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Timing skew is a major problem in ATE systems

Digital compensation for timing skew
⇒ Linear phase is important

Conventional linear-phase digital filter ⇒ coarse timing adjustment

Proposed linear-phase digital filter ⇒ fine timing adjustment

Research Goal
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 Fine time resolution 
 Linear phase (to preserve waveform in time domain)
 Applicable to bandpass signal (as well as lowpass signal)

Features of Proposed Digital Filter

τ
Fine time shift

F(t)

F(t-τ)
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Linear Phase FIR Filter Impulse Response
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Frequency Characteristics 

Case 1

Case 2

Case 3

Case 4

Phase : proportional to ω (linear phase)

Time resolution of group delay Ts/2
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Ideal LPF

：Sampling Frequency

Frequency Characteristics

1.0

Impulse Response

Fourier Transform

1 2 3 4 5-5 -4 -3 -2 -1
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Discrete-Time Representation of Ideal LPF

1 2 3 4 5-5 -4 -3 -2 -1

Fourier Transform

FIR (Finite Impulse Response)

zero
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Impulse Response Time-Shift

1 2 3 4 5-5 -4 -3 -2 -1

No change of Gain

Δt time-shift of impulse response
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Time-Shift  and Filter Coefficients

FIR filter
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2-Tap Filter:  Model

10
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2-Tap Filter: Delay Model
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2-Tap Filter:  Delay Model
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Proposed Delay Digital Filter

(a) FIR Filter (b) Ideal Delay Filter

(c) Delay Digital Filter

Window
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Frequency Characteristics of 
Proposed Delay Digital Filter

Case 1

Case 2

Case 3

Case 4

Phase : proportional to ω （linear phase）
Group delay time resolution τ : Arbitrary small
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Comparison of 2-Tap Filter Impulse Responses
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Comparison of 
2-Tap  Filter Frequency Characteristics
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Hann
window

Finite Tap Truncation of Proposed Delay Filter
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Effects of Window 
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How to Apply Window
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Proposed Filter DC Gain Adjustment

Digital filter DC gain : 

1 2 3 4 5-5 -4 -3 -2 -1

t
Ts

Δt
Ts

 na

a0 a1

a2

a3

a4

a5

a6

a7

a8

a9

a10

DC gain adjustment due to finite tap truncation
is required

● Original filter

● Delay filter  

 na'
n=0

N

=  DC gain of original FIR filter
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I/Q Delay Mismatch in Quadrature Modulator
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I/Q Delay Mismatch Compensation 
in Quadrature Modulator
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Matlab Simulation Results

(b) Timing skew case

Delay     0.3 samples 
Filter tap # 61 taps
Window Han
FFT points 1024 points

-0.5 0 0.5
-140

-120

-100

-80

-60

-40

-20

0

Normalized frequency

M
a
g

n
it

u
d

e
 [

d
B

]

タイミング・スキューのある信号
signalimage

-0.5 0 0.5
-140

-120

-100

-80

-60

-40

-20

0

Normalized frequency

M
a
g

n
it

u
d

e
 [

d
B

]

理想信号

(a) Ideal case

signal



41Kobayashi. Lab @ Gunma_University

Matlab Simulation Results
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M channel ADCs                   M-times sampling rate

Interleaved ADC System
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ADC ： analog-to-digital converter
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ADC ： analog-to-digital converter
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Matlab Simulation Results
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Conclusion

● Linear phase digital filter 
with fine time resolution of group delay

● Design consideration
- How to apply window
- DC gain adjustment

● Application Examples
- I/Q delay mismatch compensation 

in quadrature modulator
- Timing skew compensation in interleaved ADC system

On-going work
● Implementation issues

– Finite word length, finite tap effects
– LSI implementation
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Abstract 
This paper describes timing skew adjustment techniques 
in ATE systems (such as for timing skew compensation in 
an interleaved ADC system and an SSB signal 
generation system) using a digital filter with novel linear 
phase condition proposed in our ITC2010 paper. A 
conventional linear phase digital filter is an FIR filter 
with coefficients of odd- or even –symmetry and whose 
group delay NTs/2 where N is the number of the FIR 
filter taps and Ts is the sampling period; its group delay 
time resolution is Ts/2. We have generalized the linear 
phase condition, and with our novel linear phase 
condition, the group delay time resolution can be 
arbitrary small, and the coefficients are not necessarily 
odd- or even-symmetric. In this paper we discuss several 
practical issues for applying our digital filter to timing 
skew compensation in ATE systems, such as truncation 
of the infinite number of taps, techniques of using 
window and DC gain adjustment. We also compare our 
digital filter with the fractional delay digital filter. 
 
Keywords: Digital Filter, Linear Phase, Digitally-
Assisted Analog Technology, Timing Skew, ATE, 
Fractional Delay Digital Filter 
 

1. Introduction 
In this paper we describe a digital filter with novel linear 
phase condition and show that its delay time resolution 
is arbitrary fine (i.e., its group delay can be set with 
arbitrary small time resolution), and its practical issues 
for timing skew adjustment applications in ATE systems.  
In section 2, conventional linear phase condition for 
digital filter is explained, and in section 3, our novel 
linear phase condition is explained based on our 
ITC2010 paper [1]. In section 4, we investigate 
realization consideration for our digital filter, and in 
section 5, comparison with fractional delay filter is 
shown. Section 6 concludes the paper. 

