

Analog Circuit Session 2

Oct. 23, 2020 15:45 - 16:00

Improved Nagata Current Source Insensitive to Temperature and Power Supply Voltage

<u>Takashi Hosono</u>, L. Sha, S. Yamamoto, M. Hirano, T. Ida, A. Kuwana, H. Kobayashi, Y. Moroshima, H. Harakawa, T. Oikawa

Gunma University

ASO Corp.

- Research Background and Objective
- Original Nagata Current Source
- Improvement to Supply Voltage Insensitivity
- Improvement to Temperature Insensitivity
- Simulation Verification
- Conclusion

- Research Background and Objective
- Original Nagata Current Source
- Improvement to Supply Voltage Insensitivity
- Improvement to Temperature Insensitivity
- Simulation Verification
- Conclusion

Research Background

Research Objective

Improvement of Nagata current source insensitive to temperature as well as supply voltage

- Research Background and Objective
- Original Nagata Current Source
- Improvement to Supply Voltage Insensitivity
- Improvement to Temperature Insensitivity
- Simulation Verification
- Conclusion

Original Nagata Current Source

Nagata current source

[1] Inventor M. Nagata, Japanese Patent, Showa 46-16463 (Dec. 12, 1966)

At peak vicinity

Small *l*OUT change against *VDD* change

Widely used. Ex: in DC-DC converter IC

Reason for having a peak (1)

Reason for having a peak (2)

Improvement to Widen Flat Range

- Research Background and Objective
- Original Nagata Current Source
- Improvement to Supply Voltage Insensitivity
- Improvement to Temperature Insensitivity
- Simulation Verification
- Conclusion

Widened Flat Range

[2] M. Hirano, N. Tsukiji, H. Kobayashi, "Simple Reference Current Source Insensitive to Power Supply Voltage Variation - Improved Minoru Nagata Current Source", IEEE 13th International Conference on Solid-State and Integrated Circuit Technology, Hangzhou, China (Oct. 2016)

Measurements of Supply Voltage Sensitivity

Total output current is constant against VDD variation

[3] M. Hirano, N. Kushita, Y. Moroshima, H. Harakawa, T. Oikawa, N. Tsukiji, T. Ida, Y. Shibasaki, H. Kobayashi, "Silicon Verification of Improved Nagata Current Mirrors", IEEE 14th International Conference on Solid-State and Integrated Circuit Technology, Qingdao, China (Nov. 2018)

ISOCC 2020

(isocc

- Research Background and Objective
- Original Nagata Current Source
- Improvement to Supply Voltage Insensitivity
- Improvement to Temperature Insensitivity
- Simulation Verification
- Conclusion

MOSFET Temperature Characteristics

Proposed Reference Current Source

Comparison

Insensitive to supply voltage

- Research Background and Objective
- Original Nagata Current Source
- Improvement to Supply Voltage Insensitivity
- Improvement to Temperature Insensitivity
- Simulation Verification
- Conclusion

SPICE Simulation Circuit

W/L, R values are designed to make *l*out temperature-, supply voltage-insensitive.

LTspice TSMC 0.18µm MOS model

Simulation for Supply Voltage

Simulation Result for Temperature

Analysis: M2 drain current

Negative temperature characteristics

Analysis: M3 drain current

Negative temperature characteristics

Analysis: M4 drain current

Positive temperature characteristics

Analysis: M5 drain current

Positive temperature characteristics

Reason for Temperature Insensitivity

Resistor Temperature Coefficient

Point of Our Temperature Compensation

Conventional circuit

- Research Background and Objective
- Original Nagata Current Source
- Improvement to Supply Voltage Insensitivity
- Improvement to Temperature Insensitivity
- Simulation Verification
- Conclusion

Conclusion

- Proposal of MOS reference current sources
- Temperature insensitivity has been improved.
- Comparison

Circuit	Current constant range	Temperature
Original Nagata current source	Fair	Fair
Previously improved circuit	Excellent	Fair
Proposed circuit today	Excellent	Good