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An Active Resistor Network for Gaussian

Filtering

of Images

Haruo Kobayashi, Joseph L. White, Student Member, IEEE, and Asad A. Abidi, Member, IEEE

Abstract —The architecture of an active resistive mesh con-
taining both positive and negative resistors to implement a
Gaussian convolution in two dimensions is described. With an
embedded array of photoreceptors, this may be used for image
detection and smoothing. The convolution width is continuously
variable by 2:1 under user control. Analog circuits implement a
45X 40 mesh on a 2-pm CMOS IC, and perform an entire
convolution in 20 us on applied images.

I. INTRODUCTION

ARDWARE capable of sensing an input in two
dimensions and processing it in parallel to obtain
results in real time is of great interest in applications such
as low-power compact image recognition systems. In digi-
tal signal processors today, a 2D input from a sensor is
first scanned and quantized, and subsequently processed
using pipelined parallel algorithms to obtain a fast
throughput rate [1]. The data at each grid point in the 2D
input, corresponding to one pixel in the case of a sampled
image, serially enter this signal processor and flow through
it at some usually fast clock rate. A substantial increase in
throughput may be obtained over this signal flow rate by
using simultaneous processing per pixel, particularly if the
signal fan-out is eliminated by not digitizing the input but
retaining it as an analog quantity. This is how signal
processing takes place in natural biological systems [2]-[4].
Much of signal processing consists of data reduction
and the extraction of high-level content for purposes such
as identification, classification, or storage. The hardware
to accomplish this will very often implement an algorithm
derived from a study of physical or biological systems,
which naturally perform a similar task. In a pro-
grammable digital signal processor, an explicit algorithm
is entered as a sequence of instructions, or as their
hardwired equivalent in a dedicated processor. Analog
hardware, on the other hand, cannot be programmed as
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digital operations may be, and is almost always hardwired:
a circuit must be constructed in which Kirchhoff’s laws
and the terminal characteristics of the components to-
gether embody the desired algorithm. Insofar as this
synthesis is guided by experience, ingenuity, and taste, the
approach is ad hoc and limited in its generality; but when
successfully executed, it may offer a savings in power and
enhancement in speed by orders of magnitude over the
digital approach [5]. The input to an analog signal proces-
sor is some current or voltage, the output some other
voltage or current determined by the laws of physics
governing the circuit. The early analog computers were
built on this principle, but being composed of building
blocks with quite general functions, they were not very
efficient in hardware for massively parallel tasks.
Translinear integrated circuits are one well-known exam-
ple of an efficient use of hardware to embody complex
nonlinear algorithms, although usually for scalar or one-
dimensional array inputs. They achieve hardware effi-
ciency by exploiting transistor device physics rather than
from complex building blocks such as operational ampli-
fiers; they are also hardwired to accomplish a specific task
[6], [7]. Our work deals with a class of circuits suited to
simultaneous signal processing in two dimensions also
using processing at the transistor level.

II. IMAGE SMOOTHING USING SIMULTANEOUS 2D
S1GNAL PROCESSING

This section will discuss the algorithm and architecture
of a particular image processing function we have imple-
mented for potential use in compact machine vision sys-
tems [8].

A. Smoothing Images by a Gaussian Operation

Many eclectronic image recognition systems tend to
replicate the hierarchy from low- to high-level processing
found in biological organisms. A raw image is usually
smoothed to suppress noisy features; its outline is then
obtained with some form of edge-enhancement operation,
and the outline after normalization and rotation is com-
pared with stored templates. While the quantity of data
might reduce along this chain, the complexity of the
operations increases significantly. Our work relates to the
lowest level of image processing, the smoothing of raw

0018-9200,/91,/0500-0738$01.00 ©1991 IEEE
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image data with a Gaussian convolution function of vari-
able width.

There is broad evidence suggesting that a noisy image is
best smoothed by a Gaussian convolution kernel prior to
edge enhancement. This corresponds to the defocusing
action of a lens, and is inherent in many biological sys-
tems. The defocusing blurs the small sharp features char-
acteristic of visual noise, which are extraneous to impor-
tant objects in the field of view. Unless the image is
properly smoothed beforehand, differentiating the inten-
sity map of the image to enhance the edges will also
accentuate the sharp noisy features. Theoretical work has
proven that a noisy image is best smoothed by a Gaussian
convolution kernel to obtain the largest signal-to-noise
ratio after differentiation [9], [10].

The optimal width, or extent, of the convolution used
to smooth a particular image depends on the spatial
standard deviation of the noise, and also on the scale of
the objects which is usually not known in advance. The
width of the Gaussian smoothing must therefore be vari-
able under the control of the user. Adaptive methods
such as scale space filtering [11] rely on this capability.
Qur experiments suggest that a Gaussian with a width
variable by a factor of 2 is adequate to smooth the noise
in many simple images sampled at a resolution of 50 by 50
pixels.

We set about after these considerations to implement
one analog integrated circuit capable of sampling an
image at a resolution of 50 pixels on a side, smoothing it
by a Gaussian in about 5 us, and giving the user the
flexibility of continuously varying the Gaussian width by a
factor of 2:1. This speed of operation is orders of magni-
tude faster than digital implementations of this convolu-
tion function, which in addition to the requirements of
image buffering also require the image to be circulated
several times through a filter to obtain the property of
variable width.

B. Computation in 2D Using Resistive Meshes

Resistor networks were used as analog computers in
the past to solve complex boundary value problems in
electromagnetics [12]-[15]. These were later replaced by
numerical simulation on digital computers, primarily be-
cause of the ease of programmability. Digital computa-
tion, however, could neither surpass the low power dissi-
pation nor the speed of analog computers, because when
the latter solve complex 2D problems, the currents and
voltages could attain their final values within a very short
RC relaxation time. This high speed is the main attraction
of analog computation for 2D real-time signal processing,
in that the number of calculations unlike digital computa-
tion does not grow proportionally to the resolution, but
more as the square root. The use of this concept for
similar applications has also been noted elsewhere [16].

Unlike a resistive sheet subject to a potential difference
between two edges, where the resulting lateral equipoten-
tial contours solve electrostatic or magnetostatic field

Network Structure
Resistive Network O}

M R RT RT |RT R Rl A
%no %no %RO Eno ino Eno %no %no %no

PN Cusped Convolution Kernel

Fig. 1. 1D mesh with leakage resistors to ground, and its convolution

kernel.

problems, the contours in a sheet which also has a contin-
uous leakage to ground will decay in a characteristic
fashion in response to a voltage applied at a single point.
The spatial rate of decay depends on the leakage conduc-
tivity to ground relative to the lateral conductivity. This
decay function may be thought of as the spatial impulse
response of the leaky resistive sheet, or, equivalently, its
convolution kernel; the potential contours in response to
multiple-point stimuli will then be determined by linear
superposition. Consider, for example, a one-dimensional
discrete version of the leaky resistive sheet composed of a
uniform linear mesh of resistors R, with resistors R,
from every node to ground (Fig. 1). In response to a
current excitation at one node, the resulting voltage dis-.
tribution on the mesh decays n nodes away from the
excitation according to an exponential function
exp(— nR, /R,) [16]. This convolution kernel differs from
a Gaussian in two important ways: it has a slower decay at
its tails, and the exponentials on either side of the excita-
tion meet at the center to produce a cusp (Fig. 1). The
discontinuity in derivative at this point would produce
undesirable results when this function is applied to a
noisy image and then followed by edge enhancement. The
mesh must therefore be modified to produce a character-
istic function which better resembles the flat-topped
Gaussian at the point of excitation. Obtaining a practical
realization of this mesh was one of the key contributions
of our work.

C. An Active Resistive Mesh Implementing
Gaussian Convolution

We first qualitatively examine why the resistive mesh in
the previous example produces a cusped convolution ker-
nel, and how it must be modified. An indirect procedure
for synthesizing the desired network is then described,
followed by methods to extend it to two dimensions.

The spatial derivative of voltage at a point in a resistive
sheet or discrete mesh specifies the potential gradient or
the electric field there. According to the point form of
Ohm’s law, J = ¢E, a current injected at a point (assum-
ing the point has nonzero extent, so that the current
density there is not infinite) on a resistive sheet with
leakage to ground will produce some nonzero electric
field (E) there, and therefore a nonzero potential gradi-
ent. A nonzero J may produce a zero E only if o -,
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which implies that the sheet must appear perfectly con-
ductive at the point of injection. If a negative resistance is
introduced to locally neutralize the dissipation in the
sheet, while maintaining the dissipation across the large
scale, a convolution function may be obtained with a flat
top and decaying tails. It is plausible to achieve this in a
discrete resistive mesh by introducing negative resistors
not between every node, because that would simply mod-
ify the value of R;, but between every other node, or
perhaps even straddling several nodes. Investigating this
numerically, we found that a mesh implementing a convo-
lution of the desired shape could be obtained using nega-
“tive resistors of a certain value connecting nodes with
their second nearest neighbors. We also came upon an
alternative procedure to synthesizing the same mesh,
based on the theoretical work relating to the optimal
smoothing of images. This is now described.
Poggio et al. [9] have analyzed how to smooth samples
V, —o<j<wo, of a noisy function to best estimate the
derivative if the noise were not present. They seek a
fitting function U(x) with continuous first derivative which
~ interpolates the sample points V; with a least-mean-square
difference, but with the constraint that the derivatives of
U(x) are not allowed to fluctuate excessively to obtain the
least noisy estimate of the actual derivatives of the sam-
pled function, This is expressed as the problem of mini-
mizing an energy functional E, defined as the mean
square difference between the interpolating function and
the samples, subject to a penalty on excessively large
second derivatives. The strength of the penalty is con-
trolled by a parameter A, called the regularization param-
eter:

E=Z(U(x=j)—l/j)2+)\f(ixlzj) de. (1)

It is shown that the U(x) minimizing E in (1) is obtained
by convolving V; with an almost exactly Gaussian kernel,
and the width of this kernel increases with A. We may use
this result by exploiting a fundamental connection be-
tween the minimum of an energy functional and the
operating point of a circuit. It is known from circuit
theory that Kirchhoff’s laws and the constituent relations
of the components drive a network to a state of minimum
energy dissipation, so it is reasonable to construct a
network whose energy dissipation is described by (1). The
network equations may be obtained directly by setting the
derivative of the right-hand side of (1) to zero.

Using a discrete estimate of the second derivative in
(1), we get

. 2
E=Y(U=V) +AE (i + U —20)°  (2)
: j j :

where U, = U(x = j). This is a quadratic form, and there-
fore has a unique minimum where 0E /oU; = 0 for all j, so

a
0=2(Uj—Vj)+)\WZ(UHI+UI~_1—2UI-)2 for all j.

(3)
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Fig. 2. 1D mesh with negative resistors between second nearest neigh-
bors produces a convolution with a flat top.

Differentiating the terms in the sum and noting that
oU, /U, =0 if i # J,
0= (U= V) +A6U -4y

J

U_,+ Uj+2))‘
(4)

This describes the node equations of a one-dimensional
mesh [17] consisting of positive resistors (R;) connecting
nearest-neighbor nodes (i.e., j—1,j and j,j + 1), negative
resistors (— R, = —4R,) connecting second nearest
neighbors, and resistors R, = AR, to ground from every
node, which are the leakage resistors described previously
in the qualitative model (Fig. 2). The ¥, correspond to
voltage excitations in series with the leakage resistors.
The network will produce as an array of node voltages
(U)) the convolution of the array of excitation voltages (V)
with a Gaussian kernel whose width is controlled by A. If
{Vj} were a set of photovoltages consisting of samples
along a scan line through an image, the output set of
voltages produced by the network would be the smoothed
scan line. -

The desired smoothing in an image, however, must take
place across two dimensions. To obtain this, samples of a
2D image as a matrix of photovoltages should drive a
two-dimensional mesh to obtain the desired result. The
one-dimensional prototype of a Gaussian convolution
mesh must then be extended to implement the kernel
with circular symmetry in two dimensions. Noting, for
instance, that a two-dimensional. Gaussian function
G(x,y) is separable, that is, G(x,y)= G(x)-G(y), the
desired 2D convolution may be obtained by driving an
array of 1D meshes parallel to the y axis with the matrix
of sampled photovoltages, and an identical array of 1D
meshes along the x axis with the matrix of buffered
outputs from the first array. This is not very efficient in
hardware, because each mesh must have independent
active circuits to produce the negative resistances, and an
intermesh buffer must be used at every node.

Another possible implementation on a 2D rectangular
grid is to connect every node to its four nearest neighbors
oriented 90° apart with resistors R;, and the four second
nearest neighbors at the same orientations with resistors
— R,. The simulated spatial impulse response of this
network decayed more rapidly along the diagonals than
axially, producing an unacceptably large deviation from

1+ Ui) +(
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e Circularly Symmetric

e Good Circular Symmetry

Perspective Plot

Fig. 3.

(b)

0

Contour Plot

(a) Extension of the mesh to 2D on a hexagonal grid produces (b) the best circular symmetry in the convolution

kernel.

circular symmetry. A better circular symmetry was ob-
tained by adding similar positive and negative resistive
connections along the four diagonal directions, but
weighted four times larger in magnitude. It became evi-
dent that a large number of components would be re-
quired to contrive circular symmetry on a rectangular
grid, but not so on a hexagonal grid which inherently
possesses a circular symmetry. The image must also be
sampled on a hexagonal grid for compatibility with the
mesh, which now consists of equal resistive connections
60° apart in orientation to nearest and second nearest
neighbors. A hexagonal grid affords the greatest spatial
sampling efficiency in the sense that the least photorecep-
tor sites will attain a desired coverage of the image [18],
and the fewest network elements will yield the desired
circular symmetry (Fig. 3(a)). The latter was verified in
the simulated convolution kernel of this 2D network (Fig.
3(b)).

We required the kernel width to be variable by a factor
of 2 under user control. That the convolution width
depends on the ratio R, /R, was known from the synthe-
sis procedure, but the strength of this dependence was

not. Simulations of the network showed a weak depen-
dence (Fig. 4)

R, 1/4
R .

1

(5)

Convolution width « (

It was simplest in terms of implementation to keep R;
and R, fixed to preserve the Gaussian shape, and make
R alone variable by 16:1 to obtain the desired 2:1
variation in smoothing width.

Several aspects of this design procedure and simulated
results invite analysis. Is there a systematic way to gener-
alize a 1D mesh prototype with circular symmetry to 2D?
Is the characteristic function of this combination of posi-
tive and negative resistors stable in space (i.e., does it
decay rather than oscillate indefinitely)? Stable in time?
Can the network be generalized to other convolution
functions? What is the analytical relation between the
width of the convolution function and the network ele-
ments? We have answered some of these questions else-
where [19].
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- Width vs. Lambda for the 1D Network

102—

101

. Width

109

102 101 100 101 102 103

Lambda

Fig. 4. The width of the convolution kernel increases as the 1/4th
power of the grounded resistor. .

III. CircurT DESIGN

The practicality of implementing this signal processing
technique depends greatly on whether it is realizable on a
standard (digital) CMOS IC process. We discuss now the

circuit design of the required components, including the-

photosensors, and the special considerations for layout of
this highly interconnected 2D network as a monolithic
integrated circuit.

A. Logarithmic Photoreceptor

An image focused on the chip surface may be sampled
by a matrix of photoreceptors, one at every node of the
network. The intensity across a simple image may vary by
two to three orders of magnitude in a laboratory environ-
ment, more in natural backgrounds, so a linear photore-
ceptor, which converts the intensity to a proportional

voltage or current, would drive the active circuits in the
" network into saturation. A logarithmic photoreceptor is
therefore required, and as studies on image processing
have shown, perfectly adequate for the task on hand [3].
Photosensing is most economically obtained using the
parasitic vertical bipolar in a CMOS well as a phototran-
sistor, whose collector current becomes proportional to
the light intensity incident on the collector junction along
the well boundary. This may be compressed into a loga-
rithmic voltage by a diode-connected MOSFET biased in
the subthreshold region by the small photocurrent density
produced under room lighting conditions. A compact
logarithmic photoreceptor is in this way obtained with a
two-transistor circuit [20], [21] (Fig. 5).