2.        Conventional Linear Phase Condition 
Linear phase characteristics are important for the digital 
filter to preserve the signal waveform in time domain. It 
is well-known in [2-4] that the FIR digital filter with odd 
or even symmetry coefficients has linear phase 
characteristics and it is unconditionally stable. The IIR 
digital filter with odd or even symmetry of both its 
denominator and numerator has also linear 
characteristics but it is unstable. Hence in almost all 

cases, the FIR digital filter with odd or even symmetry 
coefficients is used where the linear phase is required, 
and in such cases its group delay is (N/2)Ts where N  is 
the number of the FIR filter taps and 

sT  is the sampling 
period; in other words the time resolution of the  group 
delay is 2sT , and this cannot be used for fine timing 
skew adjustment in ATE systems. 

3. Novel Linear Phase Condition 
In this section, we describe - based on our ITC2010 
paper [1] - the extended linear phase characteristics 
conditions for the digital filter which has not necessarily 
odd or even symmetry coefficients, and its time 
resolution of the group delay is arbitrary small. 

First we discuss without consideration of causality, for 
simplicity. Let us consider the following analog filter 
(Fig.1): 

( )
⎩
⎨
⎧ <<−

=
otherwise.0

T casein s0 πωπ sin
out

Ttva
v          (1) 

Then its impulse response  h(t) is given as follows: 

( ) ( ).sinc0 ss TtTath π=                 (2) 

We consider the case that the input ( )tvin  is band-limited 
to sT πωπ <<− sT . We sample the above impulse 
response with a period Ts, and use the following 
transformation to obtain the digital filter which 
corresponds to the analog filter in (1): 

( ) ( )
( ) ( ).

1

nxnTv
nynTv

T

sin

sout

s

→
→

→
                      (3) 

Then we have the following digital filter: 

( ) ( )nxany 0=                           (4) 

This is because 

( )
⎩
⎨
⎧ =

=
otherwise0

0 casein 1
sinc

n
nπ            (5) 

This digital filter has obviously linear phase 
characteristics (or rigorously speaking zero phase  
characteristics). 
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Fig. 1. An ideal analog low pass filter. Gain, phase 
characteristics, and impulse response. 
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Fig. 2. Sampling timing shift can maintain the linear 
phase characteristics. Impulse response, and gain, phase 
characteristics. 

Now let us consider to sample ( )th  at τ+= snTt  (Fig.2), 
where sT<<τ0 , and use (3). characteristics). Then we 
have the following digital filter which corresponds to the 
analog filter in (1): 

( ) ( ).knxany
k

k −′= ∑
∞

−∞=

                 (6) 

Here 

( )( ).sinc sk Tka τπ +=′                  (7) 

In general ka′  is not necessarily zero and ka′  is not 
necessarily equal to 

ka−′  or 
ka−′− . 

Proposition 1 :  The digital filter given by (6), (7) has 
the linear filter characteristics, and its group delay is τ. 

Next we discuss in case of Fig.3, and consider the 
following analog filter: 

( ) ( )

⎪
⎩

⎪
⎨

⎧
<<−

−+
=

 otherwise.0
 casein 

10

TT
Ttvatva

v s

sinin

out πωπ     (8) 

Note that its impulse response is given as follows: 

( ) ( ) ( )( ).1sincsinc 10 −+= ssss TtTaTtTath ππ    (9) 

We assume that the input ( )tvin
 is band-limited to 

ss TT πωπ <<− . Similarly we sample this filter with 

snTt = , and we have the following digital filter using 
(3): 

( ) ( ) ( ).110 −+= nxanxany              (10) 

Next we sample (9) with  τ+= snTt , and we have the 
following digital filter: 

( ) ( ).∑
∞

−∞=

−′=
k

k knxany                     (11) 

Here 

( )( ) ( )( )( ).1sincsinc 10 ssk TkaTkaa τπτπ +−++=′ (12) 

Proposition 2 :  The digital filter given by (11), (12) 
with 

10 aa =  or 
10 aa −=  has the linear phase 

characteristics and its group delay is τ+2sT . Also the 
digital filter of (11) has the same gain characteristics as 
(10).  The same argument holds for an N-tap FIR filter. 

Proposition 3 :  Let us consider an N-tap FIR digital 
filter with coefficients 

ka  of odd or even symmetry. 

( ) ( )∑
−

=

−=
1

0

N

k
k knxany                    (13) 

Then the following digital filter has the linear 
characteristics with group delay  ( ) τ+sTN 2 . 

( ) ( )∑
∞

−∞=

−′=
k

k knxany                   (14) 

Here     

 ( )( )( ).sinc
1

0
∑

−

=

+−=′
N

l
slk Tlkaa τπ       (15) 

Table 1 shows the frequency characteristics of digital 
filters with our proposed linear phase condition. 

TABLE I    Frequency characteristics of the proposed 
linear phase digital filter 
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Fig. 3.  2-tap FIR filter without and with sampling 
timing shift. (a) Impulse response. (b) Gain and phase 
responses. 

