Digitally-Assisted Compensation for Timing Skew in ATE Systems

K. Asami T. Tateiwa T. Kurosawa
H. Miyajima H. Kobayashi

Advantest Corporation
Gunma University
Contents

• Research Goal
• Conventional Linear Phase Digital Filter Condition
• New Linear Phase Digital Filter Condition
 – Time-Shift, Impulse Response of Ideal Filter
 – New Linear Phase Digital Filter
• MATLAB Simulation
• Design Considerations
 – Window
 – Gain Adjustment
• Application
• Conclusion
Research Goal

Timing skew is a major problem in ATE systems

Digital compensation for timing skew
 ⇒ Linear phase is important

Conventional linear-phase digital filter ⇒ coarse timing adjustment

Proposed linear-phase digital filter ⇒ fine timing adjustment
Features of Proposed Digital Filter

- Fine time resolution
- Linear phase
- Applicable to bandpass signal
Contents

• Research Purpose
• Conventional Linear Phase Digital Filter Condition
• New Linear Phase Digital Filter Condition
 – Time-Shift, Impulse Response of Ideal Filter
 – New Linear Phase Digital Filter
• MATLAB Simulation
• Design Consideration
 – Window
 – Gain Adjustment
• Application
• Conclusion
Linear Phase FIR Filter Impulse Response

(1) Case 1
odd # of taps • even symmetry

(2) Case 2
even # of taps • even symmetry

(3) Case 3
odd # of taps • odd symmetry

(4) Case 4
even # of taps • odd symmetry
Frequency Characteristics

<table>
<thead>
<tr>
<th>$h(nT')$</th>
<th>$H(e^{j\omega T'})$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Case 1</td>
<td>$e^{-j\omega(N-1)T_s/2} \sum_{k=0}^{(N-1)/2} a_k \cos[\omega kT_s]$</td>
</tr>
<tr>
<td>Case 2</td>
<td>$e^{-j\omega(N-1)T_s/2} \sum_{k=1}^{N/2} b_k \cos[\omega(k - 1/2)T_s]$</td>
</tr>
<tr>
<td>Case 3</td>
<td>$e^{-j(\omega(N-1)T_s/2-\pi/2)} \sum_{k=0}^{(N-1)/2} a_k \sin[\omega kT_s]$</td>
</tr>
<tr>
<td>Case 4</td>
<td>$e^{-j(\omega(N-1)T_s/2-\pi/2)} \sum_{k=1}^{N/2} b_k \sin[\omega(k - 1/2)T_s]$</td>
</tr>
</tbody>
</table>

Phase: proportional to ω (linear phase)

Time resolution of group delay: $T_s/2$
Contents

• Research Purpose
• Conventional Linear Phase Digital Filter Condition
• New Linear Phase Digital Filter Condition
 – Time-Shift, Impulse Response of Ideal Filter
 – New Linear Phase Digital Filter
• MATLAB Simulation
• Design Consideration
 – Window
 – Gain Adjustment
• Application
• Conclusion
Ideal LPF

Frequency Characteristics

\[|H(j\omega)| \]

Impulse Response

\[h(t) = \frac{1}{T_s} \text{sinc} \left(\frac{\pi t}{T_s} \right) \]

\[\omega_s = \frac{2\pi}{T_s} : \text{Sampling Frequency} \]
Discrete-Time Representation of Ideal LPF

\[\sum_k H(j(\omega - k \cdot \omega_s)) \]

\[h(t) = \sum_k \text{sinc} \left(\pi \frac{k \cdot T_s}{T_s} \right) \delta(t - k \cdot T_s) \]
Impulse Response Time-Shift

\[\angle G(j\omega) = -\omega \Delta t \]

No change of Gain

\[\Delta t \text{ time-shift of impulse response} \]
Time-Shift and Filter Coefficients

FIR filter

\[h(t) = \sum_{k} \text{sinc} \left(\pi \frac{k \cdot T_s}{T_s} \right) \delta(t - k \cdot T_s) \]

IIR Filter

\[h(t) = \sum_{k} \text{sinc} \left(\pi \frac{k \cdot T_s - \Delta t}{T_s} \right) \delta(t - k \cdot T_s) \]

Ideal Delay-Filter

\[\Delta t = \frac{T_s}{T_s} \]
Contents

• Research Purpose
• Conventional Linear Phase Digital Filter Condition
• **New Linear Phase Digital Filter Condition**
 – Time-Shift, Impulse Response of Ideal Filter
 – **New Linear Phase Digital Filter**
• MATLAB Simulation
• Design Consideration
 – Window
 – Gain Adjustment
• Application
• Conclusion
2-Tap Filter: Model

\[|H(j\omega)| \]
\[\angle H(j\omega) \]

\[\pi / T_s \]
\[-j\omega T_s / 2 \]
2-Tap Filter: Delay Model

\[|G(j\omega)| \]

\[\angle G(j\omega) \]