Although the stimulus to the prototype network in the
discussion above was a voltage source in series with the
variable resistor R, the circuits for the photosensor out-
put and R, (described below) are naturally grounded on
one end, so the Norton transformation must be invoked
to convert the stimulus into a parallel combination of a
grounded current source and a shunt resistor. A transcon-
ductance photoreceptor buffer was used, consisting a
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Input Circuit
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d
: in subthreshold

Vd] .

Whole Input Circuit

3

Fig. 5. The vertical bipolar transistor in a CMOS well produces loga-
rithmic compression at the gate voltage by a MOSFET in subthreshold.
A transconductance buffer drives the network.

Light X, 1-VaR

vd ‘ '
Resistive Network

Vin

Vin Vin
' [
I Yc i fc
ve {Ro + Yo :
- Ic

e
1 = K[(Vc - Vi) Vin - 3Vin?] {in triode region )
12 =K [ (Vc+ Vin-Vt) Vin - ¥ Vin?]
1= 11+12 = 2K[Ve- Vi Vin

I=Vin/RO
where RO=1/(2K[Vc-Vt})

Fig. 6. The linearized variable resistor, with implementation of gate
bias.

level-shift PMOS driving a resistively degenerated
NMOSFET, which appears to the photoreceptor as a
voltage-controlled current source (Fig. 5).

B. Variable Resistor

The width of the convolution kernel is set by a resistor
R, whose value should ideally be continuously variable
under user control. A single MOSFET operating in triode
region used as a variable resistor would introduce an
undesirable parabolic nonlinearity in the I-V character-
istics. Two MOSFET’s in parallel obeying the simplified
square law equations, however, can exactly cancel each
other’s parabolic nonlinearity in the triode region of oper-
ation if their gate biases are applied in a particular way,
and the resulting linearized resistance is controlled by the
bias. We used this as the variable resistor (Fig. 6). The
floating-gate bias voltages were obtained as the Ve of
source-follower FET’s carrying a control current.
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(node D)
(node B)
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(a) An NIC inverts the polarity of a resistor. (b) One NIC
serves all resistors converging on a node.

Fig. 7.

The mean network voltage at a given level of photosen-
sor illumination will change with the convolution width:
for example, when the convolution width is decreased by
making all R, large, the mean voltage will also increase
because the buffered photocurrents will flow into larger
resistors. This will impose the unnecessary demand of a
large common-mode range of operation in active circuits
such as R,. We used a scheme to normalize the network
inputs by slaving the buffer transconductance of the loga-
rithmic photoreceptor proportionally to R,, so as to
maintain a constant mean network voltage at all illumina-
tions.

C. Network Resistors

The 5-kQ) resistors for the nearest-neighbor internode
connections in the network were implemented using p-well
diffusions. A Gaussian convolution kernel would be ob-
tained in spite of tolerances in the p-well resistivity as
long as the relative magnitude of the positive and nega-
tive resistors remains 1:4. To make this ratio on the chip
depend only on geometry, both R; and R, were imple-
mented in the same material, p-well diffusion, and a
negative impedance converter (NIC) was attached to R,
to invert its polarity.

Our NIC implementation (Fig. 7) consists of the combi-
nation of a voltage follower and current inverter. The
op-amp-based followers at each end of R, impose across
it the potential difference at their inputs, and the result-
ing current flow, forced through the Class-B type output

stages, is sourced from or sunk into the positive or nega-
tive power supply. Current mirrors in series then apply
the same current at the input leads of the followers,
inverting the sense of current flow as perceived at the
network nodes. A negative resistance — R, is presented
to the network.

Six negative resistors converge on every node in this
hexagonal mesh. Six different NIC’s are, however, not
required at each node; instead, a single NIC placed at the
node after the confluence of the resistors will simultane-
ously make them all negative (Fig. 7(b)). The dc gain in a
simple five-FET op amp was large enough to obtain
accurate inversion of the resistor /-V characteristics and
eliminate the crossover nonlinearity in the Class-B stage.
The NIC at every node thus contained only 11 FET’s.

D. Layout Considerations

A key concern in the implementation of this network as
an IC is whether the usual two layers of metal and one of
polysilicon can implement the starlike fan-out of intercon-
nections emanating from every node. We proved to our-
selves at the outset of this work that this was possible. A
hexagonal grid was obtained by horizontally staggering -
successive rows of cells, and their interconnections imple-
mented on a Manhattan geometry (Fig. 8(a)). All three
available layers of interconnect were used to create abut-
table cells. The power, ground, control, and output rails
ran parallel to these rows from edge to edge of the chip.

A unit cell, including its portion of interconnect, mea-
sured 170 <200 wm in 2-um CMOS (Fig. 8(b)). The area
of the photoreceptor collector-base junction, the blank
rectangle in the cell layout: at the lower left, measured
56X24 um. No wires were allowed to traverse the photo-
sensor because metal would absorb the incident light.
Parasitic photocurrents generated in the source/drain
junctions of other active circuits would have negligible
effect on the voltages at the low-impedance nodeés there.
We observe finally that the active circuits occupied only
57% of the cell area, a measure of the toll exacted by the
richness of interconnect in this circuit.

E. Output Means

This convolution network accepts a 2D input in the
form of an incident image, does 2D signal processing
across the resistive mesh, but on a standard IC is re-
stricted to 1D output at the pins along the periphery. The
output therefore must be read at the pins (Fig. 9) by
accessing one row of nodes at a time, and, at least in this
implementation, becomes the bottleneck to the through-
put rate. Addressable MOS switches were used to con-
nect every node to output lines, and on-chip vertical
bipolar transistors connected as emitter followers served
as analog buffers at the pads. The speed of signal process-
ing was determined by the relaxation time of this un-
clocked network, but a clock was introduced at the output
to scan out the rows. To relieve this bottleneck, one can
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Fig. 8. (a) The layout of interconnects among a cluster of seven cells

on a hexagonal grid; the blank areas contain the photoreceptor and
associated active circuits in each cell. (b) Unit cell layout.
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Fig. 9. Output mechanism. The network has 2D input, accomplishes
2D signal processing, but is forced to output results in 1D.

envisage connecting several 2D computational IC’s per-
forming a cascade of low-level vision tasks, with micro
solder balls joining together matrices of pads on their
surfaces, or through via holes on the back sides of the
chips. This technique, originally developed for “flip-chip”
mounting, is used at very high densities today to mate 2D
focal plane array sensors to active substrates [22]. Once
the desired data reduction has taken place at the output
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Fig. 10. Chip photograph.

of the such a cascade of chips, a few high-level outputs
containing image features could be scanned out in paral-
lel on pins with no loss in throughput speed.

1V. ExPERIMENTAL RESULTS

We were able to fit a 45X 40 array of unit cells on a
7.9x9.2-mm die, the largest die size available to us
through the MOSIS foundry service. Power supplies of
+5 and —5 V were used, mainly for convenience in
circuit design; the circuits could be modified with a minor
effort for operation on a single 5-V supply. The fabricated
chip (Fig. 10) contained more than a 100 000 transistors
and was fully functional.

The network response to optical input was measured by
shining light on the exposed chip, and reading the outputs
using a specially developed interface board under control
of a personal computer. An array of analog column volt-
ages along an addressed row were digitized and stored,
and the smoothed output image reconstructed on the
computer screen after all rows had been scanned.

A. Component Characteristics

Test circuits were included to independently verify op-
eration of some of the key building blocks in the network.
The log compression FET and the transconductance
buffer following the photosensor gave the desired log-lin-
ear relationship across 2.5 decades of photocurrent (Fig.
11(a)). The variable resistor could be changed by the
control current by a factor of 16:1 in magnitude, from 20
to 320 kQ (Fig. 11(b)). The network simulations described
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Fig. 11. Measured characteristics of the component circuits: (a) loga-
rithmic compression at the photoreceptor output (V) versus photocur-
rent; (b) the variable resistor, which becomes nonlinear when one FET
goes from triode to saturation; and (c) the negative resistor.

V(V)

previously predict that this would yield the desired 2:1
variation in convolution width. A strong nonlinearity in
the I-V characteristics appeared for voltages larger than
0.3 V, but we had designed the range of the network
voltages not to exceed this value under normal illumina-
tion. A negative resistor of the desired value was also
obtained (Fig. 11(c)), with very little observable nonlinear-
ity at applied voltages of 0.3 V of either polarity.

B. Response to Optical Inputs

The network function was characterized with two sim-
ple incident images, a pinhole excitation representing a
spatial impulse, and the character “T.” The images were
produced on the chip surface by light transmitted through
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Fig. 12. Measured convolution kernel of the network. The measured
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Fig. 13. The uniformity of output (a) across one chip, and (b) between
three chips.

a mask used in place of the lid on the cavity of the
ceramic PGA package. We had also made provision on
the IC to measure the actual compressed signal driving
the network, so that the true network function could be
obtained by deconvolving it from the measured output.
The convolution kernel was thus deduced from mea-
surements of the network input and output (Fig. 12). It
was difficult at this sampling resolution to accurately
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Output with Wide Gaussian

Input Image

Output with Narrow Gaussian

Fig. 14. (a) Measured outputs at two different smoothing widths on
character “T.” (b) Uniformity of network action versus rotation.

ascertain that it was a Gaussian function, but the charac-
teristic inflection in the function as it approaches the
peak value was evident. This would not appear unless the
network contained negative resistors. We were able to
change the full width at half maximum of the kernel by a
factor of 2, from 4.7 to 9.4 pixels wide, by changing R,
across its full span with the control current. The network
output was most noisy at its tails at minimum R, and we
had to use smoothing in the sense of a least-mean-square
fit to deduce the kernel function. Light through the
pinhole nominally sampled only a small neighborhood on
the chip; we moved the pinhole to points on the chip
either side of the center, and found an acceptable uni-
formity in the response (Fig. 13(a)), which is determined
here by MOSFET matching across the extent of the chip

“surface [23]. The slight uptilt of the output at the ends of
the measured response was caused by the edge effect
when the network terminates at the chip boundary. The
uniformity across three chips was also acceptable at this
sampling resolution (Fig. 13(b)), except for one chip where
a particularly large uptilt appears.

The smoothing effected by the network on a character
“T” was also measured (Fig. 14(a)), and its symmetry
after rotations relative to the chip axis verified (Fig.
14(b)). Both were satisfactory.
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Fig. 15. (a) An 88 subnetwork simulated at the transistor level on

SPICE, and (b) at various distances away from excitation, showing
settling within 2 us.

Precautions were required in making the measurement
to compensate for the effects of the 2-W power dissipa-
tion when no heat sink was mounted on the package. This
large power dissipation produced a thermal gradient
across the IC, peaked at the center with circularly sym-
metric isotherms spreading out towards the chip bound-
ary. We deduced this from a corresponding pattern in
photoreceptor dark currents, which appeared as a stimu-
lus to the network in the absence of an optical input. This
had to be calibrated and subtracted from all measure-
ments to obtain the true optical response. We emphasize
that this relatively large power dissipation was not funda-
mental to the network; 75% of it was due to an unneces-
sarily large bias current in one building block, the control
circuit for the variable resistor. A further reduction in
quiescent power could be obtained by devising a voltage
drive to the network nodes, because the current sources
in the present implementation produce some steady power
dissipation through R, even when the chip is not illumi-
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TABLE 1
ELECTRICAL CHARACTERISTICS
Photosensor sites 45 x40
Sampling geometry Hexagonal
Area per pixel 170X 200 pm

Rise time of network (10-90%)
Rise time of photosensors
Width of convolution (FWHM)
Chip size

Technology

2 us

20 us

4.7-9.4 pixels

7.9%X9.2 mm

2-um CMOS, single poly,
double metal

Power dissipation 2 W (75% in one function block)

nated. The power dissipation could be made even smaller
by scaling down all the currents in the IC, but at a
trade-off of longer relaxation times.

The settling time of the entire network in response to a
step input from the photoreceptors determined the 2D
computational speed. For all practical purposes, a step
change in a photoreceptor has only to propagate a few
nodes away before the decay in the convolution function
will swamp it out, and the voltages at nodes farther away
will remain relatively unchanged. We simulated an 8 X8
subnetwork at the transistor level on SPICE, and the
results indicated settling in less than 2 ws in response to a
step in photocurrent (Fig. 15). However, a settling time of
20 us was experimentally observed in response to illumi-
nation from a light chopper, which we surmise was domi-
nated by the slow response of the phototransistors [20].
The graceful settling in the transient SPICE simulation
verified the stability of the network response in time. A
similar waveform of the settling of node voltages was also
observed experimentally.

The electrical performance of the Gaussian convolution
IC is summarized in Table 1.

V. CONCLUSIONS

Parallel processing of images per pixel will offer the
highest possible- speed in functions related to low-level
vision. This is indeed the present trend in real-time hard-
ware for digital image processing. We have described a
single-chip analog implementation of this concept to per-
form a Gaussian convolution with the use of an active
mesh. Although it may be argued that a variable focus
lens also effects this function, there are two significant
differences: the active resistive mesh may be extended to
many different convolution functions, including orienta-
tion selective ones [19], most of which cannot be simply
implemented with geometric optics; furthermore, no me-
chanical system could attain the physical compactness and
microsecond control of the convolution functions. The
difference in output of two independent meshes on the
same chip, for example, could implement the much sought
after difference of Gaussian function in image processing
[3]. In short, the notion of an active mesh opens many
new opportunities for realizing application-specific analog
signal processors. Digital signal processors have as advan-
tages an immunity to component noise and mismatches,
more ready programmability, and shorter development

times, but tend to be considerably larger chips than their
analog equivalents. On the other hand, inaccuracies in
analog computation may not be limitations in low-level
vision functions, but much more of a detriment in high-
level classification tasks. This leads us to believe that
compact hardware with the least power dissipation to
implement real-time image recognition and classification
may ultimately consist of a judicious mix of analog com-
putation of the type described here, and conventional
digital signal processing.

ACKNOWLEDGMENT

The formulation of the network was influenced in the
early stages by B. Mathur and H. T. Wang of Rockwell
International Science Center, and by our colleague R. L.
Baker. A. Nahidipour designed and constructed the inter-
face board used to measure the chip response. B. Furman
contributed to simulations of the network action on com-
plex images. Transient simulations of the network were
carried out at the University of California at San Diego
Supercomputer Center with support from the National
Science Foundation.

REFERENCES

[1] P. A. Ruetz and R. W. Brodersen, “Architectures and design
techniques for real time image processing ICs,” IEEE J. Solid-State
Circuits, vol. SC-22, pp. 233-250, Apr. 1987.

[2] J. Dowling, The Retina: An Approachable Part of the Bramn.
bridge. MA: Harvard University Press, 1987.

[3] D. Marr, Vision. San Francisco, CA: W. H. Freeman, 1982.

[4] C. A. Mead and M. A. Mahowald, “A silicon model of early visual
processing,” Neural Networks, vol. 1, pp. 91-97, 1988.

{5] E. A. Vittoz, “Future of analog in the VLSI environment,” in Proc.
ISCAS (New Orleans, LA), May 1990, pp. 1372-1375.

[6] B. Gilbert, “Translinear circuits: A proposed classification,” Elec-
tron. Lett., vol. 11, pp. 14-16, 1975.

{71 B. Gilbert, “A monolithic 16 channel analog array normalizer,”
IEEE J. Solid-State Circuits, vol. SC-19, pp. 954-963, Dec. 1984.

[8] H. Kobayashi, J. L. White, and A. A. Abidi, “An analog CMOS
network for Gaussian convolution with embedded image sensing,”
in ISSCC Dig. Tech. Papers (San Francisco, CA), Feb. 1990, pp.
216-217.

[9] T. Poggio, H. Voorhees, and A. Yuille, “A regularized solution to
edge detection,” Mass. Inst. Technology, Cambridge, MA, Al
Memo, May 1985.

[10] T. Poggio, V. Torre, and C. Koch, “Computational vision and
regularization theory,” Nature, vol. 317, pp. 314-319, Sept. 1985.

[11] J. Babaud, A. P. Witkin, M. Baudin, and R. O. Duda, “Uniqueness
of the Gaussian kernel for scale-space filtering,” IEEE Trans.
Pattern Anal. and Mach. Intell., vol. PAMI-8, pp. 26--33, Jan. 1986.

[12] T. K. Hogan, “A general experimental solution of Poisson’s equa-
tion for two independent variables,” J. Inst. Eng. (Australia), vol.
15, pp. 89-92, Apr. 1943.