Now we will provide the proof for our proposed linear 
phase digital filter in general case: let us consider an N-
tap FIR filter with conventional linear phase condition, 
and we have the impulse response ( )th~  with continuous 
time and its Fourier transform ( )fH~ : 

( ) ( ) ( ).~ 1

0
∑

−

=

−=
N

n
ss nTtnThth δ                 (16) 

( ) ( ) .)(1~ ∑
∞

−∞=

−=
k sT

kf
T

fHfH δ★         (17) 

Here ⋆ indicates convolution, ( )⋅δ  denotes a delta 
function, and 

( ) ( ) ).
2
1

2
1(2

12

ss

TNfj

T
f

T
efHfH s ≤≤−=

−− π
    (18) 

When we add a delay τ  to the impulse response ( )th  
and we have its frequency characteristics as follows: 

( ) ( ) .22
12 τππ fjTNfj

eefHfH s −
−−

⋅=′      (19) 

We see that the phase characteristics of ( )fH ′  is linear 
with respect to f . ( )fH ′  can be interpreted as the 
convolution between ( )fH  and ( )fS , where ( )fS  is the 
ideal filter with a delay τ : 

( ) ).
2
1

2
1(2

12

ss

Nfj

T
f

T
efS ≤≤−=

−− τπ
    (20) 

Thus after the sampling operation in time domain, the 
ideal filter ( )fS  in Eq.(20)  leads to the following ( )fS~ : 

( ) ( ) .)()(~ ∑∑
∞

−∞=

∞

−∞=

−=−=
k sk s T

kfS
T
kffSfS δ★   (21) 

Next we will consider the effect of the delay τ  to the 
impulse response. The inverse Fourier transform of 

( )fS~  is given as follows: 

( ) ( )

( ).))((sinc

))((sinc~

∑

∑
∞

−∞=

∞

−∞=

−−=

−⋅−=

n
s

s

n
s

s

nTt
T
t

nTt
T
tts

δτπ

δτπ

     (22) 

We see from (22) that ( )ts~  is asymmetric with respect to 
0=t , and we have the following impulse response: 

 

 

 

 

Thus the impulse response of time delay τ  with 
continuous time has finite values for ±∞→t  due to the 
sinc function effects. 

4. Realization Consideration  
We sample the input signal with the sampling period Ts 
and then we consider the band-limited case to 

ss TT πωπ <<− , in order to avoid the aliasing effects. 
In such case ( )th  does not converge to zero as t  
becomes plus/minus infinity. So the digital filter with 
our novel linear phase condition has to have the infinite 
number of taps and this cannot be realized. (Note that in 
case of 0=τ , ( )snTh  can be zero as n  becomes large 
which corresponds to the conventional linear phase FIR 
digital filter case.) So we consider to truncate the terms 
for large number of k  in (15) applying a window 
function and we approximate the digital filter of (14), 
(15) with the finite number of taps. We also consider 
here the DC gain adjustment. 

4.1   Approximation with Finite Number of Taps 

The ideal digital filter with our proposed linear phase 
condition needs infinite number of taps. However it is 
cannot be realized, and hence we have to approximate it 
as the filter with finite number of taps. We consider here 
the effects of the truncation to the finite number of taps. 
We observe from our simulation results so-called Gibbs 
oscillation at the edges of pass-band of the gain 
characteristics and also phase characteristics (Fig.4) [2], 
[3]; Gibbs oscillation for phase characteristics is not 
observed in many cases, and we have found that this 
Gibbs oscillation for phase characteristics is due to the 
asymmetry of the impulse response ( )nh  with respect to 

0=n . 

h t( ) s t( )

= h nTs( )δ t − nTs( )
n=0

N−1

∑ sinc(π (kTs −τ )
Ts

) ⋅δ t − nTs( )
n=−∞

∞

∑

= h nTs( )
n=0

N−1

∑ sinc(π (kTs −τ )
Ts

) ⋅δ t − n − k( )Ts( )
n=−∞

∞

∑ . (23)
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Fig. 4.  Gain and phase characteristics of the proposed 
digital filter (with time shift τ  of 0.3Ts) after truncation 
to finite number (N=61) of filter taps with and without 
applying Hann window. 

 

4.2           Applying Window Function 

Next we investigate to use window functions when we 
approximate the ideal filter using the one with the finite 
number of taps. When we use a window function, the 
Gibbs oscillations for gain and phase are suppressed. 
Fig.5 shows our simulation result with time-shift τ  of 
0.3Ts and applying Hann window.  We have also found 
that this Gibbs oscillation for phase can be further 
suppressed if we use a window function with the time-
shift τ , as shown in Fig.5 where we choose the time 
shift τ  of 0.5Ts (which affects phase characteristics 
significantly) and we use a Hann window. 

There can be two methods for applying a window: one is 
to use the window with symmetry to the Y-axis (Fig.5 
(a)) and the other is to use the window with the 
symmetry to the center of the impulse response (Fig.5 
(b)). We have performed simulation and found that the 
one in Fig.5 (b) is better. The Gibbs oscillation of the 
group delay is suppressed when the window of time-
shift is used for the LPF (Fig.6).  

Our proposed linear phase filter is also applicable to a 
bandpass filter and Fig.7 shows the group delay of the 
bandpass filter with the bandwidth of 0.1 fs – 0.4fs. We 
see that the group delay is almost constant in the wider 
range when the window of time-shift is used (Fig.7 (b)). 

