Improved Nagata Current Source Insensitive to Temperature and Power Supply Voltage

Gunma University
ASO Corp.
Outline

- Research Background and Objective
- Original Nagata Current Source
- Improvement to Supply Voltage Insensitivity
- Improvement to Temperature Insensitivity
- Simulation Verification
- Conclusion
Outline

• Research Background and Objective
• Original Nagata Current Source
• Improvement to Supply Voltage Insensitivity
• Improvement to Temperature Insensitivity
• Simulation Verification
• Conclusion
Research Background

Analog ICs require

Reference current / voltage source

Stable against PVT variation

P: Process
V: Supply voltage
T: Temperature

Bandgap reference circuit

- Complicated
- Large chip area

Nagata current source

- Simple, No start-up circuit
- Insensitive to supply voltage
Research Objective

Improvement of Nagata current source insensitive to temperature as well as supply voltage

Graph showing I_{OUT} versus V_{DD} with an indication of temperature change.
Outline

• Research Background and Objective
• Original Nagata Current Source
• Improvement to Supply Voltage Insensitivity
• Improvement to Temperature Insensitivity
• Simulation Verification
• Conclusion
Original Nagata Current Source

Nagata current source

Simple \[\rightarrow\] **Widely used.** Ex: in DC-DC converter IC

At peak vicinity

Small I_{OUT} change against V_{DD} change
Reason for having a peak (1)

\[I_{IN} : \text{small} \]

\[R I_{IN} : \text{small} \]

\[I_{IN} = I_{OUT} \]
Reason for having a peak (2)

\[I_{IN}: \text{large} \]
\[R I_{IN}: \text{large} \]
\[V_{GS2} \text{ becomes smaller} \]
Improvement to Widen Flat Range

Point
Peak vicinity is narrow → Wider

Our Approach
Use multiple current peaks and their sum.
Outline

• Research Background and Objective
• Original Nagata Current Source
• Improvement to Supply Voltage Insensitivity
• Improvement to Temperature Insensitivity
• Simulation Verification
• Conclusion
Using multiple current peaks and their sum

Measurements of Supply Voltage Sensitivity

Total output current is constant against V_{DD} variation

Measurements of Temperature Sensitivity

Use Hair dryer

Problem!

Need for improvement
Outline

• Research Background and Objective
• Original Nagata Current Source
• Improvement to Supply Voltage Insensitivity
• Improvement to Temperature Insensitivity
• Simulation Verification
• Conclusion
MOSFET Temperature Characteristics

Utilize for temperature-insensitive reference current source
Proposed Reference Current Source

Use multiple Nagata current mirrors with appropriately designed parameter values

Output a constant current insensitive to temperature and power supply voltage

Use as a reference current source
Comparison

Insensitive to supply voltage as well as supply voltage

Careful design of W/L, R values

Basically, the same circuit topology
Outline

• Research Background and Objective
• Original Nagata Current Source
• Improvement to Supply Voltage Insensitivity
• Improvement to Temperature Insensitivity
• Simulation Verification
• Conclusion
SPICE Simulation Circuit

W/L, R values are designed to make I_{OUT} temperature-, supply voltage-insensitive.

LTspice
TSMC 0.18μm MOS model
Total output current is constant over wide range of supply voltage
Simulation Result for Temperature

Insensitive to temperature!
Analysis: M2 drain current

Negative temperature characteristics
Analysis: **M3 drain current**

$\text{Analysis: M3 drain current}$

V_{DD}

$\text{Negative temperature characteristics}$
Analysis: **M4 drain current**

Positive temperature characteristics
Analysis: **M5 drain current**

Positive temperature characteristics
Reason for Temperature Insensitivity

Negative temperature characteristics

Positive temperature characteristics

Cancel temperature characteristics
Resistor Temperature Coefficient

Temperature coefficient of resistors can be positive or negative.

W/L, R values can be designed to make I_{OUT} temperature-, supply voltage-insensitive.

Big advantage of our circuit
Point of Our Temperature Compensation

Conventional circuit

- Rely on **positive** temperature coefficient of R

Proposed circuit

- Can be **positive**, **negative**, or **zero**

Diagram:

```
     VDD
       |
       I_IN
       |
       R
       |
       |
       a
       |
       |
       |
       b
       |
M1      |
       |
       |
VGS1    |
       |
       |
       |
       |
       |
       |
M2      |
       |
       |
VGS2    |
```
Outline

• Research Background and Objective
• Original Nagata Current Source
• Improvement to Supply Voltage Insensitivity
• Improvement to Temperature Insensitivity
• Simulation Verification
• Conclusion
Conclusion

- Proposal of MOS reference current sources
- Temperature insensitivity has been improved.
- Comparison

<table>
<thead>
<tr>
<th>Circuit</th>
<th>Current constant range</th>
<th>Temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>Original Nagata current source</td>
<td>Fair</td>
<td>Fair</td>
</tr>
<tr>
<td>Previously improved circuit</td>
<td>Excellent</td>
<td>Fair</td>
</tr>
<tr>
<td>Proposed circuit today</td>
<td>Excellent</td>
<td>Good</td>
</tr>
</tbody>
</table>