V)

*安定化できたが、定常リプルの低減は 限界か?


(2) 位相補償による安定化

- ESRと位相進み補償の関係
- (A)初期状態:発振(不安定)
 - * 出力 C = 2・47uF セラコン (87/2m Ω)
 - * 位相遅れ補償:上記(B)と同一
 - * 位相進み補償:無し ⇒ 発振
 - * 位相180度遅れで、ゲイン>O

(B)対策:

進み補償(図6.20):R=4.7k、C=3300pF

⇒ 安定化: リプル: △V=20mV

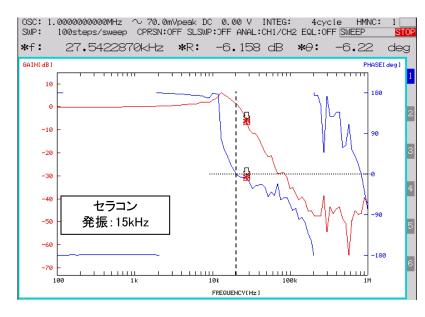
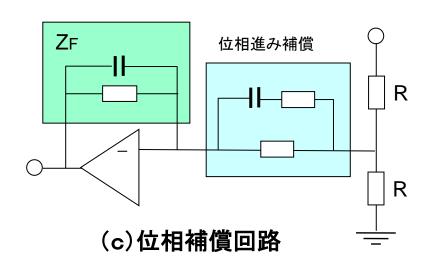
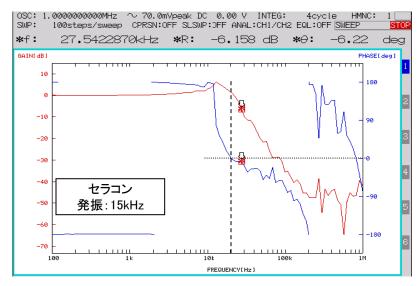
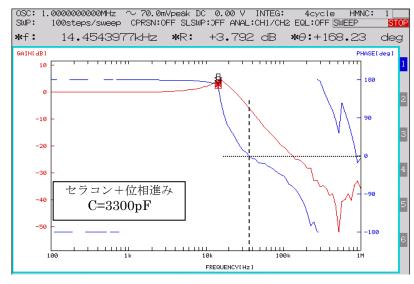


図6.19 発振状態の伝達関数


$$G(s) = \frac{\alpha(1+Ts)}{1+\alpha Ts}$$


$$T = R_1C, \alpha = R_2/(R_1+R_2) < 1$$

$$\phi_{MAX} = Sin^{-1} \frac{1-\alpha}{1+\alpha}$$
(6-9)


● C:3300pF 追加 α=0.5 (Fp=10 kHz)

- (C)対策結果:特性図(右下図) *位相周りがゆっくりになっている 位相180度遅れでのゲイン <0
- 他の位相進み補償回路:下図
 - ・遅れ補償:直流・低域特性:オフセット
 - •進み補償:高域特性や安定性

(a)補償前(発振状態)

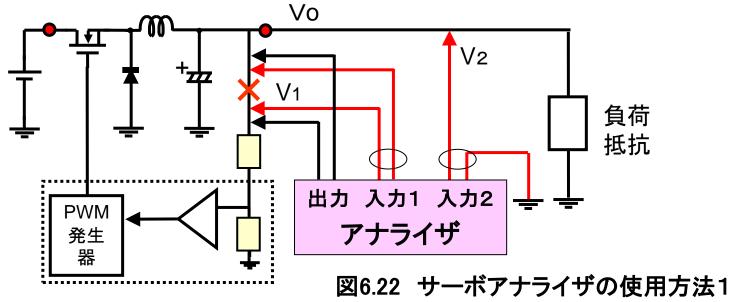
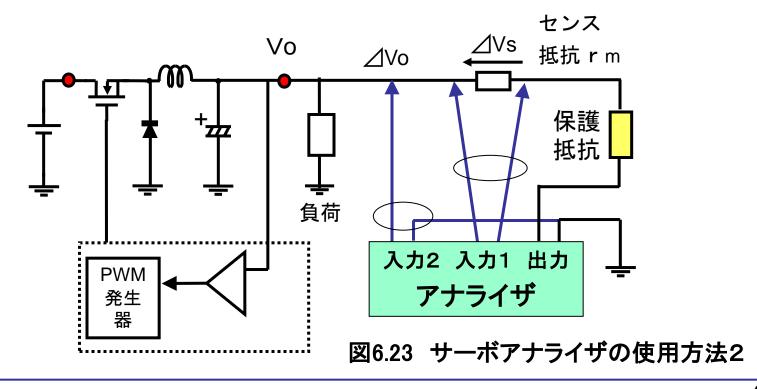