4.3.    DC Gain Adjustment  
The DC gain of our digital filter can be changed by 
truncation to the finite number of the taps after 
windowing, and we have to adjust it for the practical use. 
The DC gain adjustment technique can be described as 
follows: 
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Fig.5. (a) Window with symmetry to the Y-axis 
(window is not time-shifted). (b) Window with 
symmetry to the center of the impulse response (window 
is time-shifted). 
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Fig.6.  Group delay characteristics of the proposed 
digital filter (with time shift τ  of sT5.0 ) after truncation 

to finite number (N = 61) of filter taps. (a) With 
applying Hann window of no time-shift. (b) With 
applying Hann window time-shifted by sT5.0=τ  

 

Our digital filter without DC gain adjustment 

g(n) = h(n) where n= 0, ±1,  ±2, ±3,…±N 

Our digital filter with DC gain adjustment 

g’(n) =  (Gideal / Gfnt ) h(n)  

where n= 0, ±1,  ±2, ±3,…±N 

Here DC gain of the ideal filter is given by 

        Gideal = ( )∑
∞

−∞=n
nh  
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Also DC gain of the filter after truncation of the finite 
number (2N+1) taps is given by 

       Gfnt = ( )∑
−=

′
N

Nn
nh  

We have performed simulation to demonstrate the 
effectiveness of the window with time-shift and DC gain 
adjustment in the single-side band (SSB) signal 
generation system  in Fig,8. We assume that there is 
timing skew τ in I-path and we use our timing skew 
compensation digital filter in Q-path. Fig. 11 (a) shows 
the power spectrum of the output s(t) without timing 
skew, and Fig.9 (b) shows the one with timing skew τ 
where spurious components are observed. 

0.1 0.15 0.2 0.25 0.3 0.35 0.4
49.59

49.595

49.6

49.605

Normalized frequency

G
ro

up
 d
el
ay

群群群群群(非非非)

0.1 0.15 0.2 0.25 0.3 0.35 0.4
49.59

49.595

49.6

49.605

Normalized frequency

G
ro

up
 d
el
ay

群群群群群(非非)

Gr
ou

p d
ela

y[s
am

ple
s]

Gr
ou

p d
ela

y[s
am

ple
s]

Normalized frequency

Normalized frequency

(a)

(b)
 

Fig.7.Group delay of bandpass filter with the bandwidth 
of 0.1fs – 0.4fs. (a) With applying Hann window of no-
time shift. (b) With applying Hann window of time-shift. 
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Fig. 8. SSB signal generation system with timing skew 
τ in  I-path and the timing skew compensation digital 
filter in Q-path. 

Fig.10 shows the simulation result using timing skew 
compensation with our proposed digital filter. Fig.10 (a) 
is the case that the window of no-time shift are used and 
DC gain adjustment is not used while Fig.10 (b) is the 
case that the window of time-shift and DC gain 
adjustment are used. We see that spurious components  
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Fig.9. Simulation results of output power spectrum of 
the SSB signal generation system in Fig.8. (a) Without 
timing skew. (b) With timing skew τ.  

 

are further suppressed when the time-shifted window 
and DC gain adjustment are used. 

5.  Comparison with Fractional Delay Filter  
We would like to call the reader’s attention that another 
digital filter with fine time resolution, so-called a 
fractional delay digital filter has been proposed [5-8], 
which mainly focuses on the waveform interpolation and 
reconstruction. However our proposed technique can 
incorporate filtering characteristics (such as a cosine 
roll-off filter, a Gaussian filter) as well as fine timing 
skew adjustment  with  the clear design method as 
described above; this is  very useful in some electronic 
manufacturing  equipment applications [1]. Furthermore, 
since our proposed filter is easy to design, we can obtain 
their coefficient values with small amount of calculation 
which is desirable for many applications, especially 
ATE systems where real-time timing calibration is 
required. 

We have performed Matlab simulation and found that 
our proposed filter can apply for the signal up to  the 
frequency close to the Nyquist rate (in other words, the 
bandwidth of our proposed filter is close to the Nyquist 
rate while that of the fractional  delay filter is not); this 
is another advantage of our proposed filter (Fig.11). 
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Fig.10. Simulation results of timing skew compensation 
with our proposed digital filter. (a) With the window of 
no time-shit and without DC gain adjustment. (b) With 
the window of time-shift and with DC gain adjustment. 

6.   Conclusion 

We have described the digital filter with novel linear 
phase characteristics and the time resolution of its group 
delay is arbitrary small. We have investigated the 
truncation effects to the finite number of its filter taps, 
techniques of using window and DC gain adjustment as 
well as comparison with fractional delay filter. We 
believe that our proposed digital filter is opening a new 
research area for digital filters with linear phase and fine 
resolution of group delay, as well as its applications. 
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Ideal Filter Response
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Discrete-Time Expression 
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Time Shifted Impulse Response
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Influence to Coefficients by Time Shift
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2 Tap FIR Model
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2 Tap Delayed FIR Model
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2 Tap Delayed FIR Model
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Comparison of Freq. Characteristic
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Phase : 1st order function of frequency 

Delay  : controllable with 

Frequency Characteristic of Proposed Filter
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Proposed Design Technique

FIR with Desired Characteristic Delayed Ideal Filter

Delayed FIR Filter with Desired Characteristic
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Effect of Window Function
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Novel Linear Phase Condition of D.F.

