21st IEEE International Mixed-Signal Testing Workshop Catalunya, Spain

July 5, 2016 9:00-9:30am

Conference Room: Goya

Timing Measurement BOST Architecture with Full Digital Circuit and Self-Calibration Using Characteristics Variation Positively for Fine Time Resolution

Congbing Li, Junshan Wang, <u>Haruo Kobayashi</u> Ryoji Shiota

Gunma University, Socionext Inc.

- Introduction
- Time to Digital Converter (TDC)
- Encoder Circuit
- Self-Calibration
- Stochastic TDC Structure
- RTL Simulation
- Conclusions

- Introduction
- Time to Digital Converter (TDC)
- Encoder Circuit
- Self-Calibration
- Stochastic TDC Structure
- RTL Simulation
- Conclusions

Introduction

"Fine time resolution" and "high linearity" TDC is essential for jitter, timing BOST

High linearity TDC

→Self-calibration circuit

Fine time resolution TDC

→ Stochastic architecture

TDC: Time-to-Digital Converter BOST: Built-Out Self-Test

- Introduction
- Time to Digital Converter (TDC)
- Encoder Circuit
- Self-Calibration
- Stochastic TDC Structure
- RTL Simulation
- Conclusions

Time to Digital Converter (TDC)

• time interval \rightarrow Measurement \rightarrow Digital value

Higher resolution with CMOS scaling

- Key component of time-domain analog circuit
- Higher resolution can be obtained with scaled CMOS

Time to Digital Converter (TDC)

- Introduction
- Time to Digital Converter (TDC)
- Encoder Circuit
- Self-Calibration
- Stochastic TDC Structure
- RTL Simulation
- Conclusions

Encoder Circuit

Encoder Circuit

Count the number of "1" outputs from DFFs

To ensure monotonicity of the TDC

Encoder Circuit

Bubble error effects are suppressed.

Designed the encoder using an array of full adders

- Introduction
- Time to Digital Converter (TDC)
- Encoder Circuit
- Self-Calibration
- Stochastic TDC Structure
- RTL Simulation
- Conclusions

TDC Architecture with Self-Calibration

Self-Calibration Mode

Normal Operation Mode

Measurement with Histogram

Histogram in Ideal Case

Test mode

The two oscillators are different from each other and not synchronized

The histograms in all bins will be equal, after collection of a sufficiently large number of data, if the TDC has perfect linearity

Delay Variation Measurement

Histogram Data is Proportional to Delay Value

Histogram bin of digital code with large delay is high. Histogram bin of digital code with small delay is low.

Principle of Self-Calibration

Simulation Result of Self-Calibration

Sampling points 28,848,432

 $\tau_1 = 60 \sim 69 ps$ $\tau_2 = 10 ns$

Histogram for each bin is the same when the TDC is linear.

- Introduction
- Time to Digital Converter (TDC)
- Encoder Circuit
- Self-Calibration
- Stochastic TDC Structure
- RTL Simulation
- Conclusions

Stochastic TDC Structure

Use the random offset proactively

Stochastic TDC for Fine Time Resolution

Stochastic Variation of Delay at Sub-Picosecond Level

Circuit performance characteristics like voltage, delay, slew and power are stochastic processes.

Example:

Statistical process variation on gate leakage, subthreshold leakage, dynamic power and propagation delay in a 2-input NAND gate

(source: http://www.cse.unt.edu/~smohanty/Projects/CCF_0702361/CCF_0702361.html)

Delay Variation in Stochastic TDC

Setup /hold times of each DFF are different due to stochastic variation

Input-Output Characteristics of Stochastic TDC

How to Convert a Nonlinear TDC into a Linear TDC?

Self-calibration is applied to improve linearity !!

Input-output Characteristics Before and After Calibration

INL Reduction After Calibration

Measurement Time Resolution

DFF Number	Time Resolution
100	0.3258ps
200	0.1613ps
400	0.0876ps

Time resolution after calibration can reach sub-picosecond level !!

Comparison with other TDC architectures

TDC architecture	Time resolution
This work	0.0876ps
Freeze Vernier [11]	4.88ps
Vernier gated ring oscillator [12]	3.2ps
Delay line [13]	6.25ps
2D Vernier [14]	4.8ps
Local passive interpolation [15]	4.7ps
Inverter-chain [16]	80.0ps
Two-step [17]	3.75ps

- Introduction
- Time to Digital Converter (TDC)
- Encoder Circuit
- Self-Calibration
- Stochastic TDC Structure
- RTL Simulation
- Conclusions

Conclusions

High linearity TDC

→Self-Calibration circuit

• Fine time resolution TDC \rightarrow Stochastic architecture

Note: Stochastic ADC linearity calibration is NOT easy.

Fine digital CMOS implementation

- Verification
- Self-calibration
- Consists of digital cells (FPGA implementation is possible)

Final Statement

Stochastic process theory advances precise timing measurement technology.

Prof. Kiyoshi Ito (1915-2008) Japanese Mathematician

Great contribution to

- Stochastic calculus
- Stochastic differential equation

