Digitally-Assisted Compensation for Timing Skew in ATE Systems

K. Asami T. Tateiwa T. Kurosawa
H. Miyajima H. Kobayashi

Advantest Corporation
Gunma University
Contents

• Research Goal
• Conventional Linear Phase Digital Filter Condition
• New Linear Phase Digital Filter Condition
 – Time-Shift, Impulse Response of Ideal Filter
 – New Linear Phase Digital Filter
• MATLAB Simulation
• Design Considerations
 – Window
 – Gain Adjustment
• Application
• Conclusion
Research Goal

Timing skew is a major problem in ATE systems

Digital compensation for timing skew
⇒ Linear phase is important

Conventional linear-phase digital filter ⇒ coarse timing adjustment

Proposed linear-phase digital filter ⇒ fine timing adjustment
Features of Proposed Digital Filter

- Fine time resolution
- Linear phase (to preserve waveform in time domain)
- Applicable to bandpass signal (as well as lowpass signal)
Contents

• Research Purpose
• Conventional Linear Phase Digital Filter Condition
• New Linear Phase Digital Filter Condition
 – Time-Shift, Impulse Response of Ideal Filter
 – New Linear Phase Digital Filter
• MATLAB Simulation
• Design Consideration
 – Window
 – Gain Adjustment
• Application
• Conclusion
Linear Phase FIR Filter Impulse Response

(1) Case 1
odd # of taps • even symmetry

(2) Case 2
even # of taps • even symmetry

(3) Case 3
odd # of taps • odd symmetry

(4) Case 4
even # of taps • odd symmetry
Frequency Characteristics

<table>
<thead>
<tr>
<th>Case</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>Case 1</td>
<td>$h(nT) = e^{-j\omega(N-1)T_s/2} \sum_{k=0}^{(N-1)/2} a_k \cos[\omega k T_s]$</td>
</tr>
<tr>
<td>Case 2</td>
<td>$H(e^{j\omega T_s}) = e^{-j\omega(N-1)T_s/2} \sum_{k=1}^{N/2} b_k \cos[\omega(k - 1/2) T_s]$</td>
</tr>
<tr>
<td>Case 3</td>
<td>$H(e^{j\omega T_s}) = e^{-j(\omega(N-1)T_s/2-\pi/2)} \sum_{k=0}^{(N-1)/2} a_k \sin[\omega k T_s]$</td>
</tr>
<tr>
<td>Case 4</td>
<td>$H(e^{j\omega T_s}) = e^{-j(\omega(N-1)T_s/2-\pi/2)} \sum_{k=1}^{N/2} b_k \sin[\omega(k - 1/2) T_s]$</td>
</tr>
</tbody>
</table>

Phase
- Proportional to ω (linear phase)

Time resolution of group delay
- $T_s/2$
Contents

• Research Purpose
• Conventional Linear Phase Digital Filter Condition
• New Linear Phase Digital Filter Condition
 – Time-Shift, Impulse Response of Ideal Filter
 – New Linear Phase Digital Filter
• MATLAB Simulation
• Design Consideration
 – Window
 – Gain Adjustment
• Application
• Conclusion
Ideal LPF

Frequency Characteristics

Impulse Response

\[|H(j\omega)| \]

\[\frac{-\omega_s}{2} \quad \frac{\omega_s}{2} \]

\[\angle H(j\omega) \]

\[\frac{-\omega_s}{2} \quad \frac{\omega_s}{2} \]

\[h(t) = \frac{1}{T_s} \text{sinc} \left(\pi \frac{t}{T_s} \right) \]

\[\omega_s = \frac{2\pi}{T_s} : \text{Sampling Frequency} \]
Discrete-Time Representation of Ideal LPF

\[\sum_k H(j(\omega - k \cdot \omega_s)) \]

Fourier Transform

FIR (Finite Impulse Response)

\[h(t) = \sum_k \text{sinc} \left(\pi \frac{k \cdot T_s}{T_s} \right) \delta(t - k \cdot T_s) \]
Impulse Response Time-Shift

\[|G(j\omega)| \]

\[\angle G(j\omega) = -\omega \Delta t \]

\[\frac{\Delta t}{T_s} \]

No change of Gain

\[\Delta t \] time-shift of impulse response

Kobayashi. Lab @ Gunma_University
Time-Shift and Filter Coefficients

FIR filter

\[h(t) = \sum_k \text{sinc} \left(\pi \frac{k \cdot T_s}{T_s} \right) \delta(t - k \cdot T_s) \]

Zero

IIR Filter

\[h(t) = \sum_k \text{sinc} \left(\pi \frac{k \cdot T_s - \Delta t}{T_s} \right) \delta(t - k \cdot T_s) \]

\(\Delta t\)

Ideal Delay-Filter

Time Shift

Contents

• Research Purpose
• Conventional Linear Phase Digital Filter Condition
• **New Linear Phase Digital Filter Condition**
 – Time-Shift, Impulse Response of Ideal Filter
 – **New Linear Phase Digital Filter**
• MATLAB Simulation
• Design Consideration
 – Window
 – Gain Adjustment
• Application
• Conclusion
2-Tap Filter: Model
2-Tap Filter: Delay Model

- FIR
- IIR

\[|G(j\omega)| \]
\[\angle G(j\omega) \]
\[-j(\omega T_s/2 + \omega\tau) \]
2-Tap Filter: Delay Model

\[|G(j\omega)| \]
\[\angle G(j\omega) = -j(\omega T_s / 2 + \omega \tau) \]

\[t \quad \frac{t}{T_s} \]
\[a_0 \quad a_1 \]

\[a'_0 \quad a'_1 \]
Proposed Delay Digital Filter

(a) FIR Filter

(b) Ideal Delay Filter

(c) Delay Digital Filter

Window
Frequency Characteristics of Proposed Delay Digital Filter

<table>
<thead>
<tr>
<th>Case</th>
<th>$g(nT)$</th>
<th>$G(e^{j\omega T})$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Case 1</td>
<td>$e^{-j\omega (N-1)T_s/2 + \omega \tau}$</td>
<td>$\sum_{k=0}^{(N-1)/2} a_k \cos[\omega kT_s]$</td>
</tr>
<tr>
<td>Case 2</td>
<td>$e^{-j\omega (N-1)T_s/2 + \omega \tau}$</td>
<td>$\sum_{k=1}^{N/2} b_k \cos[\omega (k - 1/2)T_s]$</td>
</tr>
<tr>
<td>Case 3</td>
<td>$e^{-j(\omega (N-1)T_s/2 - \pi/2 + \omega \tau)}$</td>
<td>$\sum_{k=0}^{(N-1)/2} a_k \sin[\omega kT_s]$</td>
</tr>
<tr>
<td>Case 4</td>
<td>$e^{-j(\omega (N-1)T_s/2 - \pi/2 + \omega \tau)}$</td>
<td>$\sum_{k=1}^{N/2} b_k \sin[\omega (k - 1/2)T_s]$</td>
</tr>
</tbody>
</table>

Phase: proportional to ω (linear phase)
Group delay time resolution τ : Arbitrary small
Contents

• Research Purpose
• Conventional Linear Phase Digital Filter Condition
• New Linear Phase Digital Filter Condition
 – Time-Shift, Impulse Response of Ideal Filter
 – New Linear Phase Digital Filter
• MATLAB Simulation
• Design Consideration
 – Window
 – Gain Adjustment
• Application
• Conclusion
Comparison of 2-Tap Filter Impulse Responses

2-Tap FIR Filter

Proposed Delay Filter (0.3 samples delay)

2-tap FIR coefficients

zero

Impulse response changes.