• Original FIR filter has complete linear phase

• Original FIR filter is band-limited

• Bandwidth of signal is below Nyquist rate 

Fine delay can  be controlled using Ideal filter 

• Delayed filter has infinite impulse response

• Window function can construct FIR effectively
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Outline

• Conventional linear phase FIR filter

• Time-shifted ideal filter

• Construction of linear phase filter

• Application examples

• Conclusion
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Application to Quadrature Modulator
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Adjustment of I/Q Skew
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Application to Time-Interleaved ADCs
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Conclusion

• Fine delay controllable digital filter which 

maintains desired characteristics is proposed

• It is applicable not only to Low Pass Filters 

but also to Band Pass Filters

• It can compensate the timing skew of analog 

modules in ATE
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Abstract 
This paper describes the timing skew compensation 
technique using the digital filter with our novel linear 
phase condition. First we describe the digital filter which 
can set its group delay with the arbitrary fine time 
resolution while it maintains the linear phase 
characteristics; the conventional linear phase digital filter 
can set its group delay with the time resolution of a half of 
the sampling period. We will provide its structure and 
operation, theoretical analysis as well as simulation 
verification. Next we will describe the application of our 
proposed digital filter to compensate for timing skew in the 
following cases: 
(1) Sampling timing skew among channels in the time-
interleaved ADC system. 
(2) I, Q-path timing skew in the single-side band (SSB) 
signal generator.  
We show its effectiveness with simulation.  
 
Keywords: Digital Filter, Linear Phase, Digitally-Assisted 
Analog Technology, Timing Skew, Digital Error 
Correction, ATE 
 

1. Introduction 
Fine timing skew adjustments are frequently used in 
Automatic Test Equipment (ATE) systems, where linear 
phase characteristics are desired in many cases to preserve 
signal waveforms in time domain. Digital techniques are 
preferred for the timing skew compensation because they 
are stable, reliable and easy to implement compared to 
analog techniques. However, the conventional digital filter 
with linear phase cannot be applied to the fine timing skew 
adjustment because its delay time resolution is limited.  

In this paper we propose a digital filter with novel linear 
phase condition and show that its delay time resolution is 
arbitrary fine (i.e., its group delay can be set with arbitrary 
small time resolution).  Ideally, our proposed linear phase 
digital filter has infinite number of taps which cannot be 
realized. Hence we approximate it with the finite number 

of taps. We observe Gibbs oscillations [1], [2] for phase as 
well as gain characteristics when we approximate it 
directly without applying a window function. However 
using proper window functions can eliminate these 
oscillations and their gain and phase characteristics are 
close to the ones with the ideal digital filter. 

We also show the application of our proposed digital filter 
to compensate for timing skew in ATE systems in the 
following cases: 

(1) Sampling timing skew among channels in the time-
interleaved ADC system. 

(2) I, Q-path timing skew in the single-side band (SSB) 
signal generator. 

2.        Conventional Linear Phase Condition 
Linear phase characteristics are important for the digital 
filter to preserve the signal waveform in time domain. It is 
well-known in [1] that the FIR digital filter with odd or  
even symmetry coefficients has linear phase characteristics 
and it is unconditionally stable. The IIR digital filter with  
odd or even symmetry of both its denominator and 
nominator has also linear characteristics but it is unstable. 
Hence in almost all cases, the FIR digital filter with odd or 
even  symmetry coefficients is used where the linear phase 
is required, and in such cases its group delay is (N/2)Ts 
where N  is the number of the FIR filter taps and 

sT  is the 
sampling period; in other words the time resolution of the  
group delay is 2sT , and this cannot be used for fine 
timing skew adjustment in ATE systems. 

3. Novel Linear Phase Condition 
In this section, we show the extended linear phase 
characteristics conditions for the digital filter which has 
not necessarily odd or even symmetry coefficients, and its 
time resolution of the group delay is arbitrary small. 

First we discuss without consideration of causality, for 
simplicity. Let us consider the following analog filter 
(Fig.1): 
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We consider the case that the input ( )tvin  is band-limited 
to sT πωπ <<− sT . We sample the above impulse 
response with a period Ts, and use the following 
transformation to obtain the digital filter which 
corresponds to the analog filter in (1): 
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Fig. 1. An ideal analog low pass filter. Gain, phase 
characteristics, and impulse response. 
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Fig. 2. Sampling timing shift can maintain the linear phase 
characteristics. Impulse response, and gain, phase 
characteristics. 

 

This digital filter has obviously linear phase characteristics 
(or rigorously speaking zero phase characteristics). Now 
let us consider to sample ( )th  at τ+= snTt  (Fig.2), where 

sT<<τ0 , and use (3). Then we have the following digital 
filter which corresponds to the analog filter in (1): 

( ) ( ).knxany
k

k −′= ∑
∞

−∞=

                     (6) 

Here 

( )( ).sinc sk Tka τπ +=′                     (7) 

In general ka′  is not necessarily zero and ka′  is not 
necessarily equal to 

ka−′  or 
ka−′− . 