- \(j(\omega T_s / 2 + \omega \tau) \)

FIR

\[a_0 \quad a_1 \]

\[\frac{t}{T_s} \]

IIR

\[a'_0 \quad a'_1 \]

\[\frac{t}{T_s} \]

Kobayashi. Lab @ Gunma_University
2-Tap Filter: Delay Model

\[G(j\omega) = a_0 + a_1 j(\omega T_s/2 + \omega \tau) \]

\[|G(j\omega)| \]

\[\angle G(j\omega) \]

IIR

FIR

\[t/T_s \]

\[a_0, a_1 \]

\[a_0', a_1' \]
Proposed Delay Digital Filter

(a) FIR Filter

(b) Ideal Delay Filter

(c) Delay Digital Filter
Frequency Characteristics of Proposed Delay Digital Filter

<table>
<thead>
<tr>
<th>Case</th>
<th>$g(nT)$</th>
<th>$G(e^{j\omega T})$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Case 1</td>
<td>$e^{-j\omega(N-1)T_s/2 + \omega \tau}$ $\sum_{k=0}^{(N-1)/2} a_k \cos[\omega kT_s]$</td>
<td></td>
</tr>
<tr>
<td>Case 2</td>
<td>$e^{-j\omega(N-1)T_s/2 + \omega \tau}$ $\sum_{k=1}^{N/2} b_k \cos[\omega(k-1/2)T_s]$</td>
<td></td>
</tr>
<tr>
<td>Case 3</td>
<td>$e^{-j(\omega(N-1)T_s/2-\pi/2 + \omega \tau)} \sum_{k=0}^{(N-1)/2} a_k \sin[\omega kT_s]$</td>
<td></td>
</tr>
<tr>
<td>Case 4</td>
<td>$e^{-j(\omega(N-1)T_s/2-\pi/2 + \omega \tau)} \sum_{k=1}^{N/2} b_k \sin[\omega(k-1/2)T_s]$</td>
<td></td>
</tr>
</tbody>
</table>

- **Phase**: proportional to ω (linear phase)
- **Group delay time resolution τ**: Arbitrary small
Contents

• Research Purpose
• Conventional Linear Phase Digital Filter Condition
• New Linear Phase Digital Filter Condition
 – Time-Shift, Impulse Response of Ideal Filter
 – New Linear Phase Digital Filter
• MATLAB Simulation
• Design Consideration
 – Window
 – Gain Adjustment
• Application
• Conclusion
Comparison of 2-Tap Filter Impulse Responses

2-Tap FIR Filter

2-tap FIR coefficients zero

Proposed Delay Filter (0.3 samples delay)

Impulse response changes.

Non-zero
Comparison of 2-Tap Filter Frequency Characteristics

No change of gain

Original filter and proposed delay filter

Phase slope changes

Proposed delay filter

Normalized Frequency (Fs=1.0)

Gain [dB]

Phase [radian]
Finite Tap Truncation of Proposed Delay Filter

61-Tap Cosine Roll-off Filter

Delay Filter (0.3 samples delay)

- Rectangular window
- Hann window

Kobayashi. Lab @ Gunma_University
Effects of Window

Gibbs oscillation of group delay

Frequency characteristics of delay filter with 61-tap truncation
Contents

• Research Purpose
• Conventional Linear Phase Digital Filter Condition
• New Linear Phase Digital Filter Condition
 – Time-Shift, Impulse Response of Ideal Filter
 – New Linear Phase Digital Filter
• MATLAB Simulation
• Design Consideration
 – Window
 – Gain Adjustment
• Application
• Conclusion
How to Apply Window

Centered at origin

Centered at impulse response center

Window center shifted by Δt
Frequency Characteristics of Delay Filter after Applying Window

- **Delay**: 0.3 samples
- **Filter Tap**: 100 taps
- **Window**: Han
- **Pass band**: $(0.1 \sim 0.4) \cdot F_s$
- **FFT points**: 1024 points
Group Delay Characteristics of Delay Filter after Applying Window

- **Window centered at origin**
- **Window centered at impulse response**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delay</td>
<td>0.3 samples</td>
</tr>
<tr>
<td>Filter Tap</td>
<td>100 taps</td>
</tr>
<tr>
<td>Window</td>
<td>Han</td>
</tr>
<tr>
<td>Pass band</td>
<td>$(0.1 \sim 0.4) \cdot F_s$</td>
</tr>
<tr>
<td>FFT points</td>
<td>1024 points</td>
</tr>
</tbody>
</table>
Frequency Characteristics of Delay Filter after Applying Window