(b)補償後の閉ループ特性

図6.21 位相進み遅れ補償による特性改善

(3) サーボアナライザの使用方法


(A)伝達特性:

- * 測定点:ループ内の 低出力インピーダンス、高入力インピーダンス部分をカット
 - ・通常、負帰還抵抗分割の上側抵抗(パターン)をカット
- *注意点:同一形状・長さの測定ケーブルを使用(図中、入力1・2のケーブル)
- * 測定方法: ・伝達関数: クローズド・ループ特性 G(s) = V2/V1
 - ・信号極性:入力1の極性・・・位相の表示のみに影響
- * 測定信号:信号がひずまない大きさで(出力Vo波形を観測:SIN波) ノイズよりも十分大きく

(B)インピーダンス:

- * 測定方法:電源出力端に、並列に測定回路を接続
- * 測定回路: 電流センス抵抗Rs と、電流制限用保護抵抗Rm が必要
 - ・センス抵抗: 1~10Ω程度 ・保護抵抗: I=Vo/Rm <30mA に設定
- *インピーダンス:
 - ・⊿Vo/⊿Vs=⊿Vo/(⊿Is·Rs) より Zo=Rs・(⊿Vo/⊿Vs) (6-10)
 - •Rs が小さいと、ノイズによる誤差が大きくなる

6-3 性能検討

(1)スイッチング・ノイズ

- ●スイッチング・ノイズ観測
 - * MOSFETのスイッチ・オン時に
 - パルス状ノイズ ⇒ 高周波振動(90MHz)
- ●原 因:
 - * ダイオードの逆回復特性 (ショットキーDi は基本的に0)
- * Vdi 上昇期間の浮遊LC共振

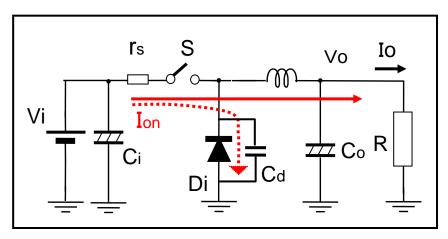


図6.24 降圧型スイッチング電源

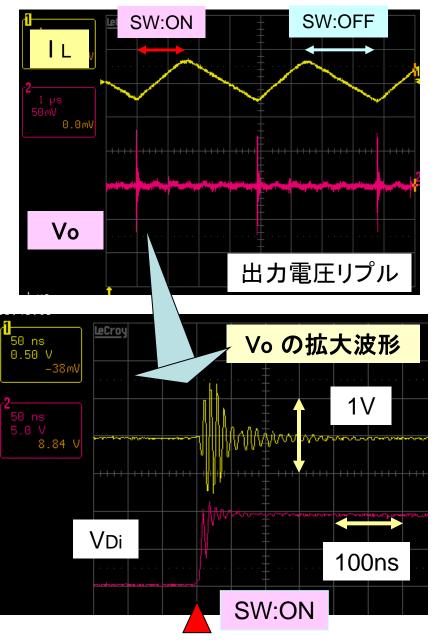
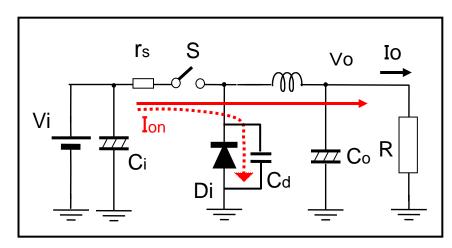



図6.25 スイッチング・ノイズ

● ノイズ低減検討

- * 逆回復時間によるノイズ+ Di 容量のチャージ電流
 - ・SW-ON時に、瞬時のチャージ電流
 - ・電流制限方法:ゲート抵抗を大きく ただし SW速度の低下による効率注意

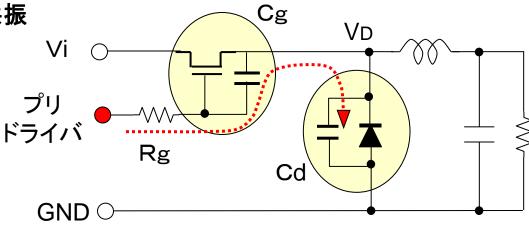
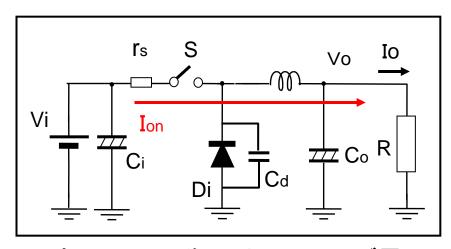
再掲 図6.24 降圧型スイッチング電源