[13] G. Liebmann, “Solution of partial differential equations with a
resistance network analogue,” Brit. J. Appl. Phys., vol. 1, pp.
92-103, Apr. 1950.

[14] G. W. Swenson, Jr. and T. J. Higgins, “A direct current network
analyzer for solving wave equation boundary value problems,”
J. Appl. Phys., vol. 23, pp. 126131, Jan. 1952,

[15] J. R. Hechtel and J. A. Seeger, “Accuracy and limitations of the
resistor network used for solving Laplace’s and Poisson’s equations,”
Proc. IRE, vol. 49, pp. 933-940, May 1961.

[16] C. A. Mead, Analog VLSI and Neural Systems.
Addison Wesley, 1989.

{17] T. Poggio and C. Koch, “Ill-posed problems in early vision: From
computational theory to analogue networks,” Proc. Roy. Soc. Lon-
don, vol. B-226, pp. 303-323, 1985.

Cam-

Reading, MA:



748

[18] D. Dudgeon and R. Mersereau, Multidimensional Signal Processing.
Englewood Cliffs, NJ: Prentice Hall, 1984.

[19] J. L. White and A. A. Abidi, “Analysis and designi of parallel
analog computational networks,” in Proc. Int. Symp. Circuits Syst.
(Portland, OR), June 1989, pp. 70-73.

[20] S. G. Chamberlain and J. P. Y. Lee, “A novel wide dynamic range
silicon photodetector and linear imaging array,” IEEE J. Solid-State
Circuits, vol. SC-19, pp. 41-48, Feb. 1984.

[21] C. Mead, “A sensitive electronic photoreceptor,” in Proc. 1985
Chapel Hill Conf. VLSI (Chapel Hill, NC), 1985, pp. 463—471.

[22] S. B. Stetson, D. B. Reynolds, M. G. Stapelbroek, and R. L.
Stermer, “Design and performance of blocked impurity band detec-
tor focal plane arrays,” in Proc. SPIE, vol. 686 (San Diego, CA),
Aug. 1986, pp. 48--65.

[23] M. J. M. Pelgrom, A. C. J. Duinmaijer, and A. P. G. Welbers,
“Matching properties of MOS transistors,” IEEE J. Solid-State
Circuits, vol. 24, no. 5, pp. 1433-1440, Oct. 1989.

Haruo Kobayashi was born in Utsunomiya,
Japan, in 1958. He received the B.S. and M.S.
degrees in information physics and mathemati-
cal engineering from the University of Tokyo,
Tokyo, Japan, in 1980 and 1982, respectively.
From 1987 to 1989 he was at the University of
California, Los Angeles, where he received the
M.S. degree in electrical engineering in 1989.

He joined Yokogawa Electric Corporation,
Tokyo, Japan, in 1982, where he has been en-
gaged in the research and development of an
FFT analyzer, a mini-supercomputer, and an LSI tester.

Mr. Kobayashi is a member of the Institute of Electronics, Informa-
tion and Communication Engineers of Japan and the Society of Instru-
ment and Control Engineers of Japan.

IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 26, NO. 5, MAY 1991

Joseph L. White (S5°88) received the B.S. degree
in applied physics from the California Institute
of Technology, Pasadena, in 1982, and the M.S.
and Ph.D. degrees in electrical engineering from
the University of California, Los Angeles, in
1983 and 1991, respectively.

He has previously worked for the Hughes
Aircraft Space and Communications Group and
the Rand Corporation. His research interests
include image processing and computer vision.

Asad A. Abidi (S’75-M’81) was born in 1956. He
received the B.Sc.(Hon.) degree from Imperial
College, London, in 1976 and the M.S. and
Ph.D. degrees in electrical engineering from the
University of California, Berkeley, in 1978 and
1981, respectively. :

He was at Bell Laboratories, Murray Hill, NJ,
from 1981 to 1984 as a Member of the Technical
Staff in the Advanced LSI Development Labo-'
ratory. Since 1985 he has been at the Electrical
Engineering Department of the University of
California, Los Angeles, where he is an Associate Professor. He was a
Visiting Faculty Researcher at Hewlett Packard Laboratories during
1989. His research interests are in high-speed analog integrated circuit
design, parallel analog signal processing techniques, device modeling,
and nonlinear circuit phenomena.

Dr. Abidi served as the Program Secretary for the International
Solid-State Circuits Conference from 1984 to 1990, and is presently
associated with the Symposium on VLSI Circuits, with the IEEE Solid-
State Circuits Council, and as an Associate Editor with the IEEE
JourNaL OF SoLip-StaTE Circurts. He received the 1988 TRW Award
for Innovative Teaching.




540

IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 3, NO. 4, JULY 1992

Spatial Versus Temporal Stability Issues
in Image Processing Neuro Chips

Takashi Matsumoto, Fellow, IEEE, Haruo Kobayashi, Member, IEEE, and Yoshio Togawa

Abstract—A typical image processing neuro chip consists of a
regular array of very simple cell circuits. When it is implemented
by a CMOS process, two stability issues naturally arise:

i) Parasitic capacitors of MOS transistors induce the temporal
dynamics. Since a processed image is given as the stable
limit point of the temporal dynamics, a temporally unstable
chip is unusable.

ii) Because of the array structure, the node voltage distribu-
tion induces the spatial dynamics, and it could behave in a
wild manner, e.g., oscillatory, which is highly undesirable
for image processing purposes, even if the trajectory of the
temporal dynamics converges to a stable limit point.

The main contributions of this paper are (i) a clarification of the
spatial stability issue; (ii) explicit if and only if conditions for the
temporal and the spatial stability in terms of circuit parameters;
(iii) a rigorous explanation of the fact that even though the
spatial stability is stronger than the temporal stability, the set
of parameter values for which the two stability issues disagree is
of (Lebesgue) measure zero; and (iv) theoretical estimates on the
processing speed.

I. INTRODUCTION

A. Motivation

HIS study has been motivated by the temporal versus

spatial stability issues of an image smoothing neuro chip
[1]. The function of the chip is to smooth a two-dimensional
image in an extremely fast manner. It consists of the 45 x 40
hexagonal array of very simple “cell” circuits, described by
Fig. 1. An image is projected onto the chip through a lens
(Fig. 2) and the photo sensor represented by the current source
in Fig. 1 inputs the signal to the processing circuit. The
output (smoothed) image is represented as the node voltage
distribution of the array. With an appropriate choice of gy > 0,
g1 > 0, and go < 0O, the chip performs a regularization with
second-order smoothness constraint and closely approximates
the Gaussian convolver, which is known to have an op-
timal S/N as a preprocessor for edge detection [2], [3].
(APPENDIX IV explains why a regularization with second-
order smoothness constraint demands negative conductance.)
Conductance gy is designed to be variable in order to control
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the width of the Gaussian-like kernel. In engineering terms,
this is a noncausal infinite impulse response (IIR) realization of
a Gaussian-like convolver instead of a finite impulse response
(FIR) realization, and this structure accomplishes high-speed
processing while maintaining simplicity. The reader is referred
to (1] for responses actually measured from the chip.

Since the negative conductance g, < 0 is involved, two
stability issues naturally arise:

(i) Because the chip is fabricated by a CMOS process,
parasitic capacitors induce the dynamics with respect to
time. This raises the temporal stability issue of whether
the network converges to a stable equilibrium point.

(ii) Because a processed (smoothed) image is given as
the node voltage distribution of the array, the spatial
stability issue also arises even if the temporal dynamics
does converge to a stable equilibrium point. In other
words, the node voltage distribution may behave in a
wild manner, e.g., oscillatory.

In discussing relationships between the temporal and the
spatial stability issues, several precautions need to be taken.
In particular, it is important to realize that while the tem-
poral dynamics is causal, i.e., t > 0, the spatial “dynam-
ics” (a precise definition will be given later) is noncausal.
Namely the spatial dynamics can go into the negative di-
rection as well as the positive direction. Furthermore, the
spatial dynamics is not an initial value problem but rather
a boundary value problem which gives rise to several delicate
issues.

Our earlier numerical experiments on these issues were
rather intriguing. The results suggested that the network is tem-
porally stable “if and only if” it is spatially stable. Fig. 3 shows
spatial impulse responses at different sets of parameter values.
For the sake of simplicity, the network is of a linear array
instead of a two-dimensional array. The network has 61 nodes
and the impulse is injected at the center node. Fig. 3(a)
suggests that the network can be used for image smoothing
because the response to an impulse is “bell-shaped.” In fact,
the Gaussian-like convolver chip [1] corresponds to Fig. 3(a)
where go is variable. Fig. 3(b) indicates that it can enhance
contrast of an input image after smoothing because it inhibits
the “surround” responses in addition to smoothing. Fig. 4
shows the corresponding temporal step responses of the center
node. For simplicity, the only parasitic capacitors taken into
account are those from each node to the ground. The responses
shown in parts (a) and (b) of Fig. 4 are temporally stable
while part (c) is not. Fig. 3(c) is spatially unstable because the
response does not decay, which is highly undesirable for image

1045-9227/92%03.00 © 1992 1IEEE
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Fig. 1.

processing purposes. (A precise definition of spatial stability
will be given later.) All of our earlier numerical experiments,
including those shown in Fig. 3 and Fig. 4, suggested the
equivalence of the two stability conditions. However there are
no a priori reasons for them to be equivalent. As will be shown
rigorously, the two stability conditions are not equivalent. The
spatial stability condition is stronger than the temporal stability
condition. Nevertheless, the set of parameter values (go, g1, g2)
for which the two stability conditions disagree turns out to
be a (Lebesgue) measure zero subset, which explains why
our numerical experiments suggested equivalence between the
two conditions. (A measure zero subset is difficult to “hit”).
We will prove, in a very general setting, that the network
is temporally stable if and only if it is spatially regular, a
new concept which is weaker than the spatial stability, and
it amounts to a decomposability of eigenvalues of a matrix
describing the spatial dynamics. Explicit analytic conditions
will be given for the temporal as well as the spatial stabilities
in a general setting. Also given is an estimate on the speed of
temporal responses of the networks.

Since our results are proved in a general setting, they can
be applied to other neural networks of a similar nature, e.g.
oriented receptive field filters [4] and Gabor filters [5}, which
we intend to pursue in our future projects. The results in this
paper, however, are only for linear array cases. Extensions to
two-dimensional array cases are nontrivial and are left for a
future paper.

541

The image smoothing neurochip. Only one “unit” is shown.

Fig. 2. A schematic diagram.

B. Related Works

A serious stability analysis is performed in [6] for lateral

inhibition networks that are present, at least partly, in most
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Fig. 3. Spatial impulse responses with n = 61, m = 2, 1/go = 200 kS,
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stable, (b) 1/g2 = —18 k€2; stable. (¢) 1/g2 = —17 k{2; unstable.

of the early vision chips, e.g., [7]-{14] and the networks
considered in the present paper. Each node has conductance
connections only with immediate neighbors. However, the
MOS capacitors, nonlinearities of MOS conductances, and
amplifiers in the input circuit could cause, depending on
the design, oscillations. On the one hand, the problem in
[6] is more difficult than the one discussed in this paper
because nonlinearities must be taken into account. On the
other hand, it is simpler in the sense that each node has
connections only with its immediate neighbors. In [6] sev-
eral sufficient conditions are given for temporal stability
using a rather interesting argument. We close this section
by noting that the observation was made in [15] that ac-
tive conductances can cause instability in early vision neural
networks.

IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 3, NO. 4, JULY 1992

|l.')|— e —

0.4 r
2 0.3k
= @)
E 0.2

otk

0. L 1 1 L .

500 TIME (4S) 505

1.0 ‘—7

08
S 06f
jeal
2 (b)
b
=
54 04+

0.2

0 1 SR L i1 N—

50.0 TIME (4S) 505

6.0

4.80
Z 360
;c/ (c)
3
S 240

1.20

i
20.0 0.5

TIME (£S)

Fig. 4. Temporal step responses of the center node v3i(¢) with n = 61,
m=2,1/g0 = 200 k2, 1/g: = 5k§, co = 0.1 pF,
_ t <50 ps
ugi(t) = {10 wA £ 50 ps
uk(t) = 0 for k # 31. (a) 1/go = —20 k€2; stable. (b) 1/go = —18 k€2,
stable. (c) 1/g2 = —17 kS2; unstable.

II. STABILITY-REGULARITY

Subsection A explains how the temporal and the spatial
dynamics are described. It is pointed out that the boundary
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conditions should be carefully examined for the spatial dynam-
ics. Subsection B characterizes the spatial dynamics in terms
of the eigenspaces of the matrix describing the dynamics. The
first main result, Theorem 1, clarifies conditions under which
spatial responses behave properly. In particular, it states that
in addition to a condition on the eigenvalues of the matrix
describing the dynamics, another condition on the boundary is
necessary. In subsection C the second main result, Theorem 2,
reveals a fundamental relationship between the temporal and
the spatial dynamics by showing that a network is temporally
stable if and only if it is spatially regular, a new concept to be
defined. Propositions 2 and 3 give the stability as well as the
regularity criteria in terms of the characteristic polynomial of
the matrix describing the spatial dynamics.

A. Formulation

Consider a neural network consisting of a linear array of
n nodes where each node is connected with its pth nearest
neighborhoods, p = 1,---,m < n via a (possibly negative)
conductance g, and a capacitance c,. Fig. 5 shows the case
where m = 3. The network is described by

Z b, = Z apVi_p + Ui,

pEM pEM

v J
t

i=1,--

M

’n7

dvi
d

where v; and u; are the voltage and the input current at the
ith node, and

M = {p integer ||p| < m} )
aoz—(go-l-Zng) €)
p=1

Qtp = Gp, 1<p<m
m

bO:c0+2Zcp 4)
p=1

bipz‘c;n 1<p<m.

Equation (1) is obtained simply by writing down the
Kirchhoff’s current law (KCL) at each node. Letting v
(v1,--+, vn)T and u = (uz, -, u,)" (T denoting transpose),
one can recast (1) as

Bd—v =Av+u

at ©®)
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Note that A as well as B is symmetric and has a uniform band
structure, which, as will be seen, yields interesting properties.
If B is nonsingular, an equilibrium point of (5) satisfies

- E apvi_p = U;

pEM

(©)

which is a difference equation instead of a differential equa-
tion. Assuming that a,, # 0, one has

1
Vitm = = —— Z ApVitp + Ui ®
™ \peM~{m}
Therefore, letting
.. 0 1
. (10)
0
1
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Fig. 5. Network described by (1) when m = 3.

with
Tk = (Vhomy Vkmmt 1, Vky *y Vkpme1) € R™
Yo = (0, 0, ~up/a,)" € R*™
one can rewrite (9) as
(11

Observe that subscript &£ in (11) is not time. Equation (11)
represents the spatial dynamics induced by the temporal dy-
namics (5). Note also that dimv = n, the number of nodes,
while dimz; = 2m, the size of the neighborhood, which is
independent of n.

In image processing, input is u while output is v(00), the
stable equilibrium point of (5). Equation (11) describes how
the coordinates of v(oo) are distributed with respect to k.
There are several issues that need care.

First, the temporal dynamics given by (5) constitute an
initial value problem while (8) or (11) is a boundary value
problem. Namely, arbitrary v(0) and =(.) completely deter-
mine the solution to (5) while for (8) or (11), one cannot
specify (for a given {y, }) an arbitrary z, because a solution
), must be consistent with the KCL’s at the end points.
Furthermore, the temporal dynamics given by (5) are causal;
i.e., a solution at time ¢ does not depend on the future. The
spatial dynamics given by (11), however, are noncausal; i.c.,
a solution at node k depends on both the right-hand-side and
left-hand-side neighbors. In order to be more specific, let us
look at Fig. 6(a), where the right end point is shown with
m=2,-K <k <K, n=2K + 1. Capacitors are omitted
for the sake of simplicity. KCL’s at the Kth and (K —~ 1)th
nodes are, respectively,

ZTpp1 = Fxp +y,

— (90 + g1+ g2)vk + qrvk—1+ govg—2=0 (12a)
—(90+2g91 + g2)vr_1 +
91(vi +vK—2) + g2vr 3 = 0. (12b)
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Fig. 6. Boundary conditions with m = 2 (a) The circuitry at the right end.
(b) A modification of the boundary conditions establishes consistency.

