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Target of This Talk

Address

what the circuit designer expects
to device modeling technologies
as a model user
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Topic CMOS and Bipolar

* Why so many CMOS models ?

* How about Bipolar ?
— Bipolar ICs are still used

in analog companies
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First Encounter to I\/Iodeling Technologx

Educated by Prof. Asad Abidi, at UCLA, in 1990

CMOS
CMOQOS device structure is simple.

However, its accurate modeling is difficult.
» That is why so many CMOS models.

Bipolar
Bipolar transistor device structure is complicated.

However, its accurate modeling is relatively easy.
» That is why only a few bipolar transistor models.
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Topic Device Physics and Model

— —~——
Device physics is difficult

for the circuit designer to learn.
— o __—

— T -
Modeling is good

to learn device physics.
_— ——

]
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Interface Between Circuit and Device

- Circuit designer - Device, process researcher
- Fabless company - Foundry company
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Mead-Conway method

C. Mead and L. Conway, Introduction to VLSI Systems, Addison-Wesley, 1980. 11/53



Phxsical and Mathematical Models

* Physical model
with limited fitting parameters
is desirable.

e Pure mathematical model is
often difficult to use.
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CMOS Modeling: Mathematical and Physical

BSIM2 Lectured by Sanyo Electric Corp
Mathematical model in 2000

BSIM3
- Physical model
- Based on CMOS device physics (+ fitting parameters)
Device, process parameter values in model
—> Prediction of MOS characteristics

change
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I\/Iodeling and Prediction

Prof. Syukuro Manabe
Nobel Prize Winner in Physics, 2021

“For the physical modeling of Earth's climate,
quantifying variability and
reliably predicting global warming"

His model can predict:
CO, increase —}» global warming

Prediction is essential in modeling technology
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Topic Modeling Technologies

Statistics
“All models are wrong, but some are useful”.
George E. P. Box

British statistician, 1919-2013

g

MOS model needs to be accurate
only in the region where the designed circuit operates.

Device model
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Circuit Designer: Application Oriented Mind
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High frequency CMOS circuit design

>

RF-CMOS model

Modeling should be accurate
in the focused region

>

The other regions do NOT matter

For amplifier
design

(2

For DC-DC converter

> VD )

17/53



I\/Iodeling for FinFET Analog Circuit

Myth
Fine CMOS: Characteristics deteriorate for analog circuit performance

Truth
FINFET: Characteristics improve for analog circuit performance

- Large rout, gm

- Small Drain-Induced Barrier Lowering (DIBL) effect
- No body effect

18/53



Research for FinFET Analog Circuit
Strong research motivation , < —
for analog circuit design with FinFET m,t

- New frontier ,.,
- Challenging Model should be correct

' in all operating regions

 Perfect FinFET model for analog circuit with layout dependency information
is desired.

* Access to FinFET process is difficult; high cost

 Chip implementation and measurement verification are not easy.

BSIM-CMG FinFET Model 19/53
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Topic Collaboration of Circuit Design and Modeling

Many circuit designers use CMOS model and SPICE parameters
from foundry as black box.

\Yg

For analog circuit design with a small number of MOSFETSs,
collaboration between circuit designer and modeling researcher
is effective.
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Reference Current Source

Insensitive to Supply Voltage and Temperature
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Current source insensitive to
Cascode temperature and supply voltage

[1] T. Kamio, T. Hosono, S. Yamamoto, J. Matsuda, S. Katayama, A. Kuwana, A. Suzuki, S. Yamada, T. Kato, N. Ono, K. Miura
H. Kobayashi, "Design Consideration on MOS Peaking Current Sources Insensitive to Supply Voltage and Temperature”,
International Conference on Analog VLSI Circuits, Bordeaux, France (Oct. 2021)
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Drain Current Temperature Characteristics

[Dsl vIos

_.| M,

— Vs = Vs

Mobility
decrease
Increasing
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NMOS drain current temperature characterist

® For VGs =Vcp, IDS is insensitive to temperature.

® At high temperature,

> vGS

ics

For VGs < VcP, IDS becomes larger

For VGs > Vcp, IDS becomes smaller.