Proposition 1 :  The digital filter given by (6), (7) has the 
linear filter characteristics, and its group delay is τ. 

Proof :  The inverse Fourier transform of (6) is given by 

( ) ( ) ( ).ωωω jXjHjY =                   (8) 

It follows from (7) that in case of 0=τ , 
( ) .00

ajH =
=τω                               (9) 

Then we have the following for a given τ ( )sT<<τ0 : 

( ) .0
ωτω jeajH −=                            (10) 

Thus the digital filter given by (6), (7) has the linear filter 
characteristics, and its group delay is τ  (Fig.2).  (Q. E. D.) 

Next we discuss in case of Fig.3, and consider the 
following analog filter: 
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Note that its impulse response is given as follows: 

( ) ( ) ( )( ).1sincsinc 10 −+= ssss TtTaTtTath ππ       (12) 

We assume that the input ( )tvin
 is band-limited to 

ss TT πωπ <<− . Similarly we sample this filter with 

snTt = , and we have the following digital filter using (3): 
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Next we sample (12) with  τ+= snTt , and we have the 
following digital filter: 
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Proposition 2 :  The digital filter given by (14), (15) with 
10 aa =  or 

10 aa −=  has the linear phase characteristics and 
its group delay is τ+2sT . Also the digital filter of (14) 
has the same gain characteristics as (13). 

Proof :  We consider the case of 
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Fig. 3.  2-tap FIR filter without and with sampling timing 
shift. (a) Impulse response. (b) Gain and phase responses. 

 

Then the digital filter of (14) has the same gain 
characteristics as (13). 

Similar argument is valid in case of 
10 aa −= .     (Q. E. D.) 

 

The same argument holds for the 3-tap FIR filter case 
(Fig.4), and also in general for an N-tap FIR filter as 
Propositions 1, 2. 

Proposition 3 :  Let us consider an N-tap FIR digital filter 

with coefficients 
ka  of odd or even symmetry. 
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Fig. 4.  3-tap FIR filter without and with sampling timing 
shift. (a) Without sampling time shift. (b) Gain, phase and 
impulse responses with sampling timing shift. 

 

Proposition 3 can be proved similarly in Proposition 1, 2 
cases. 

We have performed MATLAB simulation and checked  
that the above digital filter with time shift τ  have linear  
phase characteristics and have the same gain 
characteristics as the one without time shift for N=1, 2, 
and 3. 

Table 1 shows the frequency characteristics of digital 
filters with the conventional linear phase conditions, and 
Table 2 shows the ones with our proposed linear phase  
conditions derived from the corresponding conventional  
linear phase digital filter. 

 
 

TABLE I 

FREQUENCY CHARACTERISTICS WITH CONVENTIONAL LINEAR PHASE 

CONDITIONS 

 
 

 
TABLE II 

FREQUENCY CHARACTERISTICS WITH PROPOSED LINEAR PHASE 

CONDITIONS 

 
 

Now we will provide the proof for our proposed linear 
phase digital filter in general case: 

Let us consider an N-tap FIR filter with conventional 
linear phase condition, and we have the impulse response 

( )th~  with continuous time and its Fourier transform ( )fH~ : 

( ) ( ) ( ).~ 1

0
∑

−

=

−=
N

n
ss nTtnThth δ                   (23) 

( ) ( ) .)(1~ ∑
∞

−∞=

−=
k sT

kf
T

fHfH δ★            (24) 

Here ⋆ indicates convolution, ( )⋅δ  denotes a delta function, 
and 

( ) ( ) ).
2
1

2
1(2

12

ss

TNfj

T
f

T
efHfH s ≤≤−=

−− π
  (25) 

When we add a delay τ  to the impulse response ( )th  and 
we have its frequency characteristics as follows: 

( ) ( ) .22
12 τππ fjTNfj

eefHfH s −
−−

⋅=′         (26) 

We see that the phase characteristics of ( )fH ′  is linear 
with respect to f . ( )fH ′  can be interpreted as the 
convolution between ( )fH  and ( )fS , where ( )fS  is the 
ideal filter with a delay τ : 

( ) ).
2
1

2
1(2

12

ss

Nfj

T
f

T
efS ≤≤−=

−− τπ
      (27) 

Thus the ideal filter ( )fS~  for (24) is given by 

( ) ( ) .)()(~ ∑∑
∞

−∞=

∞

−∞=

−=−=
k sk s T

kfS
T
kffSfS δ★     (28) 

Next we will consider the effect of the delay τ  to the 
impulse response. The inverse Fourier transform of ( )fS~  
is given as follows: 
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( ) ( )

( ).))((sinc

))((sinc~

∑

∑
∞

−∞=

∞

−∞=

−−=

−⋅−=

n
s

s

n
s

s

nTt
T
t

nTt
T
tts

δτπ

δτπ

         (29) 

We see from (29) that ( )ts~  is asymmetric with respect to 
0=t , and we have the following impulse response: 

( ) ( )

( ) ( ) ( )

( ) ( )( ) )30(.))((sinc

))((sinc

~~

1

0

1

0

∑ ∑

∑∑
∞

−∞=

−

=

∞

−∞=

−

=

−−⋅−=

−⋅−−=

n
s

s

s
N

n
s

n
s

s

s
N

n
ss

Tknt
T

kTnTh

nTt
T

kTnTtnTh

tsth

δτπ

δτπδ ★

★

Thus the impulse response of time delay τ  with 
continuous time has finite values for ±∞→t  due to the 
sinc function effects. 