The right-hand sides are nonzero when independent current
sources are present. These equations define a two-dimensional
linear subspace to which the boundary state £ must belong.
Another two-dimensional constraint is imposed at the left end.
If these constraints are independent (generically they are), then
a four-dimensional trajectory z; € R* is uniquely defined.

For a general m, there are yn boundary conditions at the
right end and there are another m conditions at the left end.
An impulse response of (11), for instance, is determined in the
following way. Let y, # 0 whereas y, = 0 for £ # 0 and
consider zo, which is to be determined. Let R*™ D Ty (resp.
7_) be an m-dimensional linear subspace to which zx (resp.
T_x) must belong. Then

zr = FRzo+ FE 1y, e T, (13a)
and
z gx=F%zoeT_. (13b)

determine z provided that 7'y and 7_ are independent. Other
zi’s are determined by

_ FkI0+Fk_ly().
T = {F_W:cg,

E>1
k< -1
Moving to the second issue, observe that the boundary

conditions (12) are not consistent with the temporal dynamics
(5) because the last two equations of an equilibrium are

— (g0 + 291 + 292)vn + 910n—1 + g2Vn_2 =0 (14a)
— (g0 + 291 + 2g92)vn -1 +
91(Vn + Une2) + gotn_3 = 0. (14b)
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Here, we are slightly abusing our notations of K and n.
There will be no confusion, however. The difference between
(12) and (14) lies in the coefficients of the first terms. By a
slight modification of circuit parameters, one can make (11)
consistent with (5). That is, if one replaces the last two go’s
in Fig. 6(a) with go + g1 + g2 and gy + g2, respectively, as in
Fig. 6(b), then it is consistent with (5). For a general m, one
can maintain the consistency of (11) with (5) by replacing the
last m go’s by

0+ g G+ G Gotgm  (15)
p=1 p=2

respectively. We will assume, throughout, that this type of
modification is always done.

The third issue is that the stability of the spatial dynamics
(11) must be carefully defined. That “(11) is stable iff all the
eigenvalues of F' lie inside the unit circle” does not work
because F' has a special structure (see (42) below):

if A is an eigenvalue, so is 1/\.

Therefore “|A| < 1 for all A’ is never satisfied. Since
n = 2K + 1 is finite, another standard definition of stability:

Z llyell? < oo implies Z ||:|:k||2 < 0o (16)
k k

does not work either, because (16) is always satisfied. As was
shown in Fig. 3(c), zx can behave in a wild manner even if
n = 2K + 1 is finite, which is highly undesirable for image
processing purposes.

Finally, there is another problem concerning the finiteness
of the network size n. Since A and B are symmetric, all
eigenvalues are real. Thus, given a fixed n, while it is
easy to say that (5) is asymptotically stable iff B™*4 is
negative definite, it is very hard to derive analytical (a priori)
iff conditions for negative definiteness even with m = 2.
One can derive, however, an interesting analytical condi-
tion if one looks for negative definiteness of B™1A for all
n. Section III gives extremely simple analytical conditions
for the temporal stability. With these conditions, a designer
is guaranteed to have a stable network independent of the
number of nodes. Without these conditions, a designer must
compute all the eigenvalues of B™'A. If one or more of
the eigenvalues turn out to be nonnegative, one has to re-
compute the eigenvalues with a new trial set of parameter
values. One also has to recompute eigenvalues when the
network size is changed in response to certain design con-
siderations.

Definition 1: A neural network described by (5) is said to
be temporally stable if B~ A is negative definite for all n.

B. Spatial Dynamics

As was explained in subsection A, care needs to be exer-
cised in studying the spatial dynamics (11). Let )\,,, A.,, and
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K-1 K
—— AW p——WW———o
g1 g,
>
g g 8=

Fig. 7. A network with m = 1. (a) Original network. (b) Modified bound-
ary condition, where the rightmost go is replaced by g:.

Ay, be the eigenvalues of F satisfying

As;| <1, |A;l=1 and

[Au| > 1

respectively, and let E°, E°, and E* be the (generalized)
eigenspaces corresponding to A,,, A.,, and A,,, respectively.
They are called stable, center, and unstable eigenspaces, re-
spectively. Let E = R?™, Then [16]

E=FE¢FE°®FE" a7
where @ denotes a direct sum decomposition, and
F(E%) = E°, a=s,cu, 18)

ie., B, E¢, and E™ are invariant under F'.

Our task here is to give an appropriate definition of spatial
stability while maintaining consistency with (16) when K 1
+00.

Definition 2: A neural network described by (11) is said
to be spatially stable if F' is hyperbolic, i.e., if the center
eigenspace £° in (17) is empty.

Remark 1: Another way of saying this is that all the eigen-
values of F are off the unit circle. Of course, eigenvalues can
be outside the unit circle. Note that this definition does not
depend on the network size n = 2K + 1.

It is known that a noncausal linear system is stable in
the sense of (16) iff its transfer function (in the frequency
domain) has no poles on the unit circle. This, however, is
when K T 400 and when there are no boundary conditions.
One perhaps wants to argue (as, in fact, the authors did when
they initiated the present study) that if the network size is
sufficiently large, the behavior would be similar to that of the
infinite case. This is simply wrong, as will be indicated by the
following examples.
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s 0.002500 V / \
: [l
< (a)
: J 1
o
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0.000500 V /
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NODE
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: |/
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> -2.500000 V
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Fig. 8. Significance of boundary conditions. (a) Impulse response for Fig. 7(a) with go = g, g1 = 2g, 1/g = 50 kQ,
uzy = 0.1 pA. (b) Impulse response for Fig. 7(b) with the same data except for g+ = —g, uz; = 0.1 pA.

Example 1: Consider the simplest case, m = 1 in (11) with
9o = 9, 91 = 2g, g > 0 (Fig. 7(a)). Then

|

and F is hyperbolic because eigenvalues are A; 1/2
and Ay = 2. Fig. 8(a) shows the impulse response when
1/g = 50 k2, where the impulse is injected at the center
node. Let us now replace the rightmost go and the leftmost go
with g = —g as in Fig. 7(b). The impulse response is then
given by Fig. 8(b), which “explodes” in the negative direction
as |k| increases. Note the difference of the voltage units. In
both cases, the input current injected to the center node is the
same and very small: 0.1 pA. It should be emphasized that the
only difference is in the two g¢’s, and the explosion happens
in whichever way the network size is large. In fact, in our
simulation with n = 61, an overflow occurred.

If the reader says that changing g: = g > 0to —g < O is
unnatural, the following example shows the case in point.

5

[}

-1

Example 2: Consider Fig. 7(a) again with go = g > 0 and
g1 = —g/8. Since eigenvalues of F are —3 + 2v/2, F is
hyperbolic, and Fig. 9(a) shows the impulse response with
1/g = 100 kS2. Next replace the rightmost and the leftmost go
with g, = go— (92 + 49091) /> = 9(1 = 1/v/2) > 0 (1/g; ~
341 k). The impulse response is given by Fig. 9(b), which
again explodes. In both cases the input at the center node
is 1 pA. Observe that since g1 < O the stability issues
are already nontrivial with m = 1. The stability issues for
this example will be checked theoretically in Section III (see
Example 5).

There is another story about spatial responses. Our simu-
lation results indicate that spatial responses behave quite
properly even if the g, value is varied by a large amount.
Namely, parts (a) and (b) of Fig. 3, Fig. 8(a), and Fig. 9(a)
are very robust against variations of g, from go.

Thus, two fundamental questions concerning the spatial
dynamics must be answered:
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Fig. 9. Impulse response can explode even when g; > 0. (a) Impulse response for Fig. 7(a) with go = g, g1 = —g/8,
1/g = 100 k€2, uz; = 1 pA. (b) Impulse response for Fig. 7(b) with the same data except for g+ = g(1 — 1/\/7)

1) Why does a particular g, value give rise to explosion
of impulse responses even if the eigenvalues are off the
unit circle?

2) Why do impulse responses behave properly over a wide
range of g; values?

One can answer the first question easily. Recall (13) and
observe that a spatial response z; depends not only on the
input y, but also on the boundary conditions T’y and T_.
Therefore, if

T, = E* (resp. T_ = E*) 19)
then zg (resp. Z_x) is forced to lie in E™ (resp. E®).
Since E* (resp. E®) is invariant under F, one has z €

E* (resp. z € E®) for all k > 0 (resp. k < 0); hence

k>0
k <0).

e € B,
e € ES’

[Az2] > 1,
I)\]_' < 1,

k
T = /\262,

(resp. zx = Aey,

This means that z, explodes as |k| increases. For the network
of Example 1 one can easily show that
E* = {(1‘1,1'2)[21?1 — T2 = 0}
FE° = {((121,1:2)[(1:1 — 219 = O}.

(20a)
(20b)

When g; = —g in Fig. 7(b), KCL at the Kth (resp. —Kth)
node reads 2gux _1 — gux = O (resp. gv—_x — 2gv_g4+1 = 0),
which implies (19). The situation is the same for Example 2.
Another way of looking at Fig. 8(b) is to consider Fig. 10,
where Fig. 10(a) is the original network and Fig. 10(b) shows
that an equivalent conductance, geq(K), as seen from node
K~-1is

gea(K) = (1/2g - 1/9)"" = ~2g.

Since g + geq(K) = —g, one sees that Fig. 10(b) is equiva-
lent to Fig. 10(c); hence geq(K — 1) = —2g. It is clear that
the equivalent conductance at any node k is —2g. This implies
that KCL at every node (k > 0) is 2gvg_1 — gv = 0 so that
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Fig. 10. An equivalent circuit of Fig. 7(b). (a) Original network. (b) The
equivalent conductance geq(K') seen from node K — 1. (c) A circuit equiv-
alent to Fig. 10(a).

Uk = 2U—1. Thus vy explodes as k > 0 increases. A similar
argument shows that v, k£ < 0, also explodes as k decreases.
The situation in Example 2 is the same.

Answering the second question is much harder. The argu-
ments used in answering the first question cannot be used here.
Instead, it exemplifies the difficulty. Observe that KCL at the
Kth node in Fig. 7(a) for Example 1 is

Ty : —3gvg +2gvg-1 =0

and hence
Ty #E*, Ty #E° (21a)
T_ # E¥, T_ # E°. (21b)
These facts imply that the response zj is of the form
zr=Mel +Mef, k>0 (22a)
v = Ner +Mes, k<O (22b)

where e % (resp. ef) are the eigenvectors associated with
A1 (resp. A2) and all of them are nonzero. The situation
given by (21) does not change for a wide range of g,
variations. This means that there is always an expanding term
Msef (resp. \¥el) in (22a) (resp. (22b)), in addition to the
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decaying term A\*ef (tesp. Ake; ). This raises another serious
question. Consider Example 1 again with g, = g > 0. Since
everything is passive, our intuition demands that there should
be no stability problems. Nevertheless, (22) says that there are
expanding terms.

Thus, another question arises: How can (22) involve ex-
panding terms when everything is passive? In order to answer
this, let us first consider the case where the network size is
infinite and no boundary conditions are imposed. Let {Ek}fz
be the impulse response defined by

Ziq1 = F Iy, k#0

7, =FZ, + 1y,
Then the network is stable in the sense of (16) only if for
every Yo

FFz || - 0 as kT +o00
=

HF’“EOH —~0  ask] —oo.
It will be shown later that this is possible only if E°, the
center eigenspace of F', is empty. In order to see distinctions
between solutions with and without boundary conditions more
precisely, note that in image processing, the input {y, } in (11)
is not an impulse, but nonzero for 0 < k£ < d.

Definition 3: Consider (11) and let {y;} be nonzero only
for 0 < k < d. Then {Ek}t‘;‘; is said to be a free-boundary
solution if

Try1 = F Ty, k<0 (23a)
d—1

Ty = Fizy + Z Fiky, (23b)
k=0

Tir1 = FTy, k>d. (23¢)

Remark 2: 1f d = 1, then {y,.} is an impulse. If one redefines
the summation term in (23b) as a new y,, then (23) can be
replaced by
k#0
Z = FiZo + v,

(24a)
(24b)

Tx+1 = F 7y,

Since no boundary conditions-are imposed, {Ek}fz is not
unique. The following proposition clarifies the uniqueness
issue in terms of stability. Let

Amax = max{|As| | Asi Is a stable eigenvalue}
Amin = min{|Ay;| | Ay is an unstable eigenvalue}

Ag = min{Amin, Aja)- 25)
Proposition 1:

i) The F matrix of the spatial dynamics is hyperbolic if
and only if for any y, there is a unique free-boundary
solution {Zx} ¥ satisfying

+oo

> izl < oo

k=—o00

(26)
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Definition of 2.

Fig. 11.

ii) The unique {Zx}* is determined by

3 €EE, TpeE, E=FZ4y, 27
Proof:
i) =) Since E° is empty (see (17)),
E=FE"®E°.
Since E* is invariant under F (see (18)),
(FdE" + yg) NE* = (E*+y,)NE*  (28)

and this intersection is a singleton set, say {2} (Fig. 11).

Define
Zo:= F 4z — y,), T =2z (29)
and let other Z; be defined by (24a). Then
+o0 0 o0
— 2 — 2 = 12
o= Y I+ D iz
k=—o0 k=—o0 k=1
<Al + Y A 1w
k=0 k=1
A2 1
# =12 = 2
= 57— |Foll” + m—IIZ1lI" <
AL -1 AL -1
(30)

where A4 is defined by (25). Note that (29) is equivalent
to (27) and this is the only choice of Z; and Z¢ for
which (26) holds, because if Z, ¢ E°, for instance, then
Z; = Z{ + I3, with nonzero Z}. Hence l F*zy
as K 7 4o00. A similar argument holds for Zy.
<) If E€ is non-empty, then there is a y, # 0 such that
(E* +yo) N E® = ¢. It is clear that for such y, there
is no way of choosing Z; and Z, which satisfy (26).
ii) Clearly, (27) and (29) are equivalent. O
Definition 4: The unique {Z;}* given in Proposition 1 is
said to be the stable free-boundary solution.

— 0

549

Remark 3:

i) Consider a free-boundary solution for Example 1, i.e.,
when go = g and g; = 2g extending indefinitely. In
spite of the fact that everything is passive, exploding
solutions are mathematically legitimate. However, by
demanding the finite total energy (26), one forces all
exploding solutions to be illegitimate and makes only
one solution legitimate, which is given by (27). Con-
versely, if a unique stable free-boundary solution exists,
then the F matrix must satisfy hyperbolicity.

The stable free-boundary solution in terms of (21) can
be characterized as e = e = 0.

Recall the boundary conditions T and 7_ in (13).

Definition 5: Let {y, } be nonzero only for 0 < k < d. Then
{zk}fg is said to be a solution for (T4, T_,K) if

ii)

Ziy1 = Fzy, -K<k<K, k#£0, (3D
z, = Fizy +y, (32)
z_geT_, Tg €T+. (33)

The following result thoroughly answers the second and
third questions that arose in connection with spatial dynamics
in a very general setting.

Theorem 1: Let a neural network described by (11) be
spatially stable, ie., let ¥ be hyperbolic. If the boundary
conditions Ty and T_ satisfy

T, +E*=E, T_-+E'=E (34)

then a solution {zk}fg for (T, T_, K) converges to the
stable free-boundary solution {Ek}fz as K T +o0:

+K
KEka_ZZK 7 — z[* = 0. (35)

Proof: See Appendix L.
Remark 4:

i) In words, this theorem tells us that if the F' matrix
of the spatial dynamics satisfies the spatial stability
condition (Definition 2) and, in addition, if the bound-
ary conditions satisfy (34), then response z; not only
behaves properly but also converges to the stable free-
boundary solution Zy as K T 4oo.

It will be shown in subsection III-B (see Example 3)
that for parts (a) and (b) of Fig. 3, F' is hyperbolic
while for Fig. 3(c), it is nonhyperbolic. A simple
computation shows that there are two distinct pairs of
complex conjugate eigenvalues on the unit circle for
Fig. 3(c).