MOS device, modeling researcher
interpretation is useful.
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VcP and Small Channel Length L
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490 = SPICE simulation result
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SPICE simulation result
with BSIM3v3 model parameters
VDs = small VCP = increase

Explained by

drain induced barrier lowering (DIBL)

3

using BSIM3v3 model equations
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v > Vs
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NMOS drain current temperature characteristics

\V/cP and Drain-Source Voltage VDS
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Topic  Layout DeEendent Effect I\/Iodeling
Digital-to-Analog Converter (DAC)
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Actual DAC Circuits on IC

Current source mismatch Alk

U
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Digital-to-Analog Converter (DAC) Nonlinearity

Al
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Current source mismatch Alk Layout dependent
DAC nonlinearity Cancelled
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Laxout DeEendent Effect I\/Iodeling

DAC nonlinearity due to mismatch Many layout algorithms
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[2] D. Yao, A. Kuwana, H. Kobayashi, K. Kawauchi
"Digital-to-Analog Converter Linearity Improvement Technique Based on Classical Number Theory for Modern ULSI”

30th International Workshop on Post-Binary ULSI Systems (May 2021) 30/53
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Topic  Electrical and Thermal Effect Modeling

Thermal effect modeling is expected:

@ Power device and circuit

@ | High precision measurement circuit

@® Audio amplifier
—)> Thermal tail problem

Self-heating, affect from nearby thermal sources
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Thermal Effect for High Precision Measurement Circuit

Electric Motive Force (EMF):
Issue for high precision uV-order voltage measurement circuit

lIoT Sensor Network

Sensor

Ly (D ¥

Sonar Pressure Geomagnetic Soil

é

Accelerator Humidity Temperature = Sounds

® B,

Gyro Flow IIIummance Image

pV-order offset OP-Amp is a key component of loT system

[3] Y. Sasaki, K. Machida, R. Aoki, S. Katayama, T. Nakatani, J. Wang, K. Sato, T. Ishida, T. Okamoto, T. Ichikawa,
A. Kuwana, K. Hatayama, H. Kobayashi,
"Accurate and Fast Testing Technique of Operational Amplifier DC Offset Voltage in pV-order by DC-AC Conversion”

3rd IEEE International Test Conference in Asia, Tokyo (Sept. 2019). 33/53



FFT-Based DC-AC Conversion

DC-AC Conversion Circuit FFT Result
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v' Measurement as low as 1 nV is possible, based on simulation
v' Thanks to FFT, system noises can be ighored

[3] Y. Sasaki, T. Nakatani, et. al,,
"Accurate and Fast Testing Technique of Operational Amplifier DC Offset Voltage in puV-order by DC-AC Conversion",
3rd IEEE International Test Conference in Asia, Tokyo (Sept. 2019). 34/53



Measurement without EMF care

Sampling Rate: 100 kHz, Sample: 10 k, Averaging: 100, Frequency Resolution: 10 Hz
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It's possible to measure as low as 2 yV

¥

EMF countermeasure is essential for further performance

EMF: Electromotive
[3] Y. Sasaki, T. Nakatani, et. al.,

"Accurate and Fast Testing Technique of Operational Amplifier DC Offset Voltage in uV-order by DC-AC Conversion",
3rd IEEE International Test Conference in Asia, Tokyo (Sept. 2019). 35/53




EMF Countermeasure

Upside down Switch IC (4053) contact Heatsink via Copper Tape (GND)

Switch IC (4053) is covered
by Styrofoam

Styrofoam Box

b A

[3] Y. Sasaki, T. Nakatani, et. al.,
"Accurate and Fast Testing Technique of Operational Amplifier DC Offset Voltage in uV-order by DC-AC Conversion",
3rd IEEE International Test Conference in Asia, Tokyo (Sept. 2019). 36/53



EMF Countermeasure Effectiveness

Initial Condition (Exposed in atmosphere) Improved Condition (Constant Temperature)
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[3] Y. Sasaki, T. Nakatani, et. al.,
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Measurement with EMF Countermeasure

Low voltage measurement Low voltage measurement
w/o EMF Countermeasure w/ EMF Countermeasure
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Linearity is improved

[3] Y. Sasaki, T. Nakatani, et. al,,

"Accurate and Fast Testing Technique of Operational Amplifier DC Offset Voltage in pV-order by DC-AC Conversion’,
3rd IEEE International Test Conference in Asia, Tokyo (Sept. 2019). 38/53
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Topic Device Model Technologies Supported by Al

* |BM Watson System (Medical Area) wcixg’zsig\n
— A lot of medical research papers.
— Medical doctor cannot read all of them.
— Watson system can identify the disease name
and show its treatment immediately.

e

Apply to Modeling Technologies

A lot of modeling technologies
Papers, text books, patents,...