Non-zero
Comparison of 2-Tap Filter Frequency Characteristics

- No change of gain
- Phase slope changes
- Original filter and proposed delay filter
- Proposed delay filter
Finite Tap Truncation of Proposed Delay Filter

61-Tap Cosine Roll-off Filter

10 20 30 40 50 60
-0.2 0 0.2 0.4 0.6

Delayed Filter (0.3 samples delay)

Rectangular window

Hann window
Effects of Window

Frequency characteristics of delay filter with 61-tap truncation

Gibbs oscillation of group delay
Contents

• Research Purpose
• Conventional Linear Phase Digital Filter Condition
• New Linear Phase Digital Filter Condition
 – Time-Shift, Impulse Response of Ideal Filter
 – New Linear Phase Digital Filter
• MATLAB Simulation
• Design Consideration
 – Window
 – Gain Adjustment
• Application
• Conclusion
How to Apply Window

Centered at origin

Centered at impulse response center

Window center shifted by Δt
Frequency Characteristics of Delay Filter after Applying Window

<table>
<thead>
<tr>
<th></th>
<th>Gain [dB]</th>
<th>Phase [degree]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normalized frequency</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0.1</td>
<td>-50</td>
<td>-50</td>
</tr>
<tr>
<td>0.2</td>
<td>-50</td>
<td>-50</td>
</tr>
<tr>
<td>0.3</td>
<td>-50</td>
<td>-50</td>
</tr>
<tr>
<td>0.4</td>
<td>-50</td>
<td>-50</td>
</tr>
<tr>
<td>0.5</td>
<td>-50</td>
<td>-50</td>
</tr>
</tbody>
</table>

- **Delay**: 0.3 samples
- **Filter Tap**: 100 taps
- **Window**: Han
- **Pass band**: $(0.1 \sim 0.4) \cdot Fs$
- **FFT points**: 1024 points
Group Delay Characteristics of Delay Filter after Applying Window

Window centered at origin

Window centered at impulse response

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delay</td>
<td>0.3 samples</td>
</tr>
<tr>
<td>Filter Tap</td>
<td>100 taps</td>
</tr>
<tr>
<td>Window</td>
<td>Han</td>
</tr>
<tr>
<td>Pass band</td>
<td>(0.1~0.4)FS</td>
</tr>
<tr>
<td>FFT points</td>
<td>1024 points</td>
</tr>
</tbody>
</table>
Frequency Characteristics of Delay Filter after Applying Window

Window centered at origin

Window centered at impulse response

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delay</td>
<td>0.3 samples</td>
</tr>
<tr>
<td>Filter Tap</td>
<td>100 taps</td>
</tr>
<tr>
<td>Window</td>
<td>Han</td>
</tr>
<tr>
<td>Pass band</td>
<td>(0.05～0.3)·Fs</td>
</tr>
<tr>
<td>FFT points</td>
<td>1024 points</td>
</tr>
</tbody>
</table>
Group Delay Characteristics of Delay Filter after Applying Window

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delay</td>
<td>0.3 samples</td>
</tr>
<tr>
<td>Filter Tap</td>
<td>100 taps</td>
</tr>
<tr>
<td>Window</td>
<td>Han</td>
</tr>
<tr>
<td>Pass band</td>
<td>(0.05 ~ 0.3) \cdot Fs</td>
</tr>
<tr>
<td>FFT points</td>
<td>1024 points</td>
</tr>
</tbody>
</table>
Group Delay Characteristics of Delay Filter after Applying Window

- **Window centered at origin**
- **Window centered at impulse response**

Applying window centered at impulse response → Constant group delay over entire passband

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delay</td>
<td>0.3 samples</td>
</tr>
<tr>
<td>Filter Tap</td>
<td>100 taps</td>
</tr>
<tr>
<td>Window</td>
<td>Han</td>
</tr>
<tr>
<td>Pass band</td>
<td>(0.05 \sim 0.3 \cdot Fs)</td>
</tr>
<tr>
<td>FFT points</td>
<td>1024 points</td>
</tr>
</tbody>
</table>
Contents

• Research Purpose
• Conventional Linear Phase Digital Filter Condition
• New Linear Phase Digital Filter Condition
 – Time-Shift, Impulse Response of Ideal Filter
 – New Linear Phase Digital Filter
• MATLAB Simulation
• Design Consideration
 – Window
 – Gain Adjustment
• Application
• Conclusion
Proposed Filter DC Gain Adjustment

Digital filter DC gain : \(\sum a_n \)

DC gain adjustment due to finite tap truncation is required

\[\sum_{n=0}^{N} a'_n = \text{DC gain of original FIR filter} \]
Frequency Characteristics of Proposed Delay Filter

Without DC gain adjustment

With DC gain adjustment

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delay</td>
<td>0.3 samples</td>
</tr>
<tr>
<td>Filter Tap</td>
<td>101 taps</td>
</tr>
<tr>
<td>Window</td>
<td>Han</td>
</tr>
<tr>
<td>Cut-off Freq.</td>
<td>0.4\cdot Fs</td>
</tr>
<tr>
<td>FFT points</td>
<td>1024 points</td>
</tr>
</tbody>
</table>
Gain Characteristics of Proposed Delay Filter

With DC gain adjustment
Without DC gain adjustment

Gain Characteristics:

- Delay: 0.1 samples
- Filter Tap: 101 taps
- Window: Han
- Cutoff Freq.: 0.4 • Fs
- FFT points: 1024 points

With DC gain adjustment:
- Delay: 0.3 samples
- Filter Tap: 101 taps
- Window: Han
- Cutoff Freq.: 0.4 • Fs
- FFT points: 1024 points

Gain [dB]: 0.0006 dB

Gain [dB]: 0.005 dB
Gain Characteristics of Proposed Delay Filter

- **Original FIR filter**
- **With DC gain adjustment**
- **Without DC gain adjustment**

<table>
<thead>
<tr>
<th>Delay</th>
<th>0.1 samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Filter Tap</td>
<td>101 taps</td>
</tr>
<tr>
<td>Window</td>
<td>Han</td>
</tr>
<tr>
<td>Cutoff Freq.</td>
<td>0.4 • Fs</td>
</tr>
<tr>
<td>FFT points</td>
<td>1024 points</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Delay</th>
<th>0.3 samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Filter Tap</td>
<td>101 taps</td>
</tr>
<tr>
<td>Window</td>
<td>Han</td>
</tr>
<tr>
<td>Cutoff Freq.</td>
<td>0.4 • Fs</td>
</tr>
<tr>
<td>FFT points</td>
<td>1024 points</td>
</tr>
</tbody>
</table>
Gain Characteristics of Proposed Delay Filter

- Original FIR filter
- With DC gain adjustment
- Without DC gain adjustment

DC gain adjustment

Delay filter gain

<table>
<thead>
<tr>
<th>Normalized Frequency</th>
<th>Original FIR filter gain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delay</td>
<td>0.1 samples</td>
</tr>
<tr>
<td>Filter Tap</td>
<td>101 taps</td>
</tr>
<tr>
<td>Window</td>
<td>Han</td>
</tr>
<tr>
<td>Cutoff Freq.</td>
<td>0.4·Fs</td>
</tr>
<tr>
<td>FFT points</td>
<td>1024 points</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Normalized Frequency</th>
<th>With DC gain adjustment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delay</td>
<td>0.3 samples</td>
</tr>
<tr>
<td>Filter Tap</td>
<td>101 taps</td>
</tr>
<tr>
<td>Window</td>
<td>Han</td>
</tr>
<tr>
<td>Cutoff Freq.</td>
<td>0.4·Fs</td>
</tr>
<tr>
<td>FFT points</td>
<td>1024 points</td>
</tr>
</tbody>
</table>
Contents

• Research Purpose
• Conventional Linear Phase Digital Filter Condition
• New Linear Phase Digital Filter Condition
 – Time-Shift, Impulse Response of Ideal Filter
 – New Linear Phase Digital Filter
• MATLAB Simulation
• Design Consideration
 – Window
 – Gain Adjustment
• Application
• Conclusion
I/Q Delay Mismatch in Quadrature Modulator

I(t) = cos (2πf₀t)
Q(t) = sin(2πf₀t)

SSB signal input

Delay in analog domain

Image rejection ratio

I(t) + jQ(t)

SSB: single side band
DAC: digital-to-analog converter
I/Q Delay Mismatch Compensation in Quadrature Modulator

I(t) = cos (2πf₀t)

Q(t) = sin(2πf₀t)

SSB signal

digital timing compensation τ

Delay in analog domain

DAC: digital-to-analog converter

SSB : single side band
Matlab Simulation Results

(a) Ideal case

(b) Timing skew case

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delay</td>
<td>0.3 samples</td>
</tr>
<tr>
<td>Filter tap #</td>
<td>61 taps</td>
</tr>
<tr>
<td>Window</td>
<td>Han</td>
</tr>
<tr>
<td>FFT points</td>
<td>1024 points</td>
</tr>
</tbody>
</table>
Matlab Simulation Results