Since Ty, T, E*, and E* all have the same dimension
m, the vector sum + in (34) amounts to the same

iii)
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as the direct sum @. Therefore, dim 7', + dim E* =
dim F and dim 7_+ dim E* = dim F; hence con-
dition (34) is extremely mild. It is satisfied unless Tk
(resp. z_) is forced to lie in E* (resp. E°). This
explains why all of our computer simulations look
the same with various boundary conditions except for
peculiar ones. What happens if T (resp. T_) is very
close to E* (resp. £°)? This simply requires a very
large K to observe a solution similar to the stable
free-boundary solution.
iv) Since E° is empty, z;defined by (32) can be written
as
T =z} + =z}, z} € B, i € E*.  (36)
A crucial step in the proof of Theorem 1 given in
Appendix I is to obtain estimates on )'F’“z}‘)ﬁ k>0,

and Fk:cgj , k <0, because these terms are expanding
instead of decaying. The following is roughly what is
happening. Let {zk}fflg be a solution for (T, 7T, K),
and let K < K’ while T, and T are fixed. In order
for {zk}f§: to be a solution for (T, T-, K'), it must
make more iterations to reach 77 from z/ than that for
{zk}ff. There are two ways to do this. In the first,
! locates itself farther away from the origin than z;.
In a second, £k hits T, at a point closer to the origin
than zx does (Fig. 12). There is a limitation to the first
method because zj must satisfy (32) while y, and d
are fixed. On the other hand, there is no such limitation
to the second method because the dynamics can get as
“slow” as it pleases as the origin is approached.! This
allows one to give an appropriate estimate on “sz1

k > 0. A similar argument holds for 7.

v) It is rather interesting to observe that the network given
in Example 1 is exactly a D/A converter widely used
in practice. See [17] for instance. The network is called
the R—2R ladder because go = ¢g and g; = 2¢. In order
to convert an 7-bit binary signal into an analog signal,
one inputs a constant current source at the kth node if
the kth bit is “1”; otherwise the current source is set
to zero. In such a D/A converter, the rightmost go is
replaced with g; = 2g instead of? g so that KCL gives
vr—1 — 2vg = 0, which forces (see (20b))

Tk € E°. 37

Since E? is invariant and since the stable eigenvalue is

1/2, one has zx = (1/25=F)zy. If the leftmost g,

is 2¢ also, then z_g € E*. Any response of a linear

network is a superposition of impulse responses, hence
the rightmost voltage vy, which is the output, is given

I'The dynamics )4y = Fzx have “zero” speed at the origin because
FO0 = 0; i.e., it does not move. Since a solution depends continuously on its
initial condition, one sees that the dynamics gets slower without limit as it
approaches the origin.

2Recall that in Fig. 8(a) g: = g, while in Fig. 8(b) gr = —g.
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Fig. 12. An illustration of the proof of Theorem 1.

as

v = constant x z 1/2’c (38)

k

where k runs over those nodes where “1” is present.
Note that if g; were not chosen as 2g, the D/A
converter would give a wrong analog output.

C. Temporal Stability—Spatial Regularity

Now we turn to the relationship between the temporal and
the spatial dynamics for which a new concept is needed.

Definition 6: A neural network described by (11) is said to
be spatially regular if there is a nonsingular 2m x 2m matrix
T such that

ES@ Ec EB Eu
Fol 1 _
TFT ' = |FC G | (39)
Lo _Fey__
YT T TOF!

where a blank indicates a zero matrix, and elements of G
consist of +1 or 0.

Remark 5: Spatial regularity demands several particular

structures in the dynamics:

i) dim £° = dim E* and

F|E" = (F|E*)™ (40)
where F|E“ (resp. F|E®) denotes the restriction of
F to E* (tesp. E°). Namely, the dynamics on the
unstable eigenspace E* are exactly the same as the
inverse dynamics on the stable eigenspace E°.

ii) The center eigenspace E° is decomposed as E* & E°2,
dim E?! = dim E°?, and F|E! and F|E° have
essentially the same structure.

iii) If a neural network described by (11) is spatially stable,
E*¢ is empty. It will be shown later (see (43)) that (40)
is satisfied for (10). Therefore, spatial stability implies
spatial regularity, but not conversely.

The following standing assumptions are made throughout

the paper unless stated otherwise.

Standing Assumptions: In (5),

() @ <0, am # 0;
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(ii) B is positive definite for all n.

Since we are looking for conditions under which B™* A4 is
negative definite for all n, the diagonal element ag of A must
be negative (provided that B is positive definite), which is
the inequality in (i). If a,, = 0O, then the neighborhood M
is of a smaller size. No restrictions will be imposed on the
sign of ap, p # 0. In image processing neuro chips, c, in
(4) are parasitic capacitors of MOS processes, and positive
definiteness of B is a mild condition. The following result
establishes a fundamental relationship between the temporal
and spatial dynamics.

Theorem 2: A neural network described above is temporally
stable if and only if it is spatially regular.

Proof: Consider the characteristic polynomial of F:

Pr(A) :=det(A\1 - F) =" [a +Z Ip (WP 4+ A p)J

p__ m
(41)
which satisfies

Pe(\) = Azmpp(%) 42)
This implies that if A (resp. A,) is a stable (resp. unstable)
eigenvalue, i.e., |As| < 1 (resp. |A,| > 1), then AJ! (resp.
A1) is also an eigenvalue and unstable (resp. stable). F
is nonsingular, for det F = 1; hence there are no zero ei-
genvalues. This implies that dim E* = dim E* and

F|E* = (F|E*)"". (43)
In order to discuss F'|E°, let
1
— -1 - _
w=A+A"1 or )\—2(wj: 4). (44)

By a repeated use of the binomial formula:
p—1

- ZZpCi [,\2@—1) + )‘72(17—1)] - 2Cy
i=1

—(2p+1) — 201

P
— ZZP-HCi [/\Z(P"l)-f-l +/\-2(p—i)—1]

1=1

AP AT = WP

A2+ )

one sees that

9 NN (4 ) — N g e
am + Z am (W +A77) = Z apw” = Qw)  (45)
p=1 p=0
for real oy’s. Since F has no zero eigenvalues,
Pr(A)=0 iff Qw)=0 (46)

where A and w are related via (44). Hence if A, is real and
[Ael = 1, then (44) forces A, to be a double eigenvalue

{Acs Ac} or its multiple. We next claim that
dimker(A\1 - F) =1 47

for any eigenvalue A, where “ker” denotes the kernel of a
matrix. In order to see this, note first that A being an eigenvalue
implies

dEt()\l bt F) =0.

The determinant of the (2m — 1) x (2m — 1) principal minor
of A1 — F is given by

1
Al
\ :/\(Zm—l) 960
1
A

because F has no zero eigenvalues. This shows (47). Thus,
for each eigenvalue A of F, there is only one elementary
Jordan block [16]. Therefore the real canonical form of F|E*
restriction of F' to the eigenspace corresponding to A, is given
by

2q
~- Ac 1 : : -
2y ‘}1‘ =
| 7 I
[ Acl 1
———qm—— ==
| | IS
2q | | S 48)
| | \\ \\
| | “\
| | ~
| |
| |
| |
L | | J

where 2q is the multiplicity. This is clearly of the form (39).

So far, no use has been made of the negative definiteness
of B™' A and yet we are already close to (39), the regularity.
The situation, however, is slightly subtle when it comes to
a nonreal A. with |A;| = 1, because (42) tells us nothing
except for the fact that X, the complex conjugate, is also an
eigenvalue. This last is of no use since F is a real matrix and
A also being an eigenvalue is automatic. We now assume
that B™' A is negative definite for all n. Since B is positive
definite for all n, A is negative definite for all n. It is known
[18], then, that there are z, € R, p = 0,---,m, such that the

elements of A satisfy
m—p

—ay = Y Zi%isp,

i=0

ie., a,’s can be decomposed as in (49). Substitution of (49)

into (41) yields

m m m m-—p
Pr()\) = — — [Z +y Z Zizipp(A + A7)
m 0 p=1 i=0

)\m m m
(Sar)(So) e

Z()Zm 0 =0

Since 0 # a,,, = —zo2m and since F has no zero eigenvalues,

one sees that

Pr(A) =0 iff R(A)R(%) -0 (51)
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where
m ) i
R(A) =)z (52)
1=0
Therefore if A is a nonreal eigenvalue with |[A.] = 1,

(51) forces the eigenvalue configuration to be of the form
{Aes A5, A, A%} or its mudtiple. Tt follows from (47) that the
real canonical form of F' on this eigenspace is given by

2q
(e =f11 | W
ol 11
oA
_: B o 1
R
24 [ Y (53)
| | ‘\\ \\.
l I ~~~~ '~
] |
I I >
L ! _
where
o+ 3 =1 (54)

and 2¢’ is the multiplicity. This, again, is of the form (39).

If a neural network is spatially regular, the real canonical
form of the spatial dynamics F' is equivalent to (39). The
characteristic polynomial of F, then, admits a decomposition
of the form given by (50). Comparing (50) with (45), one sees
that (49) holds. This condition is known [18] to be not only a
necessary but also a sufficient condition for A to be negative
definite for all n. Since B is positive definite and symmetric
for all n, it follows from [19] that

max. eigenvalue of B~'A = max v’ Av <0 (55)
FC8 ~ vz0 vTBy
for any n which implies temporal stability. O

Remark 6: Suppose that a neural network is temporally
stable. Although its spatial dynamics can be unstable, it has
a sort of symmetry in that the spatial dynamics cannot have
a component which is essentially different from the rest; i.e.,
every component has its partner.

Remark 7:

i) Consider (1) and let

n
W = E Ui,
i=1

which is the power injected into the network. It follows
from (1) that

W= — Z Zviapvi—p + z Zvibp dv(;t_p
1 P : P

= —vTAv + vTB@

dt
= Wg + We.

Thus the first term
Wgr = —vT Av = power dissipated by the resistive part
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of the network. Therefore a neural network is tem-
porally stable iff its resistive part is strictly passive,
ie.,

Wgr > 0, v#0 for all n.

i) It follows from the previous remark that spatial stability
demands more than strict passivity of the resistive part.

iii) Observe that
v7 Bu/2 = energy stored in the capacitors.

Therefore (55) says that
max. eigenvalue of B'A
—power dissipated by resistors
= max - -
2 - energy stored in capacitors

. power dissipated by resistors
=-m - - .
2 - energy stored in capacitators

Remark 8: Since the capacitance matrix B has exactly the
same structure as that of A, one can derive an iff condition
for its positive definiteness. If all c,’s are positive, however,
then the positive definiteness is straightforward because

bo=co+2) 6 >2> =23 bl  (56)
p=1 p=1 p=1

ie., the diagonal element is larger than the sum of the
row elements. Since B is symmetric, this implies positive
definiteness.

Remark 9: Since an actual chip is made up of MOS
transistors, the formulation given by (1)—(4) is naturally a
model. For example, in [1] both the variable conductance go
and the negative conductance g are composite CMOS circuits.
As one of the reviewers correctly points out, a reasonable
justification of the model should be given. Appendix VII
supplies a justification.

Now the question naturally arises as to how one checks
temporal stability or spatial regularity. Since temporal stability
is equivalent to spatial regularity, we will say, hereafter, that
the stability~regularity condition is satisfied if a network is
temporally stable or spatially regular. Recall Q(w) defined by
45).

Proposition 2: The following are equivalent:

i) Stability—regularity.

ii) Every nonreal eigenvalue A. of F with |A.] = 1 has
an even multiplicity.

iii) Every real zero wg of @ with |wg| < 2 has an even

multiplicity.

Proof: Equivalence between (i) and (ii) was demon-
strated in the proof of Theorem 2. To show that (ii) and (iii),
suppose that A, = e7%, § # km, is an eigenvalue of F. Then
(44) implies that the corresponding w is real and |w| < 2.
Conversely, if w is real and |w| < 2, then (44) says that
Ao = 780 £ k.

For the sake of the completeness, we will state the follow-
ing:

Proposition 3: The following are equivalent:

i) Spatial stability.
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ii) Eigenvalues of F' are off the unit circle.
iii) @ has no real zero on [—2,2].

III. EXPLICIT STABILITY CRITERIA

Even though both conditions (ii) and (iii) of Proposition 2
give a specific way of checking the stability—regularity, ex-
plicit analytical conditions in terms of the circuit parameters
greatly help in designing circuits. The same is true for the
spatial stability. In subsection III-A two stability indicator
functions will be given for a general m, with which one can
easily check the stability—regularity or the spatial stability in
terms of circuit parameters. In subsections B through D, the
stability indicator functions will be specialized to m < 3. In
particular, it will be shown that the conductance values of the
neuro chip which motivated the present study satisfy the tem-
poral as well as the spatial stability conditions. Furthermore,
it will be rigorously shown why our numerical experiments
indicated the “equivalence” between the temporal and the
spatial stability.

A. Stability Indicator Functions

The following functions play a crucial role throughout the
rest of the paper and will be called the stability indicator
functions:

oi(ag,a1,---,am) = wg[l_a;fﬂamQ(w)
0-(a0,0,0,0m) = min anQ)  (5T)

where @ is defined by (45).
Proposition 4: A neural network described by (5) and (11)
satisfies the stability—regularity condition if and only if

oy4(ag,ay, - am) <0. (58)

Proof: 1t follows from Proposition 2 that the stability—
regularity holds iff every real zero of Q on (—2,2) has an even
multiplicity. This means that, if Q has a zero on (~2,2), it
must be an extremum. Since any zero at £2 is necessarily even
(see (44)), one sees that the stability—regularity is equivalent
to

<0 i > 0.
e Qw)<0 or min Qw) 2 (59
One can easily show that (59) is equivalent to
max amQw)<0 or min a,Q(w)>0. (60)

we[-2,2) w€[-2,2]

We claim that the second inequality in (60) is always violated
under our standing assumptions: ag < 0, a., # 0. In order to
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show this, consider (see (45))

m

amQWw) = ag + Z ap (WP + A7P)

p=1

(61)

where w and ) are related via (44). Since we are interested in
w on [—2,2], A is represented as

2 =e? 6 € [0,x].

Hence

m

Zap()\p + /\_p) = Zap(ejpg + eﬁjpg)

p=1 p=1
=2 Z ay, cos(pd). (62)
p=1
It follows from
/ 2 Z apcos(pd)df =0 (63)
0

p=1
that (62) is either identically zero or changes sign on [0, 7].
Since am # 0, the first possibility is excluded. Therefore, if
ag < 0, then (61) cannot be always positive on [—2,2]; hence
the second inequality in (60) is always violated. O
Proposition 5: A neural network described by (11) is spa-
tially stable if and only if

o4(ag, a1, am) <0. (64)

Proof: 1t follows from Proposition 3 that the spatial
stability is equivalent to the fact that Q has no real zero on
[~2,2], which, in turn, is equivalent to

max a,Q(w) <0 or am@Qw) > 0. (65)

min
w€[-2,2] we[-2,

2,2)
By using the argument used in the proof of Proposition 4, one
sees that the second inequality in (65) is always violated. O
The following fact gives upper and lower bounds for eigen-
values of the temporal dynamics A. °
Proposition 6:
i) Any eigenvalue p of the temporal dynamics A for any
n satisfies the following bounds:

0—((1'07@17"'70’"1) <,u<0+(ao,a1,-~,am). (66)

ii) The bounds (66) are optimal in the sense that if o7
(resp. o*) is any number which satisfies

0’:— < 0'+(G,0,(11,° t 7am)

(resp. ”~(a01 ay, - ,(lm) < Ji)
then there is an eigenvalue p of A for some n such that

ot <p (resp. p < o*).
Proof: See Appendix II.

Remark 10: Note that (58) is a weak inequality, i.e., equality
is allowed, while (66) does not allow the equality. This is ex-
actly what it should be. If, for instance o4 (ag, a1, -+, 6m) =
0, then Proposition 4 tells us that the network is temporally
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stable and hence that all the eigenvalues of A are strictly
negative, which is what (66) says.