Window centered at origin

Window centered at impulse response

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delay</td>
<td>0.3 samples</td>
</tr>
<tr>
<td>Filter Tap</td>
<td>100 taps</td>
</tr>
<tr>
<td>Window</td>
<td>Han</td>
</tr>
<tr>
<td>Pass band</td>
<td>(0.05 - 0.3) \cdot Fs</td>
</tr>
<tr>
<td>FFT points</td>
<td>1024 points</td>
</tr>
</tbody>
</table>
Group Delay Characteristics of Delay Filter after Applying Window

<table>
<thead>
<tr>
<th>Delay</th>
<th>0.3 samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Filter Tap</td>
<td>100 taps</td>
</tr>
<tr>
<td>Window</td>
<td>Han</td>
</tr>
<tr>
<td>Pass band</td>
<td>(0.05~0.3)·Fs</td>
</tr>
<tr>
<td>FFT points</td>
<td>1024 points</td>
</tr>
</tbody>
</table>
Group Delay Characteristics of Delay Filter after Applying Window

- **Window centered at origin**
- **Window centered at impulse response**

Applying window centered at impulse response

Constant group delay over entire passband

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delay</td>
<td>0.3 samples</td>
</tr>
<tr>
<td>Filter Tap</td>
<td>100 taps</td>
</tr>
<tr>
<td>Window</td>
<td>Han</td>
</tr>
<tr>
<td>Pass band</td>
<td>(0.05～0.3)Fs</td>
</tr>
<tr>
<td>FFT points</td>
<td>1024 points</td>
</tr>
</tbody>
</table>
Contents

• Research Purpose
• Conventional Linear Phase Digital Filter Condition
• New Linear Phase Digital Filter Condition
 – Time-Shift, Impulse Response of Ideal Filter
 – New Linear Phase Digital Filter
• MATLAB Simulation
• **Design Consideration**
 – Window
 – **Gain Adjustment**
• Application
• Conclusion
Proposed Filter DC Gain Adjustment

Digital filter DC gain: \[\sum a_n \]

DC gain adjustment due to finite tap truncation is required

\[\sum_{n=0}^{N} a'_n = \text{DC gain of original FIR filter} \]
Frequency Characteristics of Proposed Delay Filter

Without DC gain adjustment

With DC gain adjustment

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delay</td>
<td>0.3 samples</td>
</tr>
<tr>
<td>Filter Tap</td>
<td>101 taps</td>
</tr>
<tr>
<td>Window</td>
<td>Han</td>
</tr>
<tr>
<td>Cut-off Freq.</td>
<td>0.4 • Fs</td>
</tr>
<tr>
<td>FFT points</td>
<td>1024 points</td>
</tr>
</tbody>
</table>
Gain Characteristics of Proposed Delay Filter

With DC gain adjustment
Without DC gain adjustment

- Delay: 0.1 samples
- Filter Tap: 101 taps
- Window: Han
- Cutoff Freq.: 0.4 \times Fs
- FFT points: 1024 points
- Delay: 0.3 samples
- Filter Tap: 101 taps
- Window: Han
- Cutoff Freq.: 0.4 \times Fs
- FFT points: 1024 points
Gain Characteristics of Proposed Delay Filter

- **Original FIR filter**
- **With DC gain adjustment**
- **Without DC gain adjustment**

Delay Filter Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delay</td>
<td>0.1 samples</td>
</tr>
<tr>
<td>Filter Tap</td>
<td>101 taps</td>
</tr>
<tr>
<td>Window</td>
<td>Han</td>
</tr>
<tr>
<td>Cutoff Freq.</td>
<td>0.4 (\cdot) Fs</td>
</tr>
<tr>
<td>FFT points</td>
<td>1024 points</td>
</tr>
</tbody>
</table>

Delay Filter Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delay</td>
<td>0.3 samples</td>
</tr>
<tr>
<td>Filter Tap</td>
<td>101 taps</td>
</tr>
<tr>
<td>Window</td>
<td>Han</td>
</tr>
<tr>
<td>Cutoff Freq.</td>
<td>0.4 (\cdot) Fs</td>
</tr>
<tr>
<td>FFT points</td>
<td>1024 points</td>
</tr>
</tbody>
</table>
Gain Characteristics of Proposed Delay Filter

- Original FIR filter
- With DC gain adjustment
- Without DC gain adjustment

DC gain adjustment

Delay filter gain

Original FIR filter gain

Normalized Frequency

<table>
<thead>
<tr>
<th>Delay</th>
<th>0.1 samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Filter Tap</td>
<td>101 taps</td>
</tr>
<tr>
<td>Window</td>
<td>Han</td>
</tr>
<tr>
<td>Cutoff Freq.</td>
<td>0.4 Fs</td>
</tr>
<tr>
<td>FFT points</td>
<td>1024 points</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Delay</th>
<th>0.3 samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Filter Tap</td>
<td>101 taps</td>
</tr>
<tr>
<td>Window</td>
<td>Han</td>
</tr>
<tr>
<td>Cutoff Freq.</td>
<td>0.4 Fs</td>
</tr>
<tr>
<td>FFT points</td>
<td>1024 points</td>
</tr>
</tbody>
</table>
Contents