(c) Compensation using delay filter
Without adjustment of window, gain

(d) Compensation using delay filter
With adjustment of window, gain

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Delay</td>
<td>0.3 samples</td>
</tr>
<tr>
<td>Filter tap</td>
<td>61 taps</td>
</tr>
<tr>
<td>Window</td>
<td>Han</td>
</tr>
<tr>
<td>FFT points</td>
<td>1024 points</td>
</tr>
</tbody>
</table>
Interleaved ADC System

- M channel ADCs
- \(M \)-times sampling rate

![Diagram of Interleaved ADC System]

- Analog input
- Digital output
- \(S/H_1 \rightarrow ADC_1 \)
- \(S/H_2 \rightarrow ADC_2 \)
- \(S/H_M \rightarrow ADC_M \)
- \(CK_1, CK_2, CK_M \)
- \(T_s \)
- Time

Kobayashi. Lab @ Gunma_University
Timing Skew in Interleaved ADC System

ADC: analog-to-digital converter

ADC1

ADC2

MUX

Digital output

Dout

Analog Input

f_{in}

CLK1

CLK2

CLK 1

CLK 2

f_{in}

f

F_s

0

F_s - f_{in}F_s

f

0

F_s

\tau

ADC: an analog-to-digital converter

F_s = \frac{1}{T_s}
Timing Skew Compensation in Interleaved ADC System

Analog input f_{in} → ADC1 → MUX → Digital output D_{out}

Clock skew effect compensation

- ADC1
- ADC2
- CLK1
- CLK2

Clock skew τ

- f_{in}
- F_s
- $F_s - f_{\text{in}}F_s$

ADC: analog-to-digital converter

$F_s = 1/T_s$
Matlab Simulation Results

(a) Ideal case

(b) Timing skew case

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delay</td>
<td>0.3 samples</td>
</tr>
<tr>
<td>Filter tap</td>
<td>61 taps</td>
</tr>
<tr>
<td>Window</td>
<td>Han</td>
</tr>
<tr>
<td>FFT points</td>
<td>1024 points</td>
</tr>
</tbody>
</table>
Matlab Simulation Results

(c) Compensation using delay filter
Without adjustment of window, gain

(d) Compensation using delay filter
With adjustment of window, gain

<table>
<thead>
<tr>
<th>Delay</th>
<th>0.3 samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Filter tap</td>
<td>61 taps</td>
</tr>
<tr>
<td>Window</td>
<td>Han</td>
</tr>
<tr>
<td>FFT points</td>
<td>1024 points</td>
</tr>
</tbody>
</table>
Conclusion

● Linear phase digital filter with fine time resolution of group delay
● Design consideration
 - How to apply window
 - DC gain adjustment
● Application Examples
 - I/Q delay mismatch compensation in quadrature modulator
 - Timing skew compensation in interleaved ADC system

On-going work
● Implementation issues
 – Finite word length, finite tap effects
 – LSI implementation
Digitally-Assisted Compensation Technique
for Timing Skew in ATE Systems

Koji Asami*, Takenori Tateiwa, Tsuyoshi Kurosawa
Hiroyuki Miyajima, Haruo Kobayashi

* Advantest Corporation, Meiwa-machi, Ora-gun, Gunma 370-0718 Japan
Dept. of Electronic Engineering, Gunma University, Kiryu, Gunma 376-8515 Japan
Email: koji.asami@jp.advantest.com, k_haruo@el.gunma-u.ac.jp

Abstract
This paper describes timing skew adjustment techniques in ATE systems (such as for timing skew compensation in an interleaved ADC system and an SSB signal generation system) using a digital filter with novel linear phase condition proposed in our ITC2010 paper. A conventional linear phase digital filter is an FIR filter with coefficients of odd- or even –symmetry and whose group delay NTs/2 where N is the number of the FIR filter taps and Ts is the sampling period; its group delay time resolution is Ts/2. We have generalized the linear phase condition, and with our novel linear phase condition, the group delay time resolution can be arbitrary small, and the coefficients are not necessarily odd- or even-symmetric. In this paper we discuss several practical issues for applying our digital filter to timing skew compensation in ATE systems, such as truncation of the infinite number of taps, techniques of using window and DC gain adjustment. We also compare our digital filter with the fractional delay digital filter.

Keywords: Digital Filter, Linear Phase, Digitally-Assisted Analog Technology, Timing Skew, ATE, Fractional Delay Digital Filter

1. Introduction
In this paper we describe a digital filter with novel linear phase condition and show that its delay time resolution is arbitrary fine (i.e., its group delay can be set with arbitrary small time resolution), and its practical issues for timing skew adjustment applications in ATE systems. In section 2, conventional linear phase condition for digital filter is explained, and in section 3, our novel linear phase condition is explained based on our ITC2010 paper [1]. In section 4, we investigate realization consideration for our digital filter, and in section 5, comparison with fractional delay filter is shown. Section 6 concludes the paper.

2. Conventional Linear Phase Condition
Linear phase characteristics are important for the digital filter to preserve the signal waveform in time domain. It is well-known in [2-4] that the FIR digital filter with odd or even symmetry coefficients has linear phase characteristics and it is unconditionally stable. The IIR digital filter with odd or even symmetry of both its denominator and numerator also has linear characteristics but it is unstable. Hence in almost all cases, the FIR digital filter with odd or even symmetry coefficients is used where the linear phase is required, and in such cases its group delay is (N/2)Ts where N is the number of the FIR filter taps and T_s is the sampling period; in other words the time resolution of the group delay is T_s/2, and this cannot be used for fine timing skew adjustment in ATE systems.

3. Novel Linear Phase Condition
In this section, we describe - based on our ITC2010 paper [1] - the extended linear phase characteristics conditions for the digital filter which has not necessarily odd or even symmetry coefficients, and its time resolution of the group delay is arbitrary small.

First we discuss without consideration of causality, for simplicity. Let us consider the following analog filter (Fig.1):

\[
\begin{align*}
\frac{\sin(\pi \omega T_s)}{\pi \omega} & \quad in \quad case \quad 0 < \omega < \pi / T_s \\
0 & \quad otherwise
\end{align*}
\]

Then its impulse response \(h(t) \) is given as follows:

\[
h(t) = a_n T_s \sin(\pi n / T_s).
\] (2)

We consider the case that the input \(v_i(t) \) is band-limited to \(-\pi / T_s < \omega < \pi / T_s \). We sample the above impulse response with a period Ts, and use the following transformation to obtain the digital filter which corresponds to the analog filter in (1):

\[
T_s \rightarrow 1
\]

\[
v_{out}(nT_s) \rightarrow y(n)
\]

\[
v_{in}(nT_s) \rightarrow x(n).
\] (3)

Then we have the following digital filter:

\[
y(n) = a_n x(n)
\] (4)

This is because

\[
\sin(\pi n) = \begin{cases}
1 & \text{in case } n = 0 \\
0 & \text{otherwise}
\end{cases}
\] (5)

This digital filter has obviously linear phase characteristics (or rigorously speaking zero phase characteristics).
Inverse Fourier Transform

\[\omega_s : \text{Sampling Frequency} \]

Fig. 1. An ideal analog low pass filter. Gain, phase characteristics, and impulse response.

\[\omega_s = \frac{\omega_s}{2} \]

\[H(j\omega) = \frac{a_0}{\omega_s} \]

\[\omega_s \]

\[\omega_s \]

\[H(j\omega) = 0 \]

Fig. 2. Sampling timing shift can maintain the linear phase characteristics. Impulse response, and gain, phase characteristics.

Now let us consider to sample \(h(t) \) at \(t = nT_s + \tau \) (Fig. 2), where \(0 < \tau < T_s \), and use (3). Then we have the following digital filter which corresponds to the analog filter in (1):

Proposition 1: The digital filter given by (6), (7) has the linear filter characteristics, and its group delay is \(\tau \).

Next we discuss in case of Fig. 3, and consider the following analog filter:

Proposition 2: The digital filter given by (11), (12) with \(a_0 = a_i \) or \(a_0 = -a_i \) has the linear phase characteristics and its group delay is \(T_s/2 + \tau \). Also the digital filter of (11) has the same gain characteristics as (10). The same argument holds for an N-tap FIR filter.

