Algorithms for Generating Low-Distortion Single-Tone and Two-Tone Sinewaves Using an Arbitrary Waveform Generator

K. Wakabayashi T. Yamada S. Uemori O. Kobayashi
K. Kato H. Kobayashi K. Niitsu H. Miyashita
S. Kishigami K. Rikino Y. Yano T. Gake

Gunma University
Semiconductor Technology Academic Research Center
• Research Goal
• ADC Linearity Test
• Conventional Test Method
• Proposed Test Method
• Experimental Results
• Conclusions
Research Goal

Generating low-distortion sinewaves for ADC linearity testing using low-cost AWG

Conventional method

Proposed method
Contents

• Research Goal
• ADC Linearity Test
• Conventional Test Method
• Proposed Test Method
• Experimental Results
• Conclusions
Signal Generation with AWG

AWG (Arbitrary Waveform Generator)

- DSP generates digital signal.
- DAC converts it to analog signal.

Single-tone and two-tone analog signals for ADC testing.

DAC has nonlinearity.
Spurious Components due to DAC Nonlinearity

Digital input X ➔ DAC ➔ Analog input Y

- **Ideal DAC output** $Y = a_1 X$
- **Actual DAC output** $Y = a_1 X + a_2 X^2 + a_3 X^3 + a_4 X^4 \ldots$

- **Spurious components**
 - f_{in}
 - $2f_{in}$
 - $3f_{in}$
 - $4f_{in}$

DAC Nonlinearity ➔ **Spurious components**
Use differential signals to cancel even harmonics.

\[Y = a_1 X + a_2 X^2 + a_3 X^3 + a_4 X^4 \]

\[\Delta Y = Y_1 - Y_2 \]

Next focus on removing third-order harmonics.
Third-order Nonlinearity Distortion Components

Single-tone input

HD • • • Harmonic Distortion

Two-tone input

IM • • • Intermodulation

IM3 components are difficult to remove with analog filter

\[f_{in}, \quad 3f_{in}, \quad f_1, \quad f_2, \quad 2f_1 - f_2, \quad 2f_1 + f_2, \quad 2f_2 - f_1, \quad 2f_2 + f_1, \quad 3f_1, \quad 3f_2, \quad 3f_3 \]
ADC Linearity Test (Single-tone Input)

Can use analog LPF to remove HD3 (& higher harmonics)

ADC distortion can be measured & tested accurately.
Communication Application ADC Test (Two-tone Input)

Communication ⇒ Narrow band, high frequency

\[Y = aX + bX^3 \]

IM3 \((2f_1-f_2, 2f_2-f_2)\) components in input signal are
- within signal band
- difficult to remove by analog BPF.
Communication Application ADC Test (Two-tone Input)

Communication \Rightarrow Narrow band, high frequency

Y = aX + bX^3

Use proposed method to cancel IM3 in analog input.

ADC distortion (IM3) can be measured & tested accurately.
Contents

• Research Goal
• ADC Linearity Test
• Conventional Test Method
• Proposed Test Method
• Experimental Results
• Conclusions
Conventional Single-tone Generation

\[Y = aA \sin(2\pi f_{\text{in}}t) + b (A \sin(2\pi f_{\text{in}}t))^3 \]

\[X = A \sin(2\pi f_{\text{in}}t) \]

\[Y = aX + bX^3 \]

- HD3 appears
Simulation Condition (Single-tone)

Y = aX + bX^3

Input signal X: \(\sin(2\pi f_{in} t) \)

<table>
<thead>
<tr>
<th>Coefficient</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st coeff. a (DAC)</td>
<td>1.0</td>
</tr>
<tr>
<td>3rd coeff. b (DAC)</td>
<td>-0.005</td>
</tr>
<tr>
<td>Input freq. fin</td>
<td>51</td>
</tr>
<tr>
<td>Sampling freq. fs</td>
<td>1024</td>
</tr>
</tbody>
</table>

Output power spectrum is obtained by FFT.

Normalized Frequency \(f/fs \)

Diagram: Diagram showing the flow from DSP to DAC with input signal, coefficients, and output power spectrum.
Conventional Two-tone Generation

\[X = A \sin 2\pi f_1 t + B \sin 2\pi f_2 t \]

\[Y = a \cdot x + b \cdot x^3 \]

\[f = f_1, f_2 \]

\[f = 2f_1 - f_2, 2f_2 - f_1, 2f_1 + f_2, 2f_2 + f_1, 3f_1, 3f_2 \]

\[\text{IM3 appears} \]
Simulation Condition (Two-tone)

\[
Y = a \cdot X + b \cdot X^3
\]

<table>
<thead>
<tr>
<th>Input signal X</th>
<th>(\sin 2\pi f_1 t + \sin 2\pi f_2 t)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st coeff. (a(DAC))</td>
<td>1</td>
</tr>
<tr>
<td>3rd coeff. (b(DAC))</td>
<td>-0.005</td>
</tr>
<tr>
<td>Input freq. (f_1)</td>
<td>51</td>
</tr>
<tr>
<td>Input freq. (f_2)</td>
<td>81</td>
</tr>
<tr>
<td>Sampling freq. (f_s)</td>
<td>1024</td>
</tr>
</tbody>
</table>
Output Power Spectrum (Two-tone Input)

\[20 \log |Y| [dB] \]

Normalized Frequency \(f/f_s \)
• Proposed Test Method
 - Single-tone Generation
 - Two-tone Generation
 - Algorithm Generalization
Proposed Method

\[Y = aX + bX^3 \]

Interleave \(X_1 \) and \(X_2 \) by one clock and generate \(\text{Din} \)

- Requires only DSP program change
- Spurious components are far from signal band