We would like to emphasize the if and only if nature of
Proposition 4 as well as Proposition 5 and the optimality
of Proposition 6, which indicate that o4 (ag,a1,--*,am,) and
o—(ag,a1,--,am) are crucial to the stability issues of our
interest. The above propositions, however, would not be
very useful unless one could compute explicit formulas for

oy (ag,a1, - ,am) and o_(ag,a, -, am). In the following,
we will compute these functions for m < 3.
B.m =2

We begin with m = 2, which motivated the present study.
Proposition 7: When m = 2, the stability indicator func-
tions are given by

04(90,91,92) =

—go — 291 + 2|g1] when go >0 or
g2 <0 and |gi1/ge| >4
—go — 291 — 4g2 — g% /4g, when g <0
and [g1/g2] <4
0—(go,g1,gz) =
—go — 291 — 2|g1] when g2 <0 or
g2>0 and |g1/g2| >4
—go — 291 — 492 — 9}/4g2 when g2 > 0
and [g1/g2( < 4.
(67)

Proof: See Appendix III

Example 3: With Propositions 4—7 at hand, we can now
check Fig. 3 and Fig. 4 theoretically. In Figs. 3 and 4, 1/go =
200 kQ and 1/g; = 5k are fixed while g, is varied:
(@) 1/g2 = —20kQ; (b) 1/g, = —18 kQ; and (c) 1/g; =
—17 k2. In order to check (a), note that |g;/g2| = 4; hence
(67) gives

0+(90,91,92) = —go < 0.

Propositions 4 and 5 guarantee the temporal as well as the
spatial stability. For (b), |g1/g2| = 18/5 < 4 and (67) reads

04+(90,91.92) = — go — 291 — 492 ~ g3 /492
= (=1/200 — 2/5 + 4/18 + 18/100)
x 1072 <0

which checks Fig. 3(b) and Fig. 4(b). Finally, for (c),

o+(90,91,92) = (—=1/200 — 2/5 + 4/17 + 17/100)
x107% >0

and hence the network is temporally and spatially unstable,
which checks Fig. 3(c) and Fig. 4(c).
Example 4: For the Gaussian-like convolver [1]
g1 > 0, g2 < 0,

g1 = 4ga|. (68)
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(Appendix IV gives a simple explanation for this choice of
conductance values.) Propositions 4 and 7 tell us that the
stability—regularity is equivalent to

o4(g0,91,92) = =90 < 0,

i.e., passivity of go. Furthermore, Proposition 5 says that the
network is spatially stable iff

o4(g0,91,92) = —g0 <0,

i.e., iff gg is strictly passive. Thus go can be safely varied over
any range as long as it is positive.
Remark 11:

i) Even when g; as well as g, is negative, a network
can satisfy the stability—regularity or/and the spatial
stability condition provided that gy is “sufficiently”
passive because

a+(go7g17g2) =
{ —g0 + 4lg1 when |g1/ga| > 4

—go +2|g1| + 4lg2| + g3 /4lg2| when |g1/g2| < 4.

ii) If g2 > 0, then
when g; >0

04(90,91,92) = %
+(90, 91,92 —go+4|g1| when g; <0.

iii) Since @ is quadratic, conditions (ii) and (iii) of
Proposition 2 are sharpened, respectively to the
following:

(i) F has no simple nonreal eigenvalue on the unit circle.

(ili) @ has no real zero on (—2,2).

it follows from Proposition 4 (resp. Proposition 6) that

the set of parameter values (go, g1, g2) for which stability—
regularity and the spatial stability hold are given, respectively,
by

SR = {(g0, 91, 92)|0+(g0, 91,92) <0, go + 291 + 292 > 0}
(69)

SS = {(go, 91, 92)l7+ (90, 91, 92) <0, go + 291 + 2g2 > O}.
(70)

We will now give a fact which, as its by-product, explains

‘why our numerical experiments suggested SR = SS, which

is untrue. Let

G = {(90,91,92)1g2 < 0}

on which our numerical experiments were performed.

Proposition 8:

i) meas[SSNG] > 0

ii) meas[(SR —8S)NG] =0

where meas[-] denotes the Lebesgue measure on R3.
Proof: 1t follows from (67) that SS N G contains an

open set of R? and hence it is of positive Lebesgue measure.
Since SR D S8, the set difference SR — SS makes sense, and
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meas[SRN G] > 0. The set (SR —SS) N G is a subset of we need to prepare several notations. First note that, when
SR N G such that m = 3,
J+(g0>gl1g2) =0. (71)

ao az a1 2 2 3
Since the gradient of o (go,g1,92) on (SR—SS) NG is Qw) = (a_3 - 25;) + (g - 3)“”’ s’ +w” (7))
given by

and that
Do (g0, 91,92) =
2‘1’0’0) ) when g, > 0, '|91//92’|| 24 ao=—(go+291+292+2g3), a1 =41,
-1,—-4,0 when g; <0, |g1/92| > 4
, —4, ) s = asz = gs. 73
(-L-2-g1/20,~4+g}/4g5)  when |g1/go| 2 4 2= =08 7

and since this is nonvanishing, (71) forces (go, g1, g2) to lie The zeros of the derivative dQ/dw are

in a Lebesgue measure zero subset [20, lemma 4]. 0
Remark 12: This proposition explains why our experiments € = (_2 + \/5) /3= (_9_2 + \/5) /3 (714)
suggested SR = SS for a Lebesgue measure zero subset is as g3
“hard to hit.”
where
Cm=1

2 2
Neural networks with m = 1 are used in an extensive man- (2) _ 3<ﬂ> +9= (9_2) _ 3<&) +9. (75)
ner [6]-[8]. Although those networks contain only positive

conductances (go, g1 > 0), it would be worth clarifying the
temporal as well as the spatial stability issues when g; < 0. Using (74), one has
We will state the result without proof because the proof is
much simpler than in the m = 2 case.

r 2
.. . _ e . . 2 a 2 a
_Proposmon 9: When m = 1, the stability indicators are Q(€x) = 3¢x ._-( a2 ) + _(_l) ~9
given by 9 \as 3 \as
_laa _5a w
9 a3z a3 3 a3 a3
r 2
0+(90,91) = —go — 291 + 2|g1] =3¢, _3(22_) 3(9_1) _2] _1 %9
= 2
o-(90,91) = —go — 291 — 2|g1]- 9 \g3 3 \gs 9 9
_9% 20 g , (76)
g3 g3 3 g3
Example 5: When gg > 0 but g; < 0, the stability issues are
nontrivial. The network is temporally (resp. spatially) stable Note that
iff a a a
Q@2)=20 4% 1922 49 R0
~go+4lg1| SO (vesp. — go + 4[g1| < 0). P %5
Q(—2):a——2a—+2a— 2=—-=—-4= -4
In Example 2, 1/go = 100 k2, 1/g, = —800 k%2, and o 3 G @ g3 9
(g0,91) = (—1/100 + 4/800) x 10~3 < 0 and the network is  and define
temporally as well as spatially stable which checks Fig. 9(a).
Remark 13: One can show for this case also that the set of fr = a3Q(2) = —go 77
(g0, g1) values on which the temporal stability holds, and yet W N _ .
the spatial stability fails, is of measure zero, f- = 05Q(=2) = —go — 491 — 495 78 .
D.m = ‘ '
m=3 he = 03Q(E)
As was remarked earlier, neurochips with m < 2 have 2 g2 2 1 gogn
already been designed and fabricated. Although no result = 3+ [—g =+ 391 - 293] 9 T
. . . g3 g3
has been reported on chips with m = 3, we conjecture 11
that this architecture might be suitable for noncausual IIR — go— 291 — —3—g2 - 2g3. (79)

implementations of interesting image processing filters.

We saw in subsection III-B and Appendix III that the case
m = 2 is already sufficiently complicated to require a careful Proposition 10: When m = 3, the stability indicator func-
analysis. Naturally, the case m = 3 is even more involved and tions are given by
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(f+ when g3 >0, D<0 or g3>0, D>0, {- <§4 < -2
or g3>0, D>0,2<é_ <&y
or g3<0,D>0, £ <-2 25¢,
f— Wheng3>OaD>07 f—s_27255+
or g3<0,D<0 or ¢g3<0,D>0, <& <=2
or g3<0, D>0,2< & <&,
0+(90:90:929) =\ 1ax(f, f ] when gs >0, £ < -2 <&, <2
or g3<0, —2<¢(_<2<¢&,
hy when g3 >0, £ < -2<¢; <2
h_ when g3 >0, -2< & <2<y
max[fi,h-] when g3 >0, —2<{ <& <2
max[f-,hy] when g3 <0, —2<¢ <€ <2
( f+ when g3 >0, D>0, (. <-2,2<¢; or ¢g3<0, D<O

or g3<0,D>0, <& <2
or g3<0,D>0,2<¢ <&y
f- when g3 >0, D<0, or g3>0, D>0, £ <& <=2
or g3>0,D>0, 2<¢ <&,
or ¢g3<0,D>0,§_<-2,2<¢&;
0-(00:01:92:98) = 4 wninlg, £ ] whengy <0, 256 <2<,
o ga>0, 6 <-2<E <2
hy when g3 >0, —2<¢_ <2< ¢y
h_ when g3 <0, £ <-2<¢, <2
min[fy,h_] when g3 <0, —2<¢_ <€, <2
\ min[f_,hy] when g3 >0, —2<¢&_ <&y <2.

Proof: See Appendix V.
i) The following conditions are equivalent:

a) B is positive definite for all n.
IV. TRANSIENTS b) Every nonreal zero A. of Pg(A) with |\ =1
has an even multiplicity.
c) Every real zero wg of Qp(w) with |wg| < 2 has
an even multiplicity.

This section analyzes the capacitance matrix B in (4) using
the method used for analyzing A. As a by-product, an estimate
will be obtained of the “processing speed” of neuro chips.

It follows from (4) that the capacitance matrix B has exactly
the same structure as that of A. Therefore, one can derive N—(bo, b1, bm) 20 (83)
conditions under which B is positive definite and bounds on
its eigenvalues. Let

d)

m -
Pa()) = A™ Ip. /\p + A" p ii) Any eigenvalue v of B for any n, satisfies
B( ) ;b n—(b01b17"’vbm)<V<77+(b07b17""bm) (84)

Qpw) = Z (A7 +277) and the bounds are optimal.
Corollary 1: Assume (82) and consider the temporal dy-
namics (5) with »(0) = 0. If (58) and (83) are satisfied, then

where bg, - -, bp, are as in (4) while w and X are as in (44).  the solution v t) of (5) satisfies the following bounds:
Define _ o_ 1

Delbobisee b) = max boQaw) (80 = ew(51) - 1] 1B7"w] < @)

we€
n-(bo;biye o bm) = min bnQp(w)  (81) <M exp( Z2t) —1|||B My (85)
w€[-2,2] ooy 7+
The following fact can be proved by an argument similar to )
that used for the negative definiteness of A. Proof: See Appendix VI
Proposition 11: Replace (ii) of the standing assumptions Remark 14:

(subsection II-C) by i) The result tells us how fast/slow a step response of

bo > 0, bm # 0. (82) (5) grows. Although there is no precise concept of the
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time constant RC for (5) (dim v > 1), (85) can be
interpreted as

0= < “time constant” < e (86)
g_ o4

ii) Let us compute the upper bound in (86) for m = 2. It
is not difficult to show that
n+(co;c1,c2) =

co + 2¢1 + 2|ci when cp < 0 or

c2>0 and |ci/co| >4
co+ 2¢; + 4ca +c2/4c; whencp >0 and
|61/02i < 4.

If go, 41, co,c1,c2 > 0, then it follows from (67) and
the above formula that
s _

o+ %
_ [ (co+4c1)/g0 when |c1/co] > 4
~ \ (co +2¢1 +4cz + 2 /4c2) /g0 when |c1/co| < 4.

Since it is difficult to estimate parasitic capacitances
accurately, this is as much as one can tell from the
corollary.

V. CONCLUDING REMARKS

(i) We would like to call the reader’s attention to the fact that
the spatial dynamics of the class of neural networks discussed
here are zero phase and yet IIR. More specifically, consider
the transfer function of the spatial dynamics in the frequency
domain:

1/H(2) = 1/ [amz~™Pr(2)]

where P is the characteristic polynomial defined by (41).
Then

m
H(e™) =ao+ E 2a, cos(pw)
p=1
which is real. Obviously, a zero-phase filter is ideal in signal
processing, for if the phase does not behave properly, the
signal would be distorted. It is known [21] that a stable linear-
phase IIR cannot be realized by a causal system (linear-phase
meaning here that the phase is linear in w). Thus the spatial
dynamics (11) are a zero-phase noncausal IIR filter. The results
reported here establish conditions under which those noncausal
IIR filters are temporally and/or spatially stable.

(ii) Using an argument used in the proof of Lemma A2,
one can show that if ag > 0, i.e., if the diagonal element
of A is positive, then A is positive definite iff the spatial
dynamics is regular. Since the definition of spatial stability
(Definition 2) is the hyperbolicity of F, the spatial dynamics
can be stable even when ag > 0. Thus, the spatial regularity or
stability can be satisfied even when A is positive definite, while
temporal stability is certainly violated if A is positive definite.
This asymmetry is due to the fact that the spatial dynamics is
noncausal whereas the temporal dynamics is causal.

(iii) Recall Proposition 8, which states that, for m = 2, the
temporal stability coincides with the spatial stability except
for a measure zero subset of R3.
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Conjecture: Proposition 8 will be true for a general m.

(iv) The following is a list of possible future research

projects:

a) Generalizations to nonlinear cases, €.g., the chip reported
in [11]. While the temporal stability results can be estab-
lished under reasonable conditions, the spatial stability
results may not be easy to obtain because the spatial
dynamics are not only nonlinear but also nonautonomous
with respect to node number k. More specifically, let

B@ =G(v)+u 87)

dt

be the temporal dynamics where G : R* — R™. Let v

be an equilibrium of (87) and suppose that

Trt1 = F(zk) + Y (8%)

represents the spatial dynamics in the sense of (11),

where F : R2™ — R2?™, Therefore, the spatial stability

means the stability of the trajectory (88), which is

not necessarily a fixed point of F'. Furthermore, if the

conductances are nonlinear, the temporal dynamics are
not necessarily of the popular form

v 1
o~ u4+T
i R'u+ G(v) +u

where T is symmetric, G = (G',---,G™), and G,
1 =1,---,n, is sigmoidal.

b) Generalization to two-dimensional array cases.

c) IIR implementations and associated stability of other
interesting filters, e.g., oriented receptive field filters [4]
and Gabor filters [5].

d) It could be interesting to investigate the relationship, if
any, with the stability results for neural field equations

[22], [23].

APPENDIX [
PROOF OF THEOREM 1

Throughout this appendix, the center eigenspace E° is
empty. Hence any vector £ € E can be written as z =
¢ + z°, ¢ € E%, z° € E°. Proposition Al says that
a slight enlargement of E* does not destroy the property
E* N Ty = {0}; i.e., the intersection between E* and T,
is the singleton set {0} and that the same is true for E°
and T_. Proposition A2 says that z; (resp. o) approaches
E™ (resp. E®) as K — +o0. Lemma Al tells us that z; (resp.
zy) approaches Z; (resp. Zp) as K — +oo.

Proposition Al: There are positive numbers a4 and a—
such that

Aot (E*) 0Ty = {0}

Au—(E*YNT_ = {0} (A1)
where A, (E%) and A,_(E*®) are the ay sector of E* and
the a_ sector of E®, respectively (Fig. 13):

Aar(EY) = {(z",2°) € E* @ E° | ||2°|| < a[|2"|}
Ao (B*) ={(z",2") € E* @ E* | [|2"]| < a-||z°|}-
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Aa+ (E“ )

Ao (E)

Fig. 13. The a4 section of E* and the ov— section of E°.

Proof: Since T & E* = E° @ E", there is a unique
linear map 7% : E* — E° such that
Ty = {(z*,742") € E*® E* | 2* € E*}.

Since .. N E* = {0}, the map 7% is nonsingular; hence
+ +
ay =inf{||r%2"|| | 2* € E%, ||2%|| = 1}

is positive. Clearly (Al) is satisfied. A similar argument is
valid for A,_(E*).

Proposition A2: If {zk}ffé is a solution for (T},7T_, K),
then

- —2(K-1
23]l < a7 ALz

llzsll < aZtAZ* |l

where Ay is defined by (25).

Proof: Since xx € T, one has Tk & Aqt(E™)/{0} so
that ||z || > e ||lz%]l. It follows from ||z}, || = [[Fzi|l <
A Iz that [zl < Az"V||z3)|. Therefore

Il < a3 ekl < a3 a5 sl
hence

llz¢)l < a7t AZZE D)z, (96)

The other inequality can be derived in a similar manner. a
Now let A.(E*) and A.(E?) denote the closed e sectors of
E" and E? respectively:

A(EY) ={(z",2") e E* @ E* | ||2°]| < e|2*||}
) ={(z"*2") € E* @ E° | [|2*|| < ell2°]}}.