Proposition 3: Let us consider an N-tap FIR digital filter with coefficients \(a_k \) of odd or even symmetry.

Then the following digital filter has the linear characteristics with group delay \(N/2T_s + \tau \).

Table 1 shows the frequency characteristics of digital filters with our proposed linear phase condition.

TABLE I Frequency characteristics of the proposed linear phase digital filter

| case | \(N \) | \(h(n) \) | \(H(e^{j\omega}) \) |
|------|--------|-------------|
| 1 | odd | even symmetry | \(e^{-j\omega (\frac{\pi}{2} + \frac{\pi}{T_s})} \sum_{k=0}^{2N} a_k \cos(k\omega) \) |
| 2 | even | even symmetry | \(e^{-j\omega (\frac{\pi}{2} + \frac{\pi}{T_s})} \sum_{k=0}^{2N} a_k \cos(k\frac{\omega}{2}) \) |
| 3 | odd | odd symmetry | \(e^{-j\omega (\frac{\pi}{2} + \frac{\pi}{T_s})} \sum_{k=0}^{2N} a_k \sin(k\omega) \) |
| 4 | even | odd symmetry | \(e^{-j\omega (\frac{\pi}{2} + \frac{\pi}{T_s})} \sum_{k=0}^{2N} a_k \sin(k\frac{\omega}{2}) \) |
Thus after the sampling operation in time domain, the ideal filter \(S(f)\) in Eq.(20) leads to the following \(\tilde{S}(f)\):

\[
\tilde{S}(f) = S(f) \ast \left(\sum_{k=-\infty}^{\infty} \delta(f - \frac{k}{T_s}) = \sum_{k=-\infty}^{\infty} S(f - \frac{k}{T_s}). \right) \tag{21}
\]

Next we will consider the effect of the delay \(\tau\) to the impulse response. The inverse Fourier transform of \(\tilde{S}(f)\) is given as follows:

\[
\tilde{s}(t) = \text{sinc} \left(\frac{\pi(t - \tau)}{T_s} \right) \ast \left(\sum_{n=-\infty}^{\infty} \delta(t - nT_s) \right)
= \sum_{n=-\infty}^{\infty} \text{sinc} \left(\frac{\pi(t - \tau)}{T_s} \right) \delta(t - nT_s). \tag{22}
\]

We see from (22) that \(\tilde{s}(t)\) is asymmetric with respect to \(t = 0\), and we have the following impulse response:

\[
\tilde{h}(t) \ast \tilde{s}(t)
= \sum_{n=0}^{\infty} h(nT_s) \delta(t - nT_s) \ast \sum_{k=0}^{\infty} \text{sinc} \left(\frac{\pi(kT_s - \tau)}{T_s} \right) \delta(t - nT_s)
= \sum_{n=0}^{\infty} \sum_{k=0}^{\infty} h(nT_s) \text{sinc} \left(\frac{\pi(kT_s - \tau)}{T_s} \right) \delta(t - (n-k)T_s). \tag{23}
\]

Thus the impulse response of time delay \(\tau\) with continuous time has finite values for \(t \to \pm \infty\) due to the sinc function effects.

4. Realization Consideration

We sample the input signal with the sampling period \(T_s\) and then we consider the band-limited case to \(\pi/T_s < \omega < \pi/T_s\), in order to avoid the aliasing effects. In such case \(h_n\) does not converge to zero as \(n\) becomes plus/minus infinity. So the digital filter with our novel linear phase condition has to have the infinite number of taps and this cannot be realized. (Note that in case of \(\tau = 0\), \(h(nT_s)\) can be zero as \(n\) becomes large which corresponds to the conventional linear phase FIR digital filter case.) So we consider to truncate the terms for large number of \(|k|\) in (15) applying a window function and we approximate the digital filter of (14), (15) with the finite number of taps. We also consider here the DC gain adjustment.

4.1 Approximation with Finite Number of Taps

The ideal digital filter with our proposed linear phase condition needs infinite number of taps. However it is cannot be realized, and hence we have to approximate it as the filter with finite number of taps. We consider here the effects of the truncation to the finite number of taps. We observe from our simulation results so-called Gibbs oscillation at the edges of pass-band of the gain characteristics and also phase characteristics (Fig.4) [2], [3]; Gibbs oscillation for phase characteristics is not observed in many cases, and we have found that this Gibbs oscillation for phase characteristics is due to the asymmetry of the impulse response \(h(n)\) with respect to \(n = 0\).
Fig. 4. Gain and phase characteristics of the proposed digital filter (with time shift τ of 0.3Ts) after truncation to finite number (N=61) of filter taps with and without applying Hann window.

4.2 Applying Window Function

Next we investigate to use window functions when we approximate the ideal filter using the one with the finite number of taps. When we use a window function, the Gibbs oscillations for gain and phase are suppressed. Fig.5 shows our simulation result with time-shift τ of 0.3Ts and applying Hann window. We have also found that this Gibbs oscillation for phase can be further suppressed if we use a window function with the time-shift τ, as shown in Fig.5 where we choose the time shift τ of 0.5Ts (which affects phase characteristics significantly) and we use a Hann window.

There can be two methods for applying a window: one is to use the window with symmetry to the Y-axis (Fig.5 (a)) and the other is to use the window with the symmetry to the center of the impulse response (Fig.5 (b)). We have performed simulation and found that the one in Fig.5 (b) is better. The Gibbs oscillation of the group delay is suppressed when the window of time-shift is used for the LPF (Fig.6).

Our proposed linear phase filter is also applicable to a bandpass filter and Fig.7 shows the group delay of the bandpass filter with the bandwidth of 0.1 fs – 0.4fs. We see that the group delay is almost constant in the wider range when the window of time-shift is used (Fig.7 (b)).

4.3 DC Gain Adjustment

The DC gain of our digital filter can be changed by truncation to the finite number of the taps after windowing, and we have to adjust it for the practical use. The DC gain adjustment technique can be described as follows:

Our digital filter without DC gain adjustment

$$g(n) = h(n) \text{ where } n= 0, \pm 1, \pm 2, \pm 3, \ldots \pm N$$

Our digital filter with DC gain adjustment

$$g'(n) = \frac{G\text{ideal}}{G\text{fnt}} h(n)$$

where $n= 0, \pm 1, \pm 2, \pm 3, \ldots \pm N$

Here DC gain of the ideal filter is given by

$$G\text{ideal} = \sum_{n=-\infty}^{\infty} h(n)$$
Also DC gain of the filter after truncation of the finite number \((2N+1)\) taps is given by

\[
G_{fn} = \sum_{n=-N}^{N} h'(n)
\]

We have performed simulation to demonstrate the effectiveness of the window with time-shift and DC gain adjustment in the single-side band (SSB) signal generation system in Fig. 8. We assume that there is timing skew \(\tau\) in I-path and we use our timing skew compensation digital filter in Q-path. Fig. 11 (a) shows the power spectrum of the output \(s(t)\) without timing skew, and Fig. 9 (b) shows the one with timing skew \(\tau\) where spurious components are observed.

Fig. 7. Group delay of bandpass filter with the bandwidth of 0.1fs – 0.4fs. (a) With applying Hann window of no-time shift. (b) With applying Hann window of time-shift.

Fig. 8. SSB signal generation system with timing skew \(\tau\) in I-path and the timing skew compensation digital filter in Q-path.

Fig. 10 shows the simulation result using timing skew compensation with our proposed digital filter. Fig. 10 (a) is the case that the window of no-time shift are used and DC gain adjustment is not used while Fig. 10 (b) is the case that the window of time-shift and DC gain adjustment are used. We see that spurious components are further suppressed when the time-shifted window and DC gain adjustment are used.

5. Comparison with Fractional Delay Filter

We would like to call the reader’s attention that another digital filter with fine time resolution, so-called a fractional delay digital filter has been proposed [5-8], which mainly focuses on the waveform interpolation and reconstruction. However our proposed technique can incorporate filtering characteristics (such as a cosine roll-off filter, a Gaussian filter) as well as fine timing skew adjustment with the clear design method as described above; this is very useful in some electronic manufacturing equipment applications [1]. Furthermore, since our proposed filter is easy to design, we can obtain their coefficient values with small amount of calculation which is desirable for many applications, especially ATE systems where real-time timing calibration is required.

