Signal Processing for Pen and Touch Sensors

May 31, 2021 Masayuki Miyamoto Wacom

Outline

- 1. Pen and Touch User Interface
- 2. EMR (Electro-Magnetic Resonance) Sensing Technology
- 3. Capacitive Sensing Technology
 - Principle
 - SNR Enhancement
 - Noise Immunity
 - Sensor Requirement
 - Passive Pen
 - Active Pen
- 4. Latest Technical Challenges

Pen and Touch User Interface

Professional Creation Support

ROM THE CREATORS OF THE WORLDWIDE PHENOMEN

FROZEN Animation

Movie Production

Games

FPISODE

Pen Tablet Products for Creative Users

WƏCOM[°] Intuos Pro

Confidential. All Rights Reserved. Copyright © 2021 Wacom Co., Ltd.

BAMBOO[®] Slate

BAMBOO Folio

Digital Signature System

Citibank, Korea

Lalaport, Mitsui Fudosan Retail Management, Japan

Wacom Clipboard

Signature Tablets

<u>Wacom Ink Layer Language</u>

Pen and Ink Solutions for Smartphones, Tablet, PC, Digital Stationery, etc.

Electro-Magnetic Resonance Sensing Technology

EMR: Sensing Principle

- No Battery in the pen

https://tablet.wacom.co.jp/what/news-img/W8002basis.pdf

EMR: Sensing Signals

https://tablet.wacom.co.jp/what/news-img/W8002basis.pdf

EMR: Pen Position Sensing

https://tablet.wacom.co.jp/what/news-img/W8002basis.pdf

EMR: Pen Pressure, Side Switch, Eraser

https://tablet.wacom.co.jp/what/news-img/W8002basis.pdf

EMR: Sensor Stack-up

https://tablet.wacom.co.jp/what/news-img/W8002basis.pdf

Capacitive Sensing Technology - Principle

- SNR Enhancement
- Noise Immunity
- Sensor Requirement
- Passive Pen
- Active Pen

Mutual Capacitance Sensing

Electrode Substrate Electromagnetic field

https://www.bareconductive.com/blogs/blog/how-do-thetouch-boards-capacitive-sensors-work

How to estimate the capacitance

1. Charge Integration (Charge to Voltage Conversion)

2. Frequency Response

Sequential Drive and SNR

Parallel Drive

By driving all the channels in parallel, SNR increases.

SNR Comparison: Sequential vs. Parallel

Sensor's channel resistance is 0.

Measured Results: Sequential vs Parallel

Sequential Drive

#(Drive & Sense Cycle) = 254 = 127 x 2

Parallel Drive

#(Drive & Sense Cycle) = 348 = 87 x 4

#(Drive Channel) = 87

Parallel drive: Hadamard

Hadamard Matrix: Mutually Orthogonal

and

$$H_{2^k} = egin{bmatrix} H_{2^{k-1}} & H_{2^{k-1}} \ H_{2^{k-1}} & -H_{2^{k-1}} \end{bmatrix} = H_2 \otimes H_{2^{k-1}},$$

for $2 \leq k \in N$, where \otimes denotes the Kronecker product.

https://en.wikipedia.org/wiki/Hadamard_matrix

DC saturation of the AFE vs Gain Periodicity vs Noise Immunity

Parallel drive: M-Sequence

Shifted MLS (Maximum Length Sequence)s: Pseudo Orthogonal

Display Noise

Noise Cancellation by Differential Sensing

Advantage of Differential Sensing

- Common Mode Noise Cancellation

- Higher SNR thanks to Higher Gain

IEEE J. Solid-State Circuits, vol. 50, no. 1, pp. 335–343, Jan. 2015.

IEEE J. Solid-State Circuits, vol. 50, no. 1, pp. 335–343, Jan. 2015.

Power Supply Noise

Environmental Noise: Fluorescent Light

Sensor Material Requirement

- RC Time constant: ITO's time constant is too large to realize large format sensors over 30-inch
- Light Transmittance
- Visibility: Color, Moire, etc.
- Bezel Area

Time Constant Comparison

		Sheet Resistance	Metal Width	Time Constant (Normalized)
Metal Mesh	Copper (Thickness : 7um)	0.003Ω/sq.	7um	1
	Silver Paste (Thickness : 9um)	0.2Ω/sq.	6um	78
ITO	on Glass	20Ω/sq.	-	260
	on Film	150Ω/sq.	-	1950

A Random Mesh Pattern

Mesh Sensor Design Example

Capacitance Changes with a Finger

Small Capacitance Change of a Deformed Tip

Conductive fabrics

Tip Deformation

Active Pen with Capacitive Touch Sensor

<u>Active Pen sends out electrical signal</u> to touch sensor. <u>The signal can be modulated with pen's information: the button, pressure, color, ID, etc.</u>

Touch controller calculates stylus (x, y) coordinates from the received signal and demodulates pen's information.

One Way Active Pen System

<u>TC synchronizes to the pen</u> <u>Not easy to realize Simultaneous Multiple Pens Operation</u>.

Two Way Active Pen System

Each pen synchronizes to TC through Uplink Beacon from TC. Easy to realize Simultaneous Multiple Pens operation.

Comparison of Capacitive Pen Technology

	Passive	One Way Active	Two Way Active
Button	No	Yes	Yes
Hover	NG	ОК	ОК
Multiple Styluses / w Different Properties	OK / No	No / No	ОК / ОК
Dead Region*	Yes	No	No
In-cell Panel	Yes	No	Yes

[Dead Region]

It is impossible to detect passive pen signal placed very close to a "palm",

since the passive pen signal is small and buried in the palm signal due to its fringing capacitance.

Confidential. All Rights Reserved. Copyright © 2021 Wacom Co., Ltd.

Proc. IEEE Asian Solid-State Circuits Conf. (A-SSCC), 2014, pp. 217–220

Example of Two-Way Active Pen Protocol

Universality / Interoperability of Active Pen

	Architecture	PROS	CONS
Approach 1	Pen enables all the protocol	Free competition	Complex Implementation
Approach 2	Use a unified protocol	Conceptually Simple	Restricted Competition

An Implementation

240Hz Multiple Active/Passive Pens with 41dB/32dB SNR for 0.5mm Diameter, 85nm CMOS(1P6M) IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, pp. 120–122, Feb. 2015.

Figure 6.6.4: Block diagram of the AFE IC.

Figure 6.6.7: Die micrograph of the AFE.

Latest Technical Challenges

Evolution of Touch Sensor Structure and Controller IC

In-cell Sensors for LCD Small Bezel -> Less Design Constraints Simple Structure -> Simple Manufacturing Process / Simple Supply Chain -> Low cost / Less Lead Time

*Touch and Display Driver Integration

In-cell Segmented V-com Sensor

Segmented Vcom Sensor

- No Additional Layer for Touch
- Sharing between Display and Touch Processing

Self Capacitance

Electrode Substrate Electromagnetic field

https://www.bareconductive.com/blogs/blog/how-do-thetouch-boards-capacitive-sensors-work

Interleaved Operation for In-cell Display

CONS: Less time available for Touch/Pen processing PROS: No Display Noise in Touch/Pen period

Technical Challenges

- 1. Display Technology Evolution
 - In-cell LCD
 - Foldable OLED
- 2. Design Constraints
 - Huge Parasitic Capacitance
 - Stronger Nosie Injection
- 3. Signal Processing
 - Total Architecture: Sensor structure, Panel Drive, Sensing, etc.
 - Digitally Enhanced Analog Performance: Dynamic Range, SNR, etc.

Appendix

Harmony "Wa" between computers & human beings

Wacom Co., Ltd.

Head Office

Date of Founding **Paid-in Capital** President & CEO Revenue Employees Stock Market **Business Line**

2-510-1, Toyonodai, Kazo-shi, Saitama, Japan July 12, 1983 JPY 4.2 bn. (as of March 31, 2020) Nobutaka Ide JPY 108.5 bn. (FY 03/2021) 1,012 (incl. temporary staff) (as of March 31, 2020) Tokyo Stock Exchange 1st Section (6727) • Brand products (creative pen tablet, etc.)

• Technology solution (digital pen sensor system, etc.)

BULLIS

tu technische universität

Hetty

1150

学び/教えを支えるワコム液タブとペンタブ デジタル教室/ハイブリッド教室/リモート学習/教材準備

各種DXに寄与するワコム商品 行政窓口手続き / 書類申請 / 業務フローでのPDF書込み/電子投票

消去

京都新宿区西新

渋谷区住民戸籍課事例

S-penを支え続ける技術とデジタル文具エコシステム Sシリーズにペン初搭載 / ワコムデジタル文具パートナー / 最新Note PC

All Rights Reserved. Copyright @ 2021 Wacom Co., Ltd.

世界初折り畳みPCを支えるワコムペン&タッチ技術 今後のトレンド「折り畳みディスプレー」にペン&タッチ実装・商用化

mn X XWacom

Calm Technologyによる スマートホームソリューション

A.Y. Smith

for a creative world