Then Proposition A2 says that a solution {zk}fﬁ for
(T4, T-, K) satisfies

T € Ksl(Eu), = FdzO + Yo

(A2)

x1 € Aeo(E?),
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where
€ = a——_l)\;ZK g0 = a;lA;f(K—l)’ (A3)
Lemma Al: Let €1,e2 > 0 satisfy
max[el(l—51)71,52(1—52)_1,61752] <1/4 (A4)
and let
r= 2(“51” + “F‘ii(,“) (AS)
If
z € (Aer(E™) +yo) N Aea(E®), (A6)
then
z=w+y, we A (EY) (A7)
and
2l + flwll < r (A8)

lz = Zull < e1(1 = e1) " [lw]| + e2(1 — e2) "zl (A9)
Hw - Fdi()” <er(1=ep) Hw| +ea(1 - e2) ' l2ll-

(A10)
Proof: 1f (A6) holds, z € Aeo(E®) implies
z=2"+2°, z* e E*, z* € E®,
and  [|2"[| < e|2°[|
which, in turn, implies
[2°]] = llz = 2“1l < llz]l + 2]l < llz]l + e2lla]l.
Therefore
2] < (1—e2)7"|2] (A1)
and hence )
fl2“l < e2(1 —e2) (l2l. (A12)
Since z € Aei(E™) + ¥, ((A6)), one has
z—yo=w"+w’, w" € B, w’® € E°
flw®|| < exflw®] (A13)
from which it follows that )
flw*|| < er(1 =€) [w]]. (A14)

Let us rewrite the equality (see (A13))
Zu+zs=wu+ws+y0

and
2 —w' =w" -2 +y,.

Then the uniqueness of the stable free-boundary solution
(Proposition 1) implies that there is a unique pair (Z1,Zo)
satisfying (see (24))

T = 2 —w’

Fizy = w* — 2% (A15)
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1t follows from (A1l), (A12), (A14), and (Al5) that
lz = Z1] = ll2" + 2° = (z° — v’}
= |l + w’|| < [l2*]] + |lw’]]
<er(1—e1) Hlwl +e2(1 —e2) ']
which proves (A9). Similarly
“w - Fd:fOH = lw* + w® — (w* — 2%)||
< w1z
= e1(1 =)l + ea(1 — 2) el
which proves (A10). In order to show (A8), observe that
llzll = 1]l < llz - 24l
and
o - ] < |ju— £z
imply
llzll < I[Z4ll + 1z = 71|

< |Ef + e1(l ~ 1) Hlwll + e2(1 — e2) 7 ]l
(A16)

and
o < ] + o - ]
< [|F4o | + 11 = e0) 7wl + €21 = £2) el
(A17)
Adding (A16) and (A17), one has
2l + llwl < 2l + || FZo]| + 2611 = 1) ]
+2e5(1 — e2) el
< Il + [ FUo|
+ Zmax[el(l - 61)—1,62(1 - 62)—1]
- (Jhell + {121))
< Il + | 2o | + 17200l + )121)
where (A4) was used. This inequality together with (A5)
implies
Izl + ) < 2( 11l + ||FZo ) = - 0

Completion of the Proof: Tt follows from Proposition A2 that
(A4) is satisfied for K sufficiently large. Since F* expands the
vectors in £* while it contracts the vectors in E?, one sees
that

zo € Aei(E™) implies Fizg € Ael(EY).
Therefore, one can take
z, = Fizo +y,
as the z in (A7) of Lemma Al, and (A8) reads
ol + | o < r
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and
2] < Nzl < 7 (A18)
Since zx = FK 'z, (A18) implies
Jzxl] < 255D, (A19)
In order to estimate ||z}||, let
T, E*— E¥
be the linear map such that
Ty = {(r%2°,2°) e E* © E*|z° € E*}. (A20)

This map is well defined and is unique because of (34). It

follows from (A20) that

ekl = || (r3z5k: 2| < (I3l + D=kl

< E (] + )

Note that for the stable free-boundary solution, (24) implies

T, € E°, k > 1; hence
zp =0,

which, in turn, implies

u = i —(K-1
=g -zl = el < A5 s e
It follows from this that

st - 3| = ekl = [P~ P
<G5 Pl < AZE T eI
= MG | (A21)

On the other hand,
ot — ) < e1(1 = €)™ |[Fao]| + e2(1 — e2)
< ma,x[el(l - 61)—1,62(1 - 52)_1]7"
< 2max(e1,e2)T
< 2/\;21( max(ail,allz\i)r
where (A3) was used. Therefore

st 7l = |[F* (1 - )

—(k=1)p s _ =8
< 33 Pt - =)
< A% V2K max(eTh a7 M)

= 22K 2 max(aZl 0T AY)r (A22)
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It follows from (A21) and (A22) that
K K K
— 2 u  =u)i2 s =2
S llze -zl <3 llwt 2+ Y Ml ~ |
k=1 k=1

k=1
K
€S
k=1
K

+ Z /\;4K—2k+2
k=1

-4 {max(aﬁl,all/\i)}zrz
K K
— (Z /\;:k + Z /\#Zk) /\;41\'4}27‘2
k=1 k=1

- max (|| ||, 4{max (a2, a30%)})

—0 as K — +oo.

Using a similar argument, one can show that

0
Z o —F||> =0 as K — 4oo.
k=—K

APPENDIX II
PROOF OF PROPOSITION 6

() If i is an eigenvalue of A,

A, =A— (A23)

is singular, and hence it is not negative definite. Therefore A,
cannot be temporally stable. If

ag—p <0 (A24)

then Proposition 2 says that Q,(w) defined by (45) for A,
has a real zero on (—2,2) with odd multiplicity. Since the
multiplicity is odd, the zero on (—2, 2) cannot be an extremum
of Q. so that

weH[l_llzl’Q] Qulw) <0 and wg[lvag(ﬂ Q.(w)>0 (A25)
which is equivalent to
w€n[1_1121’2] amQu(w) <0< wen[l—aé(,z] amQpu(w). (A26)
Since
amQu(w) =ao— i+ »_ap(3 + A7) (A27)
p=1
where w and A are related via (44), one has
amQu(w) = amQ(w) — p. (A28)

Equations (A26) and (A28) imply (66). In order to consider
the case

apg—pu>0 (A29)

one needs the following:
Lemma A2: If ag — p > 0, the following are equivalent:

i) A, is positive definite for all n.
ii) The corresponding spatial dynamics are regular.
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iii) Every real zero of @, on (—2,2) has an even multi-
plicity.
Proof: Recall (49) and replace —a, by ap:

P
ap = 2 ZiZitps p:]':"'vm
p=1

m
2
ao—,u:Zzi.
p=0

One can use an argument similar to that used in the proof of
Theorem 2 and Proposition 2 to show the result. g

In order to complete the proof of (i) of Proposition 6,
observe the fact that A, being singular violates (i)—(iii) in
Lemma A2. Since (iii) of Lemma A2 is the same as (iii) of
Proposition 2, one can use the same argument as for ag — p <
0. It is clear from the form of A and ag # 0, am # 0 that
ap — p = 0 is impossible.

(ii) In order to prove the optimality of the upper bound,
note that for any v € R

O'+((l0 +va1, -, am) = 0'+((10,a1, e 7am) +7. (A30)
Now fix a1, ,amn and consider
P.(ag— pya1,+,am) = det(A — p1) (A31)

where n denotes the size of A. It follows from (A31) that
if {pn,i(af)},_; and {pn;(ag)},-, are the eigenvalues of
A when the diagonal is ag and ay, respectively, then by an
appropriate relabeling,

;U‘n,i(ao) —ap = Mn,i(ag) - a(w 1= ]-a ey T (A32)

In order to demonstrate the optimality of the upper bound, we
first. consider the case

o4(ap, a1, -+, am) =0.

If this is not optimal, there is a 6 > 0 such that

tn,i(a0, a1, <, am) < —6 < o4(ag,a1, -+ am) (A33)
for all n and 1 < ¢ < n. It follows from (A32) that
tnilao +8/2, a1, -, am) — (g +6/2)
= pn,i(a0,a1, -, 0m) ~ ag
whence
pn,i(@0, 01,5 Om) = pni(ag +6/2,a1, -+ am) — 6/2
(A34)
for all n and 1 < ¢ < n. Equation (A33) and (A34) imply
pin,i{ao +6/2,a1, - am) < =6/2<0 (A35)
foralln and 1 < 4 < n. This means that (ag + 6/2,a1,- -, Gm)

results in the temporal stability. On the other hand (A30)
implies
oi(ap+6/2,a1,- - am) = 01(ao, a1, ", am)
+6/2=46/2>0.
This contradicts (A35) because Proposition 4 says that the
temporal stability is equivalent to o, < 0. In order to show
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the general case
o4(ag, a1, am) = 0"

suppose that ¢* is not optimal. Then, there is a § > 0 such
that

Unilag,at, -, am) <o* =4 (A36)
for all n and 1 < ¢ < n. It follows from (A32) that
tin,i(0,01, -+, Gm) — G0 = fni(ag — 0%, a1, -, am)
—(ag — ") (A37)
for all » and 1 < 7 < n. Equations (A36) and (A37) imply
tni(ag — 0% a1, am) < =6 (A38)

for all n and 1 < ¢ < . It follows from (A30) that
a+(a0 - 0*7 Ay, am) =0.

It was shown earlier than when o, = 0, it is the optimal upper
bound. Therefore, (A38) contradicts the optimality. In order to

show the optimality of the lower bound o (ag,a1,--*,am),
note that
U+(_a‘07 —Q1, 0y, Aam) = “0'—((1'07 a1,y am)<

Furthermore, if p is an eigenvalue of A, then —pu is an
eigenvalue of —A. Since —o_(ao, a1, -, an) is the optimal
upper bound for —A, i.e.,

—pin.i(@o, a1, am) < —0_(ag, a1, -+, am)
one sees that
o_(ag,a1, -, am) < fin (G0, @1, ", Cm)
and o_ is optimal.

APPENDIX III
PROOF OF PROPOSITION 7

We will give all the details for the sake of completeness.
Since m = 2, F is 4 x 4 and is given by

0 1 0 0
0 0 1 0
0 0 0 1
1 —m _a

a2 az a2

The characteristic polynomial is

_y2(% |, a1 -1 2 -2
PF(A)_A[aeraz()H—/\ )+ (A4 A )}

and
Q) =w’ + Fw+ 2 =2
as as
1 a\? 1[/a\> ao
— ) =2 - 2.
(w+ 2 a2> 4 (az a2
Case 1:
1 al
- =<9
2 a2 -
Since
= 2). i = -2
AW =0 iy, A=)

one has

O'+((l(), ai, {12) = {

U—(aOaahUQ) Z{

Case 2:

G2Q(2)
aQ(~2)
a2Q(~2)
a2Q(2)

when a, > 0
when a2 < 0

when a>» < 0
when as > 0.
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1 a1
-5 . > 2
Jax Qw) = Q(-2), wé?-i?,zl Qw) =Q(2)
a2Q(~2) when ag >0

0+(00701,a2) = {

o_(ag, a1, az) ={

azQ(z)
azQ(2)
a2Q(~2)

Case 3:

ac- L@y

max Q(w) = Q(2),

- 2 a3

when as < 0

when a3 > 0
when as < 0.

min  Q(w) = Q(—a1/2az2)

we[=2,2] w€[~2,2]
[ a2Q(2) when ay > 0
o1(ap,a1,a2) = {GQQ(_GI/QQQ) when a; < 0
_ [ a2Q(—a1/2a2) when az >0
J—(a()»ala ‘12) = {agQ(Z) when ag < 0.
Case 4:
ey is
2
— -2 s 1 = - 2
22, Q) = Q0D min, Q) = Q(-a/20)
aQ(~2) when as; > 0

o+(ag,ay,02) = {

aQQ(—a1/2a2)
a2Q(—ay1/2a2)

when a; < 0
when a; > 0

0—(a0a i, 0/2) = {

a2Q(-2) when ag < 0.
Now note that
Q@2)=2+22 4% (A39)
ag as
Q(-2)=2-222 42 (A40)
az az

1 a; 1 (a; 2 ag
- )= =2
Q( 2 a2> 4(&2) +a2

In order to obtain the desired final form, we need to check
the following cases:

(A41)

i)
ii)
iii)
iv)

v)

a2
a2
a2
a2
a2

> 0 and case 1 «~
> 0 and case 2 «~
> 0 and case 3 <~
> 0 and case 4 «
< 0 and case 1 «

ay > 4as > 0
a; < —4daz <0
0 < a; < 4aq
—4a; < a3 <0
a; <4a; <0
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vi) a2 < 0 and case 2 & a1 > —4ay > 0
vii) ag < 0 and case 3 « 4a; < a; < 0
viii) ag < 0 and case 4 — —day > a; > 0.
It follows from (A39)~(A41) that

o4+(ag,a1,az) =
G2Q(2)
azQ("Z)
a2Q(~a1/2a;)

when (i) or (iii) or (vi)

when (ii) or (iv) or (v)

when (vii) or (viii)
(A42)

o_(ap,a1,a) =

a20Q(2) when (ii) or (v) or (vii)
a2Q(-2) when (i) or (iv) or (viii)
a2Q(—a1/2a2) when (iii) or (iv).
(A43)
It follows from (3) that
ao = —(go + 291 + 2g2), a1 =g, az = g2

so that (A39)—(A41) give
1
:Q(2) = g, 2+ 2% - —(g0 + 291 + 292)} = —go
g2 g2
(A44)
_ g 1
a2Q(-2) = g2 |2+ 2= — —(go + 291 + 2g2)

g g2

= —go — 401

2
g9 1 gl) 1
Q[ -=)=g|-(Z) — —(go+2g1 +2g2) -2
’2Q< 292) g[ 4(92 92(90 g1 + 292)

= —go — 291 ~ 492 — 9%/4g>. (A46)

(A45)

Substituting (A44)—(A46) into (A42) and (A43), one has the
relations shown at the bottom of the page. It is easy to see that
these are the ones given by (67). O

APPENDIX IV

In (1], go,g1 > O while g, < 0, and g; = 4|g2|. We will
give a simple explanation for the reader who is unfamiliar with
the regularization theory [2], [3].

Let a set of noisy data z,---,z, be given. Suppose one
wants to interpolate the data with appropriate smoothness. A

e
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reasonable way of accomplishing this is to minimize

G(v) = E (zx — Uk)2 + A E (2v — Vg—-1 — vk+1)2
= k=
< ' (A47)

with respect to v = (v1,-- -, v,). The first term is called the
data term while the second term is called the penalty term and
it represents the penalty on the “second-order derivative,” i.e.,

d?v(z)\?
and A > 0 is the weight on the penalty. Since this is a
straightforward quadratic minimization problem, the solution
is obtained by differentiating (A47) with respect to v, and
setting it to zero:
Tk — Uk + A[—6vk + 4(vk—1 + Vg41) — (Vk—2 + Vk—2)] =0
and hence
—(1/A + 6)vp + 4(vk~1 + vr41) —
(vk—2 + vkg2) + (1/X)z = 0.
If go,91 > 0, g2 < 0, and g1/]92| = 4, go/|g2] = 1/, then
(A48) reads
—(g0 + 291 + 2g92)vk + g1(vk~1 + vk41) +
g2{Vk—2 + Vkya) + ux =0

(A48)

which is exactly (8) with m = 2, where u; = (1/))z. Thus,
by varying go while g; and g, are fixed, one can control
the weight A which corresponds to varying the width of the
Gaussian-like kernel. It should be noticed, however, that the
architecture shown in Fig. 1 is a rather crude approximation
for the two-dimensional problem.

Conversely, given a circuit, one can recover G(v) as the
total cocontent:

G(v) = %vTAv +vlu
and the dynamics of the circuit minimizes —G(v) by
d do(t
2 1-6(o(w) = ~(dv+ w7 D

dt
do(t)T __, du(t)
=-—>—B"7"—> <.
Tt & <
Note, however, that if A were not symmetric, the total cocon-

tent would be undefined even if the circuit were linear.