We have performed Matlab simulation and found that our proposed filter can apply for the signal up to the frequency close to the Nyquist rate (in other words, the bandwidth of our proposed filter is close to the Nyquist rate while that of the fractional delay filter is not); this is another advantage of our proposed filter (Fig. 11).
Fig.10. Simulation results of timing skew compensation with our proposed digital filter. (a) With the window of no time-shift and without DC gain adjustment. (b) With the window of time-shift and with DC gain adjustment.

6. Conclusion
We have described the digital filter with novel linear phase characteristics and the time resolution of its group delay is arbitrary small. We have investigated the truncation effects to the finite number of its filter taps, techniques of using window and DC gain adjustment as well as comparison with fractional delay filter. We believe that our proposed digital filter is opening a new research area for digital filters with linear phase and fine resolution of group delay, as well as its applications.

7. Acknowledgement
We would like to thank Zachary Nosker for his help in assembling this paper.

REFERENCES
Timing Skew Compensation Technique Using Digital Filter with Novel Linear Phase Condition

Koji Asami
Advantest Corporation
Hiroyuki Miyajima, Tsuyoshi Kurosawa, Takenori Tateiwa, Haruo Kobayashi
Gunma University
Purpose

- Fine skew adjustment using a digital filter while maintaining a linear phase condition in ATE
 - Timing accuracy is important to ATE
 - Various digital filters are used for testing analog LSIs
 - Linear phase condition is required of the digital filter to preserve the analog waveform
Outline

• Conventional linear phase FIR filter
• Time-shifted ideal filter
• Construction of linear phase filter
• Application examples
• Conclusion
4 Types of Generalized Linear-Phase FIR Systems

(1) Type I
- Symmetric
- Even-order

(2) Type II
- Symmetric
- Odd-order

(3) Type III
- Antisymmetric
- Even-order

(4) Type IV
- Antisymmetric
- Odd-order
Frequency Characteristics of 4 Types

<table>
<thead>
<tr>
<th>Type</th>
<th>h(nT)</th>
<th>H(e^{j\omega T})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type I</td>
<td>$e^{-j\omega (N-1)T_s/2} \sum_{k=0}^{(N-1)/2} a_k \cos[\omega k T_s]$</td>
<td>$e^{-j\omega (N-1)T_s/2} \sum_{k=0}^{N/2} a_k \cos[\omega (k-1/2)T_s]$</td>
</tr>
<tr>
<td>Type II</td>
<td>$e^{-j\omega (N-1)T_s/2} \sum_{k=0}^{N/2} b_k \cos[\omega (k-1/2)T_s]$</td>
<td>$e^{-j\omega (N-1)T_s/2-\pi/2} \sum_{k=0}^{(N-1)/2} a_k \sin[\omega k T_s]$</td>
</tr>
<tr>
<td>Type III</td>
<td>$e^{-j\omega (N-1)T_s/2-\pi/2} \sum_{k=0}^{N/2} b_k \sin[\omega (k-1/2)T_s]$</td>
<td>$e^{-j\omega (N-1)T_s/2-\pi/2} \sum_{k=0}^{(N-1)/2} a_k \sin[\omega k T_s]$</td>
</tr>
</tbody>
</table>

Phase: 1st order function of frequency
Delay: depends on number of Taps
Outline

- Conventional linear phase FIR filter
- Time-shifted ideal filter
- Construction of linear phase filter
- Application examples
- Conclusion
Ideal Filter Response

Frequency Response

Impulse Response

\[H(j\omega) \]

\[h(t) = \frac{1}{T_s} \cdot \text{sinc} \left(\pi \frac{t}{T_s} \right) \]

\[\omega_s = \frac{2\pi}{T_s} : \text{Sampling Rate} \]
Discrete-Time Expression

\[\sum_{k} H(j(\omega - k \cdot \omega_s)) \]

Fourier Transform

FIR is formed

All zero

\[h(t) = \sum_{k} \text{sinc} \left(\pi \frac{k \cdot T_s}{T_s} \right) \delta(t - k \cdot T_s) \]
Time Shifted Impulse Response

\[G(j\omega) \]

\[\angle G(j\omega) = -\omega \Delta t \]

Only phase changed

Impulse response shifted \(\Delta t \)
Influence to Coefficients by Time Shift

FIR

\[h(t) = \sum_{k} \text{sinc} \left(\pi \frac{k \cdot T_s}{T_s} \right) \delta(t - k \cdot T_s) \]

Time shift

IIR

\[h(t) = \sum_{k} \text{sinc} \left(\pi \frac{k \cdot T_s - \Delta t}{T_s} \right) \delta(t - k \cdot T_s) \]
Outline

• Conventional linear phase FIR filter
• Time-shifted ideal filter
• Construction of linear phase filter
• Application examples
• Conclusion
2 Tap FIR Model

\[H(j\omega) = a_0 + a_1 T_s \]

\[|H(j\omega)| \]

\[\angle H(j\omega) = -\omega T_s / 2 \]

Diagram showing the time domain and frequency domain representations of a 2 tap FIR model.
2 Tap Delayed FIR Model

\[
H(j\omega) = a_0 + a_1 e^{-j\omega T_s/2}
\]

\[
\angle H(j\omega) = -\left(\omega T_s/2 + \omega \tau\right)
\]

\[
|H(j\omega)|
\]

\[
0 \quad 1 \quad \frac{t}{T_s}
\]

\[
a_0 \quad a_1
\]

\[
-5 \quad -4 \quad -3 \quad -2 \quad -1 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5
\]

\[
\frac{t}{T_s}
\]
2 Tap Delayed FIR Model

\[H(j\omega) = a_0 + a_1 e^{-j\omega T_s} \]

\[\angle H(j\omega) = -\left(\omega T_s/2 + \omega\tau\right) \]

IIR

\[a_0 \quad a_1 \]

\[0 \quad 1 \]

\[t/T_s \]
Comparison of Freq. Characteristic

Only slope of phase characteristic is changed
Frequency Characteristic of Proposed Filter

<table>
<thead>
<tr>
<th>Type</th>
<th>$g(nT)$</th>
<th>$G(e^{j\omega T})$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type I</td>
<td>$e^{-j((\omega(N-1)T_s/2)+\omega_t)}(N-1)/2 \sum_{k=0}^{N/2} a_k \cos[\omega kT_s]$</td>
<td>$e^{-j((\omega(N-1)T_s/2+\omega_t))\frac{N}{2}} \sum_{k=1}^{N/2} b_k \cos[\omega (k-1/2)T_s]$</td>
</tr>
<tr>
<td>Type II</td>
<td>$e^{-j((\omega(N-1)T_s/2+\omega_t))\frac{N}{2}} \sum_{k=1}^{N/2} b_k \cos[\omega (k-1/2)T_s]$</td>
<td>$e^{-j((\omega(N-1)T_s/2-\pi/2+\omega_t))\frac{(N-1)}{2}} \sum_{k=0}^{N/2} a_k \sin[\omega kT_s]$</td>
</tr>
<tr>
<td>Type III</td>
<td>$e^{-j((\omega(N-1)T_s/2-\pi/2+\omega_t))\frac{(N-1)}{2}} \sum_{k=0}^{N/2} a_k \sin[\omega kT_s]$</td>
<td>$e^{-j((\omega(N-1)T_s/2-\pi/2+\omega_t))\frac{N}{2}} \sum_{k=1}^{N/2} b_k \sin[\omega (k-1/2)T_s]$</td>
</tr>
</tbody>
</table>

Phase: 1st order function of frequency
Delay: controllable with τ
Proposed Design Technique

FIR with Desired Characteristic

Delayed Ideal Filter

Delayed FIR Filter with Desired Characteristic
Example of Raised Cosine Filter
Effect of Window Function

Window function can reduce Gibbs phenomenon
Novel Linear Phase Condition of D.F.