4. Realization Consideration  
Here we sample the input signal with the sampling period 
Ts and then we consider the band-limited case to 

ss TT πωπ <<− , in order to avoid the aliasing effects. In 
such case ( )th  does not converge to zero as t  becomes 
plus/minus infinity. So the digital filter with our novel 
linear phase condition has to have the infinite number of 
taps and this cannot be realized. (Note that in case of 0=τ , 

( )snTh  can be zero as n  becomes large which corresponds 
to the conventional linear phase FIR digital filter case.) So 
we consider to truncate the terms for large number of k  in 
(22) applying a window function and we approximate the 
digital filter of (21), (22) with the finite number of taps. 

4.1         Approximation with Finite Number of Taps 

The ideal digital filter with our proposed linear phase 
condition needs infinite number of taps. However it is 
cannot be realized, and hence we have to approximate it as 
the filter with finite number of taps. We consider here the 
effects of the truncation to the finite number of taps. We 
observe from our simulation results so-called Gibbs 
oscillation at the edges of pass-band of the gain 
characteristics and also phase characteristics (Fig.5) [1], 
[2]; Gibbs oscillation for phase characteristics is not 
observed in many cases, and we have found that this Gibbs 
oscillation for phase characteristics is due to the 
asymmetry of the impulse response ( )nh  with respect to 

0=n . 
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Fig. 5.  Gain and phase characteristics of the proposed 
digital filter (with time shift τ  of 0.3Ts) after truncation to 
finite number (N=61) of filter taps with and without 
applying Hann window. 

 

4.2           Applying Window Function 

Next we investigate to use window functions when we 
approximate the ideal filter using the one with the finite 
number of taps. When we use a window function, the 
Gibbs oscillations for gain and phase are suppressed. Fig.5 
shows our simulation result with time-shift τ  of 0.3Ts and 
applying Hann window.  We have also found that this 
Gibbs oscillation for phase can be further suppressed if we 
use a window function with the time-shift τ , as shown in 
Fig.6 where we choose the time shift τ  of 0.5Ts (which 
affects phase characteristics significantly) and we use a 
Hann window. 
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Fig. 6.  Phase characteristics of the proposed digital filter 
(with time shift τ  of sT5.0 ) after truncation to finite 

number (N = 61) of filter taps. (a) With applying Hann 
window of no time-shift. (b) With applying Hann window 
time-shifted by sT5.0=τ  

5.     Digital Filter Application for Timing 
Skew Compensation 

5.1          Interleaved ADC System 

A time-interleaved ADC system is an effective way to 
implement a high-sampling-rate ADC with relatively slow 
circuits (Fig.7) [4], [5], and is widely used in ATE systems.  
In the ADC system, several channel ADCs operate at 
interleaved sampling times as if they were effectively a 
single ADC operating at a much higher sampling rate. 
However, mismatches among channel ADCs - such as 
offset, gain   and bandwidth mismatches as well as timing 
skew of the clocks distributed to the channels - degrade 
SNDR and SFDR of the ADC system as a whole. 

Here we consider the timing skew problem in the 
interleave ADC system. Suppose that the clocks CK1, CK2, 

… CKM have skews Mdtdtdt ,, 21 (Fig.7) [4-7]. If the 

input signal Vin(t) is sampled at time t+dt instead of time t, 
we have the sampling time error e(t) : 

            e(t) = Vin(t+dt) – Vin (t)   

which can be approximated by 

            e(t) ≒ [dVin(t))/ dt ] dt 

This skew causes so-called pattern noise in the ADC 
system, and in the time domain the largest error occurs 
when the input signal has the largest slew rate. The timing 
skew effect in the time-interleaved ADC system is serious 

for high frequency analog signal measurements, because 
its slew rate (dVin(t)/dt)  becomes high. 

Time

Ideal
Timing

Actual
Timing

Sampling
Time

Analog
input

Digital
output

 

Fig. 7.  Interleaved ADC system and timing skew. 

 

Proposed Timing Skew Compensation Method 1 : 

We propose to compensate for the timing skew effects 
using our linear phase digital filter directly as shown in 
Fig.8 (a) in the two-channel case. We have performed 
MATLAB simulation and obtained the result in Fig.8 (b); 
we see that the spurious tone is suppressed by our 
proposed digital filter. However this method is only 
applicable for the input frequency from 0 to fs/2 where fs 
is the channel ADC sampling frequency; this method is 
NOT applicable for the input frequency from fs/2 to Fs/2 
where Fs is the sampling frequency of the  whole 
interleaved ADC system and Fs=2fs  in the  two-channel 
case. 

Proposed Timing Skew Compensation Method 2 : 

Next we will describe a more sophisticated timing skew 
compensation method which also uses our proposed linear 
phase digital filter and is applicable for the input 
frequency from DC to the whole interleaved ADC 
sampling frequency Fs/2. 