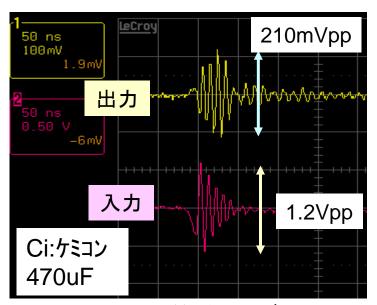
* 浮遊LC共振

・下図のチャージ電流に注目

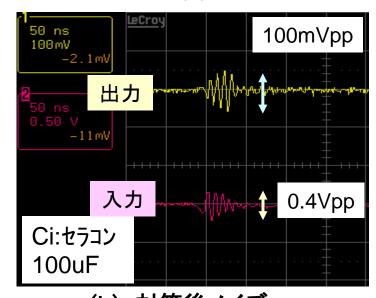
(逆回復容量+接合容量)を充電し[VD = 0V]、

VD = Vo~Vi まで充電・・・この間 共振

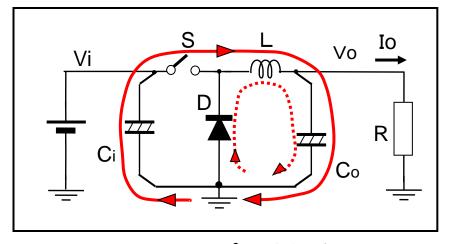



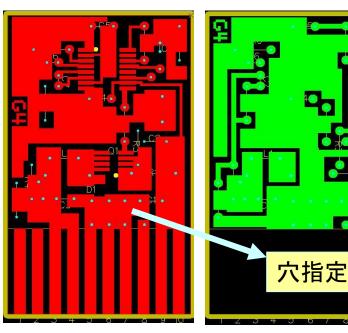

図6.26 スイッチング・ノイズ対策

(2)入力コンデンサとノイズ


- 入力コンデンサと入力SWノイズ
 - * Ci=ケミコン: 470uFのみ
 - ∠Vo=210mVpp (∠Vi=1.2Vpp)
 - * Ci=ケミコン + セラコン: 100uF
 - \triangle Vo=100mVpp (\triangle Vi=0.4Vpp)
- 入力にもスイッチング・ノイズが発生
 - * 低ESRコンデンサで低減可
 - *出カリプルにも影響

再掲 図6.24 降圧型スイッチング電源


(a)対策前ノイズ


(b) 対策後ノイズ図6.27 入力Cによるノイズ対策

(3)レイアウトと出カリプル

- (A) 基本レイアウト手法
 - S, D, Lのコンパクトレイアウト
 - ・基本パワー素子は近接配置
 - パターンも太く短く
 - 入出力コンデンサの配置
 - ・リプル電流は、コンデンサを流れる
 - ・コンデンサは、リード線を短く SWやLに密接に接続
 - ・コンデンサの配線は特に太く短く ⇒ 不要なESR、ESLを小さく
- *電流密度が高いと、ESLも大きい
- *2層基板では、多数のビア(Via)で Z 低減 (電流拡散、層間容量など)

(a)ループ電流径路

(b) ビアを用いた基板レイアウト 図6.28 基板によるノイズ対策

(4)負荷電流と効率

■ 効率
$$\eta = \frac{\text{Vo·lo}}{\text{Vi·li}} = \frac{\text{Vo·lo}}{\text{Vo·lo+Ploss}}$$

- 損失:負荷電流に関して
 - 固定ロス:

*FETゲート・ドライブロス:

$$A = \frac{1}{2} C_G \cdot V_{th^2} \cdot F_{sw}$$

- 電流比例ロス
 - * FETのSWロス: Vi•Ii•Fsw = B·Io
- 電流2乗ロス
 - * FET・Di導通ロス: ron・IL² =C1・Io²
 - *コイル抵抗ロス : rL·IL² = C2·Io²

効率と負荷電流の関係

$$\eta = \frac{\text{Vo·lo}}{\text{Vo·lo+A+Blo+Clo}^2}$$

$$= \frac{\text{Vo}}{\text{A/lo+(Vo+B)+Clo}}$$

lo=√(A/C) で極大値

- *つまり 電源設計においては 最適な負荷電流がある。
- * 負荷電流に対する効率はピークを持つ