- Original FIR filter has complete linear phase
- Original FIR filter is band-limited
- Bandwidth of signal is below Nyquist rate

Fine delay can be controlled using Ideal filter

- Delayed filter has infinite impulse response
- Window function can construct FIR effectively
Outline

• Conventional linear phase FIR filter
• Time-shifted ideal filter
• Construction of linear phase filter
• Application examples
• Conclusion
Application to Quadrature Modulator

\[I(t) = \cos(2\pi f_0 t) \]
\[Q(t) = \sin(2\pi f_0 t) \]

Image rejection ratio

\[f_c - f_0 \quad f_c \quad f_c + f_0 \]
Adjustment of I/Q Skew

\[I(t) = \cos(2\pi f_0 t) \]

\[Q(t) = \sin(2\pi f_0 t) \]

\[s(t) = (I(t) + jQ(t)) \]

Analog-to-Digital Converter (DAC) and phase adjustment \(\tau \) and frequency shift at \(f_c \)
Simulation Results

(a) SSB signal with I/Q skew
(b) SSB signal with compensation

Delay Compensation Filter

<table>
<thead>
<tr>
<th>delay</th>
<th>0.1 sampling points</th>
</tr>
</thead>
<tbody>
<tr>
<td>Taps</td>
<td>61 Taps</td>
</tr>
<tr>
<td>Window</td>
<td>Hann</td>
</tr>
</tbody>
</table>
Application to Time-Interleaved ADCs

Compensate this component

Timing skew τ causes spurious components
Simulation Results

(a) 2ch interleaved ADC with 0.01 samples skew

(b) Compensate the skew using 91 taps delay filter
Conclusion

- Fine delay controllable digital filter which maintains desired characteristics is proposed.
- It is applicable not only to Low Pass Filters but also to Band Pass Filters.
- It can compensate the timing skew of analog modules in ATE.
Timing Skew Compensation Technique
Using Digital Filter with Novel Linear Phase Condition

Koji Asami *, Hiroyuki Miyajima, Tsuyoshi Kurosawa
Takenori Tateiwa, Haruo Kobayashi

* Advantest Corporation, Meiwa-machi, Ora-gun, Gunma 370-0718 Japan
Dept. of Electronic Engineering, Gunma University, Kiryu, Gunma 376-8515 Japan
Email: kharuo@el.gunma-u.ac.jp

Abstract
This paper describes the timing skew compensation technique using the digital filter with our novel linear phase condition. First we describe the digital filter which can set its group delay with the arbitrary fine time resolution while it maintains the linear phase characteristics; the conventional linear phase digital filter can set its group delay with the time resolution of a half of the sampling period. We will provide its structure and operation, theoretical analysis as well as simulation verification. Next we will describe the application of our proposed digital filter to compensate for timing skew in the following cases:
(1) Sampling timing skew among channels in the time-interleaved ADC system.
(2) I, Q-path timing skew in the single-side band (SSB) signal generator.
We show its effectiveness with simulation.

Keywords: Digital Filter, Linear Phase, Digitally-Assisted Analog Technology, Timing Skew, Digital Error Correction, ATE

1. Introduction
Fine timing skew adjustments are frequently used in Automatic Test Equipment (ATE) systems, where linear phase characteristics are desired in many cases to preserve signal waveforms in time domain. Digital techniques are preferred for the timing skew compensation because they are stable, reliable and easy to implement compared to analog techniques. However, the conventional digital filter with linear phase cannot be applied to the fine timing skew adjustment because its delay time resolution is limited.

In this paper we propose a digital filter with novel linear phase condition and show that its delay time resolution is arbitrary fine (i.e., its group delay can be set with arbitrary small time resolution). Ideally, our proposed linear phase digital filter has infinite number of taps which cannot be realized. Hence we approximate it with the finite number of taps. We observe Gibbs oscillations [1], [2] for phase as well as gain characteristics when we approximate it directly without applying a window function. However using proper window functions can eliminate these oscillations and their gain and phase characteristics are close to the ones with the ideal digital filter.

We also show the application of our proposed digital filter to compensate for timing skew in ATE systems in the following cases:
(1) Sampling timing skew among channels in the time-interleaved ADC system.
(2) I, Q-path timing skew in the single-side band (SSB) signal generator.

2. Conventional Linear Phase Condition
Linear phase characteristics are important for the digital filter to preserve the signal waveform in time domain. It is well-known in [1] that the FIR digital filter with odd or even symmetry coefficients has linear phase characteristics and it is unconditionally stable. The IIR digital filter with odd or even symmetry of both its denominator and nominator has also linear characteristics but it is unstable. Hence in almost all cases, the FIR digital filter with odd or even symmetry coefficients is used where the linear phase is required, and in such cases its group delay is \((N/2)T_s\) where \(N\) is the number of the FIR filter taps and \(T_s\) is the sampling period; in other words the time resolution of the group delay is \(T_s/2\), and this cannot be used for fine timing skew adjustment in ATE systems.

3. Novel Linear Phase Condition
In this section, we show the extended linear phase characteristics conditions for the digital filter which has not necessarily odd or even symmetry coefficients, and its time resolution of the group delay is arbitrary small.

First we discuss without consideration of causality, for simplicity. Let us consider the following analog filter (Fig.1):
Then its impulse response $h(t)$ is given as follows:

$$h(t) = a_s T_s \sin(\pi T_s t)$$ \hspace{1cm} (2)

We consider the case that the input $v_{in}(t)$ is band-limited to $-\pi/T_s < \omega < \pi/T_s$. We sample the above impulse response with a period T_s, and use the following transformation to obtain the digital filter which corresponds to the analog filter in (1):

$$a_s x(n) = \sum_{k=-\infty}^{\infty} a_k x(n-k)$$ \hspace{1cm} (3)

Then we have the following digital filter:

$$y(n) = a_s x(n)$$ \hspace{1cm} (4)

This is because

$$\sin(\pi n) = \begin{cases} 1 & \text{in case } n = 0 \\ 0 & \text{otherwise} \end{cases}$$ \hspace{1cm} (5)

This digital filter has obviously linear phase characteristics (or rigorously speaking zero phase characteristics). Now let us consider to sample $h(t)$ at $t = nT_s + \tau$ (Fig.2), where $0 < \tau < T_s$, and use (3). Then we have the following digital filter which corresponds to the analog filter in (1):

$$y(n) = \sum_{k=-\infty}^{\infty} a'_k x(n-k).$$ \hspace{1cm} (6)

Here

$$a'_k = \sin(\pi (k + \tau/T_s)).$$ \hspace{1cm} (7)

In general a'_k is not necessarily zero and a'_k is not necessarily equal to a'_k or $-a'_k$.

Proposition 1: The digital filter given by (6), (7) has the linear filter characteristics, and its group delay is τ.

Proof: The inverse Fourier transform of (6) is given by

$$Y(j\omega) = H(j\omega)X(j\omega).$$ \hspace{1cm} (8)

It follows from (7) that in case of $\tau = 0$,

$$H(j\omega)_{|_{\omega=0}} = a_0.$$ \hspace{1cm} (9)

Then we have the following for a given τ ($0 < \tau < T_s$):

$$H(j\omega) = a_0 e^{-j\omega\tau}.$$ \hspace{1cm} (10)

Thus the digital filter given by (6), (7) has the linear filter characteristics, and its group delay is τ (Fig.2). (Q. E. D.)

Next we discuss in case of Fig.3, and consider the following analog filter:
\[
v_{\text{out}} = \begin{cases} a_0 v_{\text{in}}(t) + a_1 v_{\text{in}}(t - T_s) & \text{in case } -\pi / T_s < \omega < \pi / T_s \quad (11) \\ 0 & \text{otherwise.} \end{cases}
\]

Note that its impulse response is given as follows:

\[
h(t) = a_0 T_s \sin(\pi / T_s) + a_1 T_s \sin(\pi (t / T_s - 1)). \quad (12)
\]

We assume that the input \(v_{\text{in}}(t)\) is band-limited to \(-\pi / T_s < \omega < \pi / T_s\). Similarly we sample this filter with \(t = n T_s\), and we have the following digital filter using (3):

\[
y(n) = a_0 x(n) + a_1 x(n - 1). \quad (13)
\]

Next we sample (12) with \(t = n T_s + \tau\), and we have the following digital filter:

\[
y(n) = \sum_{k=-\infty}^{\infty} a_k' x(n - k). \quad (14)
\]

Here

\[
a_k' = a_0 \sin(\pi (k + \tau / T_s)) + a_1 \sin(\pi ((k - 1) + \tau / T_s)). \quad (15)
\]

Proposition 2: The digital filter given by (14), (15) with \(a_0 = a_1\) or \(a_0 = -a_1\) has the linear phase characteristics and its group delay is \(T_s / 2 + \tau\). Also the digital filter of (14) has the same gain characteristics as (13).