• Research Purpose
• Conventional Linear Phase Digital Filter Condition
• New Linear Phase Digital Filter Condition
 – Time-Shift, Impulse Response of Ideal Filter
 – New Linear Phase Digital Filter
• MATLAB Simulation
• Design Consideration
 – Window
 – Gain Adjustment

• Application
• Conclusion
I/Q Delay Mismatch in Quadrature Modulator

I(t) = cos (2πf₀t)
Q(t) = sin(2πf₀t)

SSB signal input

DAC:
Digital-to-analog converter

SSB:
Single side band

I(t) + jQ(t)

Delay in analog domain

Image rejection ratio

DAC:
Digital-to-analog converter

Kobayashi. Lab @ Gunma_University
I/Q Delay Mismatch Compensation in Quadrature Modulator

\[I(t) = \cos(2\pi f_0 t) \]
\[Q(t) = \sin(2\pi f_0 t) \]

SSB signal

Digital timing compensation \(\tau \)

Delay in analog domain

DAC:

Digital-to-analog converter

SSB: single side band

DAC: digital-to-analog converter
Matlab Simulation Results

(a) Ideal case

(b) Timing skew case

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delay</td>
<td>0.3 samples</td>
</tr>
<tr>
<td>Filter tap #</td>
<td>61 taps</td>
</tr>
<tr>
<td>Window</td>
<td>Han</td>
</tr>
<tr>
<td>FFT points</td>
<td>1024 points</td>
</tr>
</tbody>
</table>
Matlab Simulation Results

(c) Compensation using delay filter
Without adjustment of window, gain

(d) Compensation using delay filter
With adjustment of window, gain

<table>
<thead>
<tr>
<th>Delay</th>
<th>0.3 samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Filter tap</td>
<td>61 taps</td>
</tr>
<tr>
<td>Window</td>
<td>Han</td>
</tr>
<tr>
<td>FFT points</td>
<td>1024 points</td>
</tr>
</tbody>
</table>
Interleaved ADC System

- M channel ADCs ➡️ M-times sampling rate

![Diagram of an interleaved ADC system](image-url)
Timing Skew in Interleaved ADC System

ADC: analog-to-digital converter

ADC1

ADC2

MUX

Digital output

Dout

Analog Input

f_{in}

CLK1

CLK2

CLK1

CLK2

Ts

τ

$0 \rightarrow \text{f}_{\text{in}} \rightarrow \text{F}_s \rightarrow \text{f}$

$0 \rightarrow \text{f}_{\text{in}} \rightarrow (\text{F}_s - \text{f}_{\text{in}}) \rightarrow \text{f}$

$\text{F}_s = \frac{1}{\text{T}_s}$
Timing Skew Compensation in Interleaved ADC System

ADC: analog-to-digital converter

ADC1

ADC2

CLK1

CLK2

MUX

Digital output

Dout

Analog input

f_{in}

Clock skew effect compensation

CLK 1

CLK 2

f_{in}

f_{in}

F_{s}

F_{s} - f_{in}F_{s}

F_{s} = 1/T_{s}

Kobayashi. Lab @ Gunma_University
Matlab Simulation Results

(a) Ideal case

(b) Timing skew case

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delay</td>
<td>0.3 samples</td>
</tr>
<tr>
<td>Filter tap</td>
<td>61 taps</td>
</tr>
<tr>
<td>Window</td>
<td>Han</td>
</tr>
<tr>
<td>FFT points</td>
<td>1024 points</td>
</tr>
</tbody>
</table>
Matlab Simulation Results

(c) Compensation using delay filter
 Without adjustment of window, gain

(d) Compensation using delay filter
 With adjustment of window, gain

<table>
<thead>
<tr>
<th>Signal</th>
<th>Spurious</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Normalized frequency]</td>
<td>[Magnitude [dB]]</td>
</tr>
<tr>
<td>0.0</td>
<td>-120</td>
</tr>
</tbody>
</table>

- Delay: 0.3 samples
- Filter tap: 61 taps
- Window: Han
- FFT points: 1024 points
Conclusion

- Linear phase digital filter with fine time resolution of group delay
- Design consideration
 - How to apply window
 - DC gain adjustment
- Application Examples
 - I/Q delay mismatch compensation in quadrature modulator
 - Timing skew compensation in interleaved ADC system

Future work
- Implementation issues
 - Finite word length, finite tap effects
 - LSI implementation