The timing skew effect in the time-interleaved ADC 
system is serious for high frequency analog signal 
measurements [4]. We present here its frequency domain 
compensation method based on [6], [7]. We design and 
apply a digital filter for the timing skew compensation so 
that spurious due to the timing skew is cancelled. Its 
principle is as follows: Let us consider the two channel 
case for simplicity. The output spectrum for channel 1 and 
2 without mismatches are given as follows: 
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Fig. 8.  Proposed timing skew compensation method 1. (a) 
Timing skew effect compensation in the 2-channel 
interleave ADC system with our novel linear phase digital 
filters. (b) Simulation results of the timing skew 
compensation method 1 with our digital filter. 
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Then we have the output spectrum of the interleaved ADC 
system: 

( ) ( ) ( )
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Here 

⎩
⎨
⎧
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oddk
evenk

e kj

:,0
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1 π                       (34) 

and we have the rewritten output power spectrum of (33). 
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Now we assume here that the timing skew between 
channel 1 and 2 is τ , and we have the power spectrum of 
the channel ADCs and also the whole interleaved ADC 
system: 
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For 2-channel case, we have to consider only in k=0, 1, 2 
cases because the signal band is from DC to 2 (fs/2), and 
we have the following: 
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We see from (39) that we can cancel the spurious 
component for k=1 by multiplying 

( ) ( )( ).212
2

sTfjefH −= πτ                      (40) 

Then we compensate for the timing skew effect using the 
following filters: 

( ) πξ2
1

jefH −=  

( ) ( )( ).2122
2

sTfjj eefH −−= πτπξ                   (41) 

This compensation method can be realized with two ways: 

(1) Frequency domain approach: We perform FFT to each 
channel ADC output signal and apply the above filter 

( )fH1 , ( )fH 2  respectively. 

(2) Time domain approach: We apply the digital filter 
( )nh1 , ( )nh2  for each channel ADC output which 

implements ( )fH1  and ( )fH 2  respectively. 
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We have investigated their compensation accuracy and 
calculation complexity. These methods are effective over 
the input frequency range from DC up to M・(fs/2), where 
M is  the number of channels and fs is the channel ADC 
sampling frequency; such performance was very difficult 
to realize with conventional methods.  

We have performed simulation by applying our methods 
to a two-channel time-interleaved ADC system with 
timing skew and validated their effectiveness. Figure 9 
shows  h1(n) , h2(n) filter characteristics used for the 
timing skew compensation method 2, and we see that in 
both cases, their group delays are constant ( phases are 
linear) with respect to the input frequency. Figure 10 
shows the simulation results and we see that spurious 
signals are suppressed with our proposed method 2. 

5.2           SSB Signal Generation 

An ATE for communication IC testing incorporates SSB 
signal generation function (Fig.11) [8], [9], and we 
consider here to generate a SSB signal with a 2-channel 
arbitrary   waveform generator. When the timing skew 
between I and Q-path exists, the negative frequency 
component is not zero. We propose to use our linear phase 
digital filter to compensate for the timing skew (Fig.12). 
Fig.13 shows our MATLAB simulation results, and we see 
that the negative frequency components due to the timing 
skew are suppressed. 

We close this section by remarking that another digital 
timing skew compensation technique with fine time 
resolution, so-called a fractional delay digital filter [10], 
[11], [12], [13], [14] has been proposed, which mainly 
focuses on the waveform interpolation and reconstruction. 
However our proposed technique can incorporate filtering 
characteristics (such as a cosine roll-off filter) as well as 
fine timing skew adjustment  with  the clear design method 
as described above; this is   very useful in LSI testing 
technology applications. Furthermore, since our proposed 
filter is easy to design, we can obtain their coefficient 
values with small amount of calculation which is desirable 
for ATE and LSI testing technologies where real-time 
timing calibration is required. 

 

6.           Conclusion 

We have proposed the digital filter with novel linear phase 
characteristics and the time resolution of its group delay is 
arbitrary small. Also we have shown its application for 
timing skew compensation in interleaved ADC systems 
and SSB signal generation systems. We have performed 
simulation to validate these results. We believe that our 
proposed technique will open a new research area for 
digital filters with linear phase and fine resolution of group 
delay, and give a significant impact on its application in 
electronic systems as digital compensation technique for 
timing skew and frequency characteristics, which is 
reliable and stable as well as suitable for fine CMOS 
implementation. 
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Fig. 9.  h1(n) (shown in purple) and h2(n) (shown in blue) 
filter characteristics used for the timing skew 
compensation method 2. (Top) Impulse response. (Middle) 
Gain characteristics. (Bottom) Group delay characteristics. 
For h1(n) Impulse response is symmetric but for h2(n) it is 
asymmetric.  
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Fig. 10.  Simulation results of the timing skew 
compensation method 2 for the QPSK input (whose signal 
band is within Fs/4 – Fs/2) with applying the Blackman 
window function for the digital filter tap truncation. (a) 
Without compensation. (b) With compensation. 
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Fig. 11.  Single-side band (SSB) signal. 
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Fig. 12.  Timing skew compensation for the SSB signal 
with our linear phase digital filter. 
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Fig. 13.  Simulation results of timing skew compensation 
for the SSB signal with our novel linear phase digital filter 
for wideband input signal. (a) Without compensation. (b) 
With compensation using our proposed linear phase digital 
filter. 