CMOSEFV il ;
_ MOSFETDES U >
BSIM3 L~ ZF 1

I THE MOS TRANSISTOR

Smart database
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Topic Modeling Education at Gunma Univ. (1)

Graduate Course Lecture

® By J. Matsuda (16.5 hours)
MOS Device Physics
Yannis Tsividis, Colin McAndrew
Operation and Modeling of the MOS Transistor,
3"d edition, Oxford U. Press (2011)

® By Y. Okabe (3 hours)
Semiconductor Device Modeling

® By A. Motozawa (3 hours)
PLL Design — From Basics to State-of-the-Art
System level modeling

42/53



R R

Modeling Education at Gunma Univ. (2)

Gunma University Analog Integrated Circuit Society (GAIN)

Open Seminar

@ By S. Yoshitomi, KIOXIA (1.5 hours)
Semiconductor Device Modeling for RF CMOS Circuit

@ By H. Aoki, founder of MoDeCH Inc. (many times)
Seminar Series of MOS Modeling
from basics to state-of-the-art
from fine CMOS to power, high voltage devices
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Topic  Modeling Research at Gunma University

Led by Gunma U. Visiting Professor Hitoshi Aoki from 2014 to 2017

[1] "A Novel Approach for Velocity Saturation Calculations of 90nm N-channel MOSFET”,
International Conference on Mechanical, Electrical and Medical Intelligent System (Nov. 2017 )

[2] “Bias and 1/f Noise Degradation Modeling of 90 nm n-Channel MOSFETs Induced by Hot Carrier Stress”,
Key Engineering Materials (2016)

[3] “A Study on HCI Induced Gate Leakage Current Model Used for Reliability Simulations in 90nm n-MOSFETSs,”
|IEEE International Conference on ASIC (Nov. 2015)

[4] “Gate Voltage Dependent 1/f Noise Variance Model Based on Physical Noise Generation Mechanisms
in n-Channel Metal-Oxide-Semiconductor Field-Effect Transistors”, Japanese Journal of Applied (Feb. 2015).

[5] “A Typical MOSFET Modeling Procedure for RF Analog Circuit Design”, Key Engineering Materials (2016)

[6] “Self-Heat Characterizations and Modeling of Multi-finger n-MOSFETs for RF-CMOS Applications”,
|IEEE Tran. Electron Devices (Sept. 2015).

[7] “A New Self-heat Modeling Approach for LDMOS Devices”, Key Engineering Materials (2015).

[8] "Study on ON-Resistance Degradation Modeling Used for HCI Induced Degradation Characteristic of LDMOS Transistors",
International Conference on Solid State Devices and Materials (Sept. 2016)

[9] “Study on Maximum Electric Field Modeling Used for HCI Induced Degradation Characteristic of LDMOS Transistors,”
|IEEE International Conference on ASIC (Nov. 2015).

[10] "Electron Mobility and Self-Heat Modeling of AIN/GaN MIS-HEMTs with Embedded Source Field-Plate Structures ",
IEEE Compound Semiconductor Integrated Circuit Symposium (Oct. 2016)

[11] “A High Precision IGBT Macro-Model for Switching Simulations,” Key Engineering Materials (2016). 45/53
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Conclusion

@ Thereis agap
between circuit designers and modeling researchers.

@ Circuit designers do not fully exploit
benefits of modeling research results.

@ Their demands may not be conveyed to modeling researchers.

@ Hope that this talk can be a bridge between them.
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Topic Research for Monte Carlo Simulation

Pseudo-Random Signal Generation Algorithm
for SPICE Monte Carlo Simulation

Random dots (Monte Carlo Method) . = 000, 7= 51133
) . ~So--

e o St = T/ ¢
..@...

S1

N1 . S1
# of dots ratio N2 mmm) Area ratio )
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Equivalent-Time Samplin

» Technique for sampling repetitive waveform
« Used in sampling oscilloscope

Waveform under test

Sampling CLK [T LT WU/ L]

TC LK %

\

Sampling Oscilloscope 50/53



Waveform I\/Iissing Phenomena
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Sampling points move little == Requires long time
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Golden Ratio SamEIing

4 )
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[Sampling points disperse uniformly through measurement ]

[4] Y. Sasaki, Y. Zhao, A. Kuwana, H. Kobayashi,
"Highly Efficient Waveform Acquisition Condition in Equivalent-Time Sampling System*
27th IEEE Asian Test Symposium, Hefei, Anhui, China (Oct. 2018) 52/53



Pseudo Random Signal Generation

4 )
fcik = @ X fsig
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