Feed \(\text{Din} \) to DAC

Cancel distortion components of output \(Y \)
Principle of Proposed Method

DAC

DSP

Input Din

Output Y

c

ck

ck

Din = Asin(2\pi f_{in}t + \pi/6)

Din = Asin(2\pi f_{in}t - \pi/6)

Distortion around fs/2

3f_{in}
Proposed Method (Single-tone)

Input Din

Y = a X + b X^3

Din = Asin(2πf_{in}t + π/6) Din = Asin(2πf_{in}t - π/6)

Din = 0.87Asin2πf_{in}t + 0.5Acos2π(1/2fs-f_{in})t

Fundamental f_{in} power reduction by 1.25dB
Simulation Condition (Single tone)

\[Y = a \cdot X + b \cdot X^3 \]

Input signal \(X_1 \):
\[\sin(2\pi f_{in} t + \pi/6) \]

Input signal \(X_2 \):
\[\sin(2\pi f_{in} t - \pi/6) \]

1st coeff. \(a \) (DAC):
1

3rd coeff. \(b \) (DAC):
-0.005

Input freq. \(f_{in} \):
51

Sampling freq. \(f_s \):
1024
Output Power Spectrum (Single-tone Input)

- **Normalized Frequency** \(f/f_s \)
 - \(f_{\text{in}} \)
 - \(\frac{f_s}{2} - f_{\text{in}} \)
 - \(\frac{f_s}{2} - 3f_{\text{in}} \)

- **Spurious due to interleave**

- **20log|Y|[dB]**
 - Scale from -100 to 20 dB
• Proposed Test Method
 - Single-tone Generation
 - Two-tone Generation
 - Algorithm Generalization
Proposed Method (Two-tone signal)

\[Y = aX + bX^3 \]

\[\text{Din} = A \sin(2\pi f_1 t + \pi/6) + B \sin(2\pi f_2 t - \pi/6) \]

\[\text{Din} = A \sin(2\pi f_1 t - \pi/6) + B \sin(2\pi f_2 t + \pi/6) \]
Simulation Condition (Two tone)

\[Y = a \cdot X + b \cdot X^3 \]

Input signal \(X_1 \):
\[\sin(2\pi f_1 t + \pi/6) + \sin(2\pi f_2 t - \pi/6) \]

Input signal \(X_2 \):
\[\sin(2\pi f_1 t - \pi/6) + \sin(2\pi f_2 t + \pi/6) \]

1st coeff. \(a \) (DAC):
1

3rd coeff. \(b \) (DAC):
-0.005

Input freq. \(f_1 \):
51

Input freq. \(f_2 \):
81

Sampling freq. \(fs \):
1024
Output Power Spectrum (Two-tone Input)

20\log|Y| [dB]

Normalized Frequency \(f/fs \)

Spurious due to interleave
• **Proposed Test Method**
 - Single-tone Generation
 - Two-tone Generation
 - Algorithm Generalization
Algorithm Generalization

1. HD2 cancellation
2. HD2 & HD3 cancellation
3. HD3, HD5 & HD7 cancellation
2-way interleave cancels HD2.

\[X_1 = A \sin(2\pi f_{in} t + \pi/4) \quad X_2 = A \sin(2\pi f_{in} t - \pi/4) \]
4-way interleave cancels HD2 & HD3.

\[X_1 = \text{Asin}(2\pi f_{in} t - \pi/4 - \pi/6) \]
\[X_2 = \text{Asin}(2\pi f_{in} t - \pi/4 + \pi/6) \]
\[X_3 = \text{Asin}(2\pi f_{in} t + \pi/4 - \pi/6) \]
\[X_4 = \text{Asin}(2\pi f_{in} t + \pi/4 + \pi/6) \]
Even Harmonic Cancellation

Differential structure cancels HD2 • HD4 • HD6 • HD8
HD3, HD5, HD7 cancellation

Differential structure cancels HD2 • HD4 • HD6 • HD8

Proposed method cancels HD3 • HD5 • HD7

Contents

• Research Purpose
• ADC Linearity Test
• Conventional Test Method
• Proposed Test Method
• Experimental Results
• Conclusion
Experimental Verification

- Only DSP algorithm change in conventional AWG
- Single-tone generation with HD3 cancellation
Experiment Instrumentation

AWG (Agilent 33120A)
- Max. Sampling frequency (Hz): 40M
- Resolution (bit): 12
- Linearity: Δ

Spectrum Analyzer (HP ESA-L1500A)
- Frequency range (Hz): 9k~1.5G
- Max amplitude (Vpp): 19.8
Experiment Condition

Conventional

DSP \rightarrow DAC

\text{input} \quad X = A \sin(2\pi ft)

Proposed

DSP \rightarrow DAC

\text{input} \quad \text{Din} = A \sin(2\pi ft \pm \pi/6)
Experiment Results (fs= 10MHz, Input amplitude 1.3Vpp)

Conventional

Fundamental (1MHz): 6.31dBm
HD3 (3MHz): -65dBm

Proposed

Fundamental (1MHz): 5.12dBm
HD3 (3MHz): -76.5dBm (Noise floor level)

1.09dB reduction
11.5dB
Experimental Results: HD3 (fs=10MHz)

- Fundamental component power level [dBm]
- Noise floor level

HD3 power level [dB]

HD3 (Conventional)
HD3 (Proposed)
Experimental Results: HD3 reduction (fs=10MHz)

- Fundamental component power level [dBm]
- HD3 Power reduction [dB]
Conclusions

- Low-distortion signal generation with AWG
- Single-tone: HD3 cancellation
- Two-tone: IM3 cancellation
- Algorithm generalization
- Only program change
- No hardware change.
- No need for AWG nonlinearity identification

Theoretical analysis, simulation and experiment all verify the effectiveness of the proposed method.

Low-cost, high-quality testing of ADC is possible