Proof: We consider the case of \(a_0 = a_1\). The inverse Fourier transform of (14) is given by

\[
Y(j\omega) = H(j\omega)X(j\omega). \quad (16)
\]

It follows from (15) that in case of \(\tau = 0\),

\[
H(j\omega)|_{\tau = 0} = 2a_0 \cos(\omega T_s) e^{-j\omega T_s / 2}. \quad (17)
\]

Then we have the following for a given \(\tau (0 < \tau < T_s)\):

\[
H(j\omega) = 2a_0 \cos(\omega T_s) e^{-j\omega T_s / 2 + \tau}. \quad (18)
\]

Thus the digital filter given by (14), (15) has the linear filter characteristics, and its group delay is \((T_s / 2 + \tau)\).

Also it follows from (17), (18) that

\[
|H(j\omega)|_{\tau = 0} = |H(j\omega)|_{\tau < T_s} = |2a_0 \cos(\omega T_s)|. \quad (19)
\]

Then the digital filter of (14) has the same gain characteristics as (13).

Similar argument is valid in case of \(a_0 = -a_1\). \quad (Q. E. D.)

The same argument holds for the 3-tap FIR filter case (Fig. 4), and also in general for an N-tap FIR filter as Propositions 1, 2.

Proposition 3: Let us consider an N-tap FIR digital filter with coefficients \(a_k\) of odd or even symmetry.

\[
y(n) = \sum_{k=0}^{N-1} a_k x(n - k) \quad (20)
\]

Then the following digital filter has the linear characteristics with group delay \((N/2)T_s + \tau\).

\[
y(n) = \sum_{k=-\infty}^{\infty} a_k' x(n - k) \quad (21)
\]

Here

\[
a_k' = \sum_{j=0}^{N-1} a_j \sin(\pi ((k - l) + \tau / T_s)). \quad (22)
\]
Proposition 3 can be proved similarly in Proposition 1, 2 cases.

We have performed MATLAB simulation and checked that the above digital filter with time shift \(\tau \) have linear phase characteristics and have the same gain characteristics as the one without time shift for \(N=1, 2, \) and 3.

Table 1 shows the frequency characteristics of digital filters with the conventional linear phase conditions, and Table 2 shows the ones with our proposed linear phase conditions derived from the corresponding conventional linear phase digital filter.

<table>
<thead>
<tr>
<th>Table 1</th>
<th>FREQUENCY CHARACTERISTICS WITH CONVENTIONAL LINEAR PHASE CONDITIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>case</td>
<td>(h(n))</td>
</tr>
<tr>
<td>1</td>
<td>odd</td>
</tr>
<tr>
<td>2</td>
<td>even</td>
</tr>
<tr>
<td>3</td>
<td>odd</td>
</tr>
<tr>
<td>4</td>
<td>even</td>
</tr>
</tbody>
</table>

Now we will provide the proof for our proposed linear phase digital filter in general case:

Let us consider an N-tap FIR filter with conventional linear phase condition, and we have the impulse response \(\tilde{h}(t) \) with continuous time and its Fourier transform \(\tilde{H}(f) \):

\[
\tilde{h}(t) = \sum_{n=0}^{N-1} h(nT_s) \delta(t - nT_s). \tag{23}
\]

\[
\tilde{H}(f) = H(f) \ast \frac{1}{T_s} \sum_{k=-\infty}^{\infty} \delta(f - k/T_s). \tag{24}
\]

Here \(\ast \) indicates convolution, \(\delta() \) denotes a delta function, and

\[
H(f) = |H(f)| e^{-j2\pi N/2} fT_s \quad (-\frac{1}{2T_s} \leq f \leq \frac{1}{2T_s}). \tag{25}
\]

When we add a delay \(\tau \) to the impulse response \(h(t) \) and we have its frequency characteristics as follows:

\[
H'(f) = |H(f)| e^{-j2\pi N/2} fT_s \cdot e^{-j2\pi \tau}. \tag{26}
\]

We see that the phase characteristics of \(H'(f) \) is linear with respect to \(f \) . \(H'(f) \) can be interpreted as the convolution between \(H(f) \) and \(S(f) \), where \(S(f) \) is the ideal filter with a delay \(\tau \):

\[
S(f) = e^{-j2\pi N/2} fT_s \quad (-\frac{1}{2T_s} \leq f \leq \frac{1}{2T_s}). \tag{27}
\]

Thus the ideal filter \(\tilde{S}(f) \) for (24) is given by

\[
\tilde{S}(f) = S(f) \ast \sum_{k=-\infty}^{\infty} \delta(f - k/T_s) = \sum_{k=-\infty}^{\infty} S(f - k/T_s). \tag{28}
\]

Next we will consider the effect of the delay \(\tau \) to the impulse response. The inverse Fourier transform of \(\tilde{S}(f) \) is given as follows:
\[\tilde{s}(t) = \text{sinc}\left(\frac{\pi (t - \tau)}{T_s} \right) \cdot \sum_{n=-\infty}^{\infty} \delta(t - nT_s) \]

\[= \sum_{n=-\infty}^{\infty} \text{sinc}\left(\frac{\pi (t - \tau)}{T_s} \right) \delta(t - nT_s). \]

(29)

We see from (29) that \(\tilde{s}(t) \) is asymmetric with respect to \(t = 0 \), and we have the following impulse response:

\[\tilde{h}(t) \ast \tilde{s}(t) \]

\[= \sum_{n=0}^{N-1} h(nT_s) \delta(t - nT_s) \ast \sum_{n=-\infty}^{\infty} \text{sinc}\left(\frac{\pi (kT_s - \tau)}{T_s} \right) \delta(t - (n - k)T_s) \]

\[= \sum_{n=-\infty}^{\infty} \sum_{n=0}^{N-1} h(nT_s) \text{sinc}\left(\frac{\pi (kT_s - \tau)}{T_s} \right) \delta(t - (n - k)T_s). \]

(30)

Thus the impulse response of time delay \(\tau \) with continuous time has finite values for \(t \to \pm \infty \) due to the \text{sinc} function effects.

4. Realization Consideration

Here we sample the input signal with the sampling period \(T_s \) and then we consider the band-limited case to \(-\pi/T_s < \omega < \pi/T_s\), in order to avoid the aliasing effects. In such case \(h(t) \) does not converge to zero as \(t \) becomes plus/minus infinity. So the digital filter with our novel linear phase condition has to have the infinite number of taps and this cannot be realized. (Note that in case \(\tau = 0 \), \(h(nT_s) \) can be zero as \(n \) becomes large which corresponds to the conventional linear phase FIR digital filter case.) So we consider to truncate the terms for large number of \(|k| \) in (22) applying a window function and we approximate the digital filter of (21), (22) with the finite number of taps.

4.1 Approximation with Finite Number of Taps

The ideal digital filter with our proposed linear phase condition needs infinite number of taps. However it is cannot be realized, and hence we have to approximate it as the filter with finite number of taps. We consider here the effects of the truncation to the finite number of taps. We observe from our simulation results so-called Gibbs oscillation at the edges of pass-band of the gain characteristics and also phase characteristics (Fig.5) [1], [2]; Gibbs oscillation for phase characteristics is not observed in many cases, and we have found that this Gibbs oscillation for phase characteristics is due to the asymmetry of the impulse response \(h(n) \) with respect to \(n = 0 \).

4.2 Applying Window Function

Next we investigate to use window functions when we approximate the ideal filter using the one with the finite number of taps. When we use a window function, the Gibbs oscillations for gain and phase are suppressed. Fig.5 shows our simulation result with time-shift \(\tau \) of 0.3Ts and applying Hann window. We have also found that this Gibbs oscillation for phase can be further suppressed if we use a window function with the time-shift \(\tau \), as shown in Fig.6 where we choose the time shift \(\tau \) of 0.5Ts (which affects phase characteristics significantly) and we use a Hann window.
Fig. 6. Phase characteristics of the proposed digital filter (with time shift τ of $0.5T_s$) after truncation to finite number ($N = 61$) of filter taps. (a) With applying Hann window of no time-shift. (b) With applying Hann window time-shifted by $\tau = 0.5T_s$.