APPENDIX V
PROOF OF PROPOSITION 10

Recall D defined by (75).

—9o when g1,92 >0 or g1 >0,92 <0,{91/92] > 4
04+(g0,91,92) = ¢ —g0 — 4g1 when g1 < 0,95 >0 or g; <0,9, <0,|g1/92| >4

—g0 — 291 — 492 — g3 /492 when ga < 0,]g1/g2| < 4

—go when g1 < 0,95 <0 or g1 <0,92>0,]g1/g92] >4
o-(go,91,92) = § —go — 401 when g1 > 0,92 <0 or g1 >0,92 > 0,]g1/92) >4

—g0 — 291 — 492 — g} /49>

when g2 > 0,]g1/g2| < 4.
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Case 1: D < 0. It follows from (72) and (74) that df/dw e) —2< €. <2< ¢, Since @ has a local maximum at

has no real zero and hence @ is monotonically increasing. £,
Therefore Q) ) 0
ag when asz >
oy = { K (A49) [ asQ(¢-) when a3 > 0
a3Q( z) Wien as < 8 T+ = a3 min[Q(=2),Q(2)] when az < 0
o_ = {asgég) ) WheE as Z 0 (A50) _ [ a3min[Q(-2),Q(2)] when az > 0
3 when as < 5. 9-= a3Q(é-) when a3 < 0.

Case 2: D = 0. In this case df/dw has a double zero. But

since () is cubic, it is monotonically increasing and (A49) and f) —2 < ¢_ < £ < 2: Since Q has a local minimum as
(AS0) are true. well as a local maximum within [—2, 2],
Case 3: D > 0. This means that df/dw has two distinct
real zeroes and hence @) has a local maximum at £_ and a asmax[Q(€_),Q(2)] when az > 0
local minimum at £,,§{_ < &;. o4 = .
. . . as min[Q(—2), Q(¢+)] when ag < 0
a) £ < &4 < —2: 1t is clear that Q is monotonically i b 0
increasing on [—2,2] and hence (A49) and (AS50) still o_ =% min[Q(~2),Q(¢4)]  when ag >
hold. azmax[Q(£-),Q(2)] when az < 0.
b) 2 < ¢ < £4: Q is monotonically increasing on [—2, 2]
and (A49) as well as (AS0) is true. Combining all these cases, one obtains the relations given
c) é'_ < -=2,2< §+: Q is mono[onically decreasing on at the bottom of the page, where fi and hd: are defined by
[~2,2] and (7N~(79). o
_ JasQ(—2) whenaz >0
9+ = {(LgQ(Z) when a3 < 0 (AS1) APPENDIX VI
PROOF OF COROLLARY 1
o = {%Q(?) when a3z > 0 (A52) ' a
a3Q(-2) when a3 <0. One can show that the right derivative,
-d) € £ -2 <€y < 2:Inthis case, @ has a local minimum )
at £+ and hence D+”‘U(t)” = lim ”'U(t) + h‘l)(t)” - ”‘U(t)”
R R max[Q(-2),Q(2)] when az >0 =0 h
L=
azQ(&y) when a3 < 0
_ [ R — [lo@)l
_ JasQ(&) when a3 > 0 lim 3
- a3 max|Q(—2),Q(2)] when a3 < 0. h>0
( f+ when g3 > 0 and (case 1 or case 2 or case 3-a or case 3-b)
or g3 <0 and case 3-c
f- when g3 < 0 and (case 1 or case 2 or case 3-a or case 3-b)
or g3 > 0 and case 3-c
_ ) max[fy,f-] when g3 > 0 and case 3-d
7+(90,91, 92, 93) = or g3 <0 and case 3-¢
hy when g3 < 0 and case 3-d
h. when g3 > 0 and case 3-¢
max[f+,h_] when g3 > 0 and case 3-f
max[f_,hy] when g5 <0 and case 3-f
f+ when g3 > 0 and case 3-c
or g3 <0 and (case 1 or case 2 or case 3-a or case 3-b)
f- when g3 < 0 and case 3-¢

or g3 > 0 and (case 1 or case 2 or case 3-a or case 3-b)
min[f;, f_] when g3 > 0 and case 3-d
or g3 < 0 and case 3-¢
hy when g3 > 0 and case 3-d
h_ when g3 < 0 and case 3-¢
min[f;,h_] when g3 < 0 and case 3-f
minf{f_,h,] when g3 > 0 and case 3-f

(90,91, 92,93) =
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Vin

lc

e
11 = K[(Vc- Vi) Vin - 3Vin®] (in triode region )
[2=K[ (Vc+ Vin-Vt) Vin - ¥ Vin?]

I = 11+12 = 2K [Vc- Vi Vin

I=go Vin
where go = 2K[Vc-Vt]
@
vdd
F
Ve | l
I 1
vin N i 1
P
‘ C [ |
L L
CND —
Vss
(b)
Fig. 14. Variable conductance go. (a) v controls the value of gg. (b) Actual

implementation.
exists despite the fact that ||v(t)|| it is not differentiable. Since
du(t
W) _ g1 4p(t) + B'u
dt
and since

v(t) + hB~"Av(t) + hB'ul|
< ||+ kBT A lv()]| + || B ||

one has
-1 _
D*a(®)] = Jim (”l—wh—"“—l) ol
+[|B | (A53)

where the matrix norm is induced by the Euclidian norm:

[1+rB'A| = ”rélgﬁl”(l +hB'A)v|.
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One can easily show that the right-hand limit of the first term
in (A53) also exists. Denoting this limit by

—1 _
m(B_lA) = [1‘1_{% H—1+—hBh—AL—l

h>0

one has the right differential inequality:

DY|o(t)|| < m(B~*A)|le(t)[| + || B 4,
lw(0)]| = 0.
It is not difficult to show that a solution of a differential

inequality is bounded by the solution of the corresponding
differential equation:

2~ (B~ Ay + || B
w(0) = 0.

Therefore

()] < — s [exp(m(B2A)t - 1)]|| B4

m(B_lA)
(A54)
Similarly, the left derivative satisfies
~ . 1+hB7A| -1
Do) > Iy (”———h—”—)nva)n
h<0
+[B7 4|
= - m(B7A)|lv(t)|| + | B 4|,
[v(0)]| =0,
which yields
1
> ———————
w0l > ——— g
- [exp(=m(~B~4)t) = 1]][B~"u|.
(A55)
Finally, it is known [24] that
m (B! A) = max. eigenvalue of B~'A (AS6)
and hence
—m(~B~'A) = min. eigenvalue of B~'A. (A57)
It follows from (66), (84), and (A56) that
m(B™'4) < 2. (A58)
+
Similarly
-m(-B~'4) > = (A59)
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Cegd(+)

Cags(*)

565

ids(+)

M2

Vin

(b)

Fig. 15. Equivalent circuit of the go circuit. (a) Equivalent circuit of an NMOS transistor; ¢4, (-) indicates that the controlled
current source is nonlinear, and cgs(+) and cy4(-) stand for nonlinear capacitors. (b) Equivalent circuit of Fig. 14(b).

Substituting (A58) and (AS59) into (A54) and (A55), one has
the desired bounds. a

APPENDIX VII

This appendix tries to justify the model given by (1)—(4).
There are two aspects that must be examined:

i) resistive part go, g1, -, gm;
ii) capacitive part cg,cy, - -, Cm.
Although these parameters are implementation dependent, we
can give a fairly reasonable account of them by checking the
Gaussian-like convolver chip [1], where m = 2. Let us first
look at Fig. 14, which implements go. Fig. 14(a) shows how
go can be made variable by controlling v., while Fig. 14(b)
shows the actual implementation. In order to examine how
this circuitry affects the resistive as well as the capacitive
part of the model, one naturally has to have an equivalent
circuit of each transistor. While a resistive part of an MOS
transistor can be described by a simple nonlinear model, the
capacitive part is known to be difficult to model [25]. In
some cases it is described as a nonlinear distributed parameter
element [26], and in some other cases it is described as
a nonlinear, nonreciprocal multiterminal capacitor [27]. In
many practical situations, parasitic capacitors are reciprocal
and each is regarded as constant in each of the operating
regions (cutoff, triode, and saturation) [25], [28], although they
are still nonlinear, i.c., piecewise constant. (One has to be
careful about the charge conservation because the incremental
capacitance is discontinuous.) In many cases, a zero bulk

charge is assumed. Fig. 15(a) gives such an equivalent circuit,
where i4s(+) indicates that the (controlled) current source
is nonlinear, and cg,(-) (resp. cyq(+)) represents nonlinear
gate—source (resp. gate—drain) capacitor. A similar circuit
can be given for a PMOS. Fig. 15(b) shows an equivalent
circuit of Fig. 14(b) using Fig. 15(a). In order to examine the
resistive part of the circuit, open-circuit all the capacitors.
Fig. 16(a) shows the SPICE-simulated v;,—¢ characteristics
while Fig. 16(b) gives measured characteristics which verify
that the resistive part behaves in a sufficiently linear manner
within the operating range. It should be noted that no small-
signal argument is used. Namely, the linearity of the vin—i
characteristics does not mean that each transistor operates
linearly. In fact, the four PMOS transistors are designed to
operate in the saturation region.

Next let us look at Fig. 17(a), which implements g, where
Ry > 0 is a p-well resistor and the remaining circuit realizes
a negative impedance converter, where a triangle stands for
a standard transconductance amplifier. Parts (b) and (c) of
Fig. 17 give SPICE simulated and measured characteristics,
respectively. In [1], g1 is realized by a p-well resistor. Fig. 18
shows a SPICE simulation of a spatial impulse response at
the transistor level. The reader is referred to [1] for measured
impulse responses.

The capacitive part of the circuit needs more care to
examine. In order to evaluate cg, let us first check the gq
circuit. To this end, open-circuit the current sources and short-
circuit the voltage sources of Fig. 15(b) and obtain Fig. 19(a).
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That the resistive part behaves linearly does not guarantee
that the capacitive part also behaves linearly. However, the
pair of NMOS’s in the middle is designed to operate in the
triode region while the rest is designed to operate in the
saturation region. Since we are assuming that each capacitance
is constant in each operating region, cg4’s and cy,’s can be
regarded as constant so that one can compute the overall
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equivalent capacitance, say cp, between the vj, terminal and
the ground. Since Fig. 19(a) is reduced to Fig. 19(b), one
has

cos(co7 + cos + Co9)

cos + Co7 + Cos + Cog
. (A60)

(coz + coa){co1 + cos)
co1 + Co2 + €o4 + Cos

co =
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Fig. 18. SPICE simulated spatial impulse response at the transistor level
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Fig. 19. Capacitive part of Fig. 15(b). (a) Original circuit. (b) Equivalent
circuit.

Despite the fact that there are as many as nine capacitors
contributing to cf, the actual cf value would be very small.
This stems from the fact that in the triode region, c;s =
cgd ~ (1/2)W Lcox while in the saturation region cge =~
(2/3)W Leox, cqa ~ 0 [25), [28), where W, L, and cox
stand for the channel width, the channel length, and the
capacitance (per unit area) of the oxide layer separating
the gate from the channel. In this particular implementation,
W/L = 3/8 (um) for M; and Ms, 4/3 for My and My,

567

and 7/2 for My and Mg, and cox & 12 x 107% pF/um? in
the present process. Since g; is a p-well resistor, its substrate
is connected to vgg. Thus there is a (distributed) diffusion
capacitance between each node to wgy (not between two
nodes). In discussing the capacitive part of a circuit, one short-
circuits voltage source as was done in the go circuit. Therefore,
this diffusion capacitance, say cj, contributes to co. The value
of ¢f would be larger than cj because (a) the area of the g;
in this particular implementation is larger (36 x 20 pm?) and
(b) diffusion capacitance is the sum of a term proportional
to the area and a term proportional to the peripheral length
[28].

As for the contribution to co from the go circuit, there are
two factors: (a) the parasitic capacitors of MOS transistors and
(b) the p-well diffusion capacitance of Ry > 0 (see Fig. 17(a)).
The former can be calculated by using the same argument as
the one used to compute cp, while the latter can be estimated
using the argument used to discuss the g; diffusion capacitance
cy. If we call the resulting composite capacitance cg’, the
total capacitance between each node and the ground would
be cp = ¢+ ¢ + g

Since conductance g; is implemented by a p-well, c;
naturally represents associated parasitic capacitance between
each node to its immediate neighbor. It should be noted,
however, that ¢; appears in off-diagonal elements of B.

Finally, using the same argument, one can compute the
composite capacitance cp from each node to its second nearest
neighbor. The parasitic capacitor cy also appears in off-
diagonal elements of B.

It follows from (56) that B satisfies the diagonal dominance
so that all eigenvalues are (strictly) positive. Naturally, in
an actual implementation, B cannot be exactly symmetric.
However, eigenvalues being strictly positive is an “open”
condition, i.e., small variations of parameters do not destroy
the property. We will leave quantitative estimates of those
parasitic capacitances for a future paper. We will simply
remark that cp = 0.1 pF used in Fig. 4 would not be too
unrealistic.

Fig. 20 shows a simulation result at the transistor level
on SPICE where 1/go, 1/g1, and 1/go are intended to be
200 k€2, 5 k2, and —20 k€2, respectively. A subnetwork of
8 x 8 is simulated (on a Cray) where a step current of duration
5 ps is injected into the four nodes as indicated in Fig. 20(a).
Fig. 20(b) shows the voltage responses of the eight nodes on
the fourth row. Although the above arguments are far from
being complete, we believe that our model is sufficient for the
present purpose.
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Resistance Circuit of Irrational Number Approximation
Based on Continued Fractions

THEH, REE R, K E X BEXD

Manato Hirai , Anna Kuwana , Haruo Kobayashi (Gunma University)

Abstract

This paper describes the method to generate irrational number ratio signals by using a resistor
ladder and the relation between resistor ladders and irrational numbers. Irrational numbers are
expressed as simple continued fractions configured by integers. The combined resistance of resistor
ladders 1s expressed as continued fractions, too. We have designed resistor ladder networks whose
overall equivalent resistance values are irrational number approximation ratios to a certain
resistance value. Our Circuit simulation has verified this method.
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TABLE |. MONTE-CARLO
SIMULATION RESULTS FOR
VARIOUS DEVICE MATCHING
CALCULATED FROM (17)

#'uf Device matching calculated from (17) S??I?l:;i;(;a;lzl
Bits GAR 04l cone (LSB)
2.00 % 0.870 % 0.490
6 1.00 % 1.250 % 0.493
0.50 % 1.328 % 0.494
1.00 % 0.426 % 0.485
7 0.50 % 0.623 % 0.486
0.25% 0.664 % 0.489
g 0.50 % 0.210 % 0.501
0.25% 0.311% 0.511
9 0.20 % 0.131 % 0.493
0.10 % 0.161 % 0.494
10 0.10% 0.066% 0.489

“Additionally, the slight discrepancy between simulated cDNL and
theoretical 0.5 LSB is owing to neglect of Al - f(ARDi) termin (1).”

[3] C. Chen, N. Lu, “Nonlinearity analysis of R-2R Ladder-Based
Current-Steering Digital to Analog Converter,”
IEEE International Symposium on Circuits and Systems (May 2013)
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Differential Nonlineality Analysis for Resistive Ladder-Based Digital-to-Analog Converters

Manato Hirai*(Gunma University) ,Hiroshi Tanimoto, (Kitami Institute of Technology)

Yuji Gendai, Shuhei Yamamoto, Anna Kuwana, Haruo Kobayashi (Gunma University)

This paper presents the differential nonlinearity analysis for several types of resistive ladder-based current-

steering digital-to-analog converters by both mathematical technique and Monte-Carlo simulation. We have

clarified the trends of DNL for the DAC where a resistor ladder divides the current into the non-binary ratio is
used, and shown the difference from those of the R-2R ladder DAC. These results would be useful to estimate
their yields and develop their efficient calibration and production testing methods.
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Fig.1 N-ary ladder-based current-steering DAC
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Fig.4 3-stage quaternary-ladder current-steering DAC.
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Fig. 10 8-bit binary-quaternary-unary connected
resistor ladder DAC
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Fig. 11 8-bit segmented R-2R current-steering DAC without

output termination
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Fig. 12 standard deviation of DNL from simulation results
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