IEEE 11th International Conference on ASIC Chengdu, China

Need for Flat Passband Gain Algorithm of 2nd-order RC Polyphase Filter

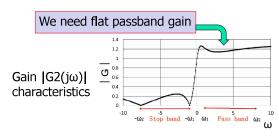
Flat Passband Gain Design Algorithm for 2nd-order RC Polyphase Filter

Y. Niki, S. Sasaki, N. Yamaguchi J. Kang, T. Kitahara, H. Kobayashi

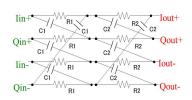
Gunma University

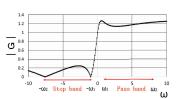
Transfer Function

$$G_2(j\omega) = \frac{(1+\omega R_1 C_1)(1+\omega R_2 C_2)}{1-\omega^2 R_1 C_1 R_2 C_2 + j\omega (C_1 R_1 + C_2 R_2 + 2R_1 C_2)}$$



Four Design Parameters

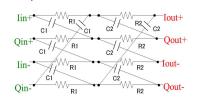


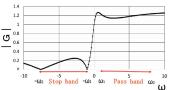


4 parameters: R_1, R_2, C_1, C_2

$$\omega_1 = \frac{1}{R_1 C_1}$$
, $\omega_2 = \frac{1}{R_2 C_2}$, $X = \frac{1}{R_2 C_1}$, $Y = \frac{1}{R_1 C_2}$
4 constraints

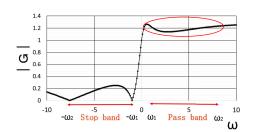
Two Constraints from Filter Spec.





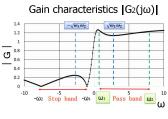
 \bullet 2 zeros : $-\omega_1 = \frac{-1}{R_1 C_1}$, $-\omega_2 = \frac{-1}{R_2 C_2}$ are given from the filter specification.

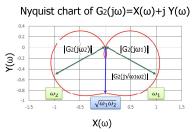
Proposed Algorithm Uses Third Constraint



- We use the third constraint $X = \frac{1}{R_2 C_1}$ for passpand gain flattening.
- The fourth constraint is left for ease of IC realization.

Nyquist Chart of G₂(jω)





 $|G_2(j\omega_1)| = |G_2(j\omega_2)|$

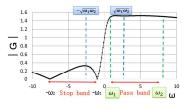
 $|G_2(j\omega_1)| = |G_2(j\omega_2)| + |G_2(j\sqrt{\omega_1\omega_2})|$ But in general

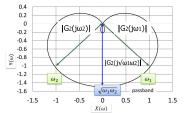
5

Our Idea for Flat Passband Gain Algorithm

Solving Third Constraint

Gain characteristics |G₂(jω)|





If we make $|G_2(j\omega_1)| = |G_2(j\omega_2)| = |G_2(j\sqrt{\omega_1\omega_2})|$, gain would be flat from ω_1 to ω_2 .

Our algorithm

$$|\mathsf{G}_2(\mathsf{j}\omega_1)| = |\mathsf{G}_2(\mathsf{j}\omega_2)| = |\mathsf{G}_2(\mathsf{j}\sqrt{\omega_1\omega_2})|,$$

$$\alpha\omega_{21}^2 + \beta\omega_{21} + \gamma = 0$$

$$\omega_{21} = \frac{1}{R_2 C}$$

We need a positive real solution of ω_{21} .

7

Condition for Solution

Third constraint

$$\omega_{21} = \frac{1}{R_2 C_1} = \frac{-\beta + \sqrt{\beta^2 - 4\alpha\gamma}}{2\alpha}$$

$$\alpha = 6\omega_1^2 + 6\omega_2^2 + 4\omega_1\omega_2 - 8\sqrt{\omega_1\omega_2}(\omega_1 + \omega_2)$$

$$\beta = 6\omega_1^3 + 6\omega_2^3 + 10\omega_1\omega_2(\omega_1 + \omega_2) - 8\sqrt{\omega_1\omega_2}(\omega_1 + \omega_2)^2$$

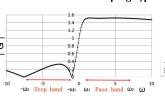
$$\begin{split} \gamma &= \omega_1^4 + \omega_2^4 + 2\omega_1\omega_2(\omega_1^2 + \omega_2^2 + 5\omega_1\omega_2) \\ &- 4\sqrt{\omega_1\omega_2}(\omega_1^3 + \omega_1^2\omega_2 + \omega_1\omega_2^2) \end{split}$$

For a positive real ω_{21} \Longrightarrow 0.79142 $<\frac{\omega_1}{\omega_2}$ < 12.63556

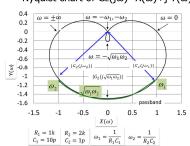
This is obtained from numerical calculation.

Numerical Simulation Result of Our Algorithm

Gain characteristics |G₂(jω)|



Nyquist chart of $G_2(j\omega)=X(\omega)+j\ Y(\omega)$

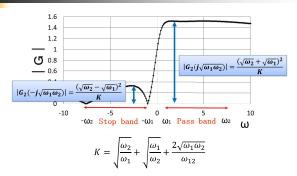


Passband gain becomes flat.

10

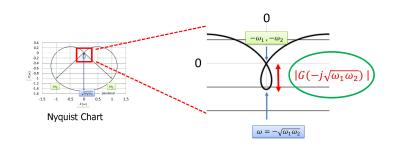
12

Image Rejection Ratio (IRR)



• Image Rejection Ratio =
$$