5. Digital Filter Application for Timing Skew Compensation

5.1 Interleaved ADC System

A time-interleaved ADC system is an effective way to implement a high-sampling-rate ADC with relatively slow circuits (Fig.7) [4], [5], and is widely used in ATE systems. In the ADC system, several channel ADCs operate at interleaved sampling times as if they were effectively a single ADC operating at a much higher sampling rate. However, mismatches among channel ADCs - such as offset, gain and bandwidth mismatches as well as timing skew of the clocks distributed to the channels - degrade SNDR and SFDR of the ADC system as a whole.

Here we consider the timing skew problem in the interleave ADC system. Suppose that the clocks $CK1, CK2, ... CKM$ have skew $dt_1, dt_2, ... dt_M$ (Fig.7) [4-7]. If the input signal $Vin(t)$ is sampled at time $t+dt$ instead of time t, we have the sampling time error $e(t)$:

$$e(t) = Vin(t+dt) - Vin(t)$$

which can be approximated by

$$e(t) \approx \frac{dVin(t)}{dt} dt$$

This skew causes so-called pattern noise in the ADC system, and in the time domain the largest error occurs when the input signal has the largest slew rate. The timing skew effect in the time-interleaved ADC system is serious for high frequency analog signal measurements, because its slew rate ($dVin(t)/dt$) becomes high.

Proposed Timing Skew Compensation Method 1:

We propose to compensate for the timing skew effects using our linear phase digital filter directly as shown in Fig.8 (a) in the two-channel case. We have performed MATLAB simulation and obtained the result in Fig.8 (b); we see that the spurious tone is suppressed by our proposed digital filter. However this method is only applicable for the input frequency from 0 to $fs/2$ where fs is the channel ADC sampling frequency; this method is NOT applicable for the input frequency from $fs/2$ to $Fs/2$ where Fs is the sampling frequency of the whole interleaved ADC system and $Fs=2fs$ in the two-channel case.

Proposed Timing Skew Compensation Method 2:

Next we will describe a more sophisticated timing skew compensation method which also uses our proposed linear phase digital filter and is applicable for the input frequency from DC to the whole interleaved ADC sampling frequency $Fs/2$.

The timing skew effect in the time-interleaved ADC system is serious for high frequency analog signal measurements [4]. We present here its frequency domain compensation method based on [6], [7]. We design and apply a digital filter for the timing skew compensation so that spurious due to the timing skew is cancelled. Its principle is as follows: Let us consider the two channel case for simplicity. The output spectrum for channel 1 and 2 without mismatches are given as follows:
For 2-channel case, we have to consider only in k=0, 1, 2 cases because the signal band is from DC to 2 (fs/2), and we have the following:

\[
X_1(f) = \frac{1}{2T_s} \sum_{k=0}^{\infty} X(f - k \frac{f_s}{2T_s})
\]

\[
X_2(f) = \frac{1}{2T_s} \sum_{k=0}^{\infty} X(f - k \frac{f_s}{2T_s}) e^{-jk \pi}
\]

Then we have the output spectrum of the interleaved ADC system:

\[
X_{1,2}(f) = X_1(f) + X_2(f)
= \frac{1}{2T_s} \sum_{k=0}^{\infty} X(f - k \frac{f_s}{2T_s})(1 + e^{-jk \pi})
\]

Here

\[
1 + e^{-jk \pi} = \begin{cases}
2, & k: \text{even} \\
0, & k: \text{odd}
\end{cases}
\]

and we have the rewritten output power spectrum of (33).

\[
X_{1,2}(f) = \frac{1}{T_s} \sum_{k=0}^{\infty} X(f - k \frac{f_s}{2T_s})
\]

Now we assume here that the timing skew between channel 1 and 2 is \(\tau \), and we have the power spectrum of the channel ADCs and also the whole interleaved ADC system:

\[
X_i(f) = \frac{1}{2T_s} \sum_{k=0}^{\infty} X(f - k \frac{f_s}{2T_s})
\]

\[
X_2(f) = \frac{1}{2T_s} \sum_{k=-\infty}^{\infty} X(f - \frac{k}{2T_s}) e^{-jk \pi} (f - \frac{k}{2T_s}) e^{-jk \pi}
\]

\[
X_{1,2}(f) = \frac{1}{2T_s} \sum_{k=-\infty}^{\infty} X(f - \frac{k}{2T_s}) (1 + e^{-jk \pi}) (f - \frac{k}{2T_s}) e^{-jk \pi}
\]

\[
X_{1,2}(f) = \frac{1}{2T_s} \sum_{k=-\infty}^{\infty} X(f - \frac{k}{2T_s}) (1 + e^{-jk \pi}) (f - \frac{k}{2T_s}) e^{-jk \pi}
\]

We see from (39) that we can cancel the spurious component for k=1 by multiplying

\[
H_2(f) = e^{j2\pi(f-1)(\frac{1}{2T_s})}
\]

Then we compensate for the timing skew effect using the following filters:

\[
H_1(f) = e^{j2\pi f \frac{1}{T_s}}
\]

\[
H_2(f) = e^{-j2\pi f \frac{1}{T_s}} e^{j2\pi f \frac{1}{2T_s}}
\]

This compensation method can be realized with two ways:

(1) Frequency domain approach: We perform FFT to each channel ADC output signal and apply the above filter \(H_1(f) \), \(H_2(f) \) respectively.

(2) Time domain approach: We apply the digital filter \(h_i(n) \), \(h_e(n) \) for each channel ADC output which implements \(H_1(f) \) and \(H_2(f) \) respectively.
We have investigated their compensation accuracy and calculation complexity. These methods are effective over the input frequency range from DC up to $M \cdot (f_s/2)$, where M is the number of channels and f_s is the channel ADC sampling frequency; such performance was very difficult to realize with conventional methods.

We have performed simulation by applying our methods to a two-channel time-interleaved ADC system with timing skew and validated their effectiveness. Figure 9 shows $h_1(n)$, $h_2(n)$ filter characteristics used for the timing skew compensation method 2, and we see that in both cases, their group delays are constant (phases are linear) with respect to the input frequency. Figure 10 shows the simulation results and we see that spurious signals are suppressed with our proposed method 2.

5.2 SSB Signal Generation

An ATE for communication IC testing incorporates SSB signal generation function (Fig.11) [8], [9], and we consider here to generate a SSB signal with a 2-channel arbitrary waveform generator. When the timing skew between I and Q-path exists, the negative frequency component is not zero. We propose to use our linear phase digital filter to compensate for the timing skew (Fig.12). Fig.13 shows our MATLAB simulation results, and we see that the negative frequency components due to the timing skew are suppressed.

We close this section by remarking that another digital timing skew compensation technique with fine time resolution, so-called a fractional delay digital filter [10], [11], [12], [13], [14] has been proposed, which mainly focuses on the waveform interpolation and reconstruction. However our proposed technique can incorporate filtering characteristics (such as a cosine roll-off filter) as well as fine timing skew adjustment with the clear design method as described above; this is very useful in LSI testing technology applications. Furthermore, since our proposed filter is easy to design, we can obtain their coefficient values with small amount of calculation which is desirable for ATE and LSI testing technologies where real-time timing calibration is required.

6. Conclusion

We have proposed the digital filter with novel linear phase characteristics and the time resolution of its group delay is arbitrary small. Also we have shown its application for timing skew compensation in interleaved ADC systems and SSB signal generation systems. We have performed simulation to validate these results. We believe that our proposed technique will open a new research area for digital filters with linear phase and fine resolution of group delay, and give a significant impact on its application in electronic systems as digital compensation technique for timing skew and frequency characteristics, which is reliable and stable as well as suitable for fine CMOS implementation.

REFERENCES

Fig. 9. $h_1(n)$ (shown in purple) and $h_2(n)$ (shown in blue) filter characteristics used for the timing skew compensation method 2. (Top) Impulse response. (Middle) Gain characteristics. (Bottom) Group delay characteristics. For $h_1(n)$ Impulse response is symmetric but for $h_2(n)$ it is asymmetric.

Fig. 10. Simulation results of the timing skew compensation method 2 for the QPSK input (whose signal band is within Fs/4 – Fs/2) with applying the Blackman window function for the digital filter tap truncation. (a) Without compensation. (b) With compensation.

Fig. 11. Single-side band (SSB) signal.

Fig. 12. Timing skew compensation for the SSB signal with our linear phase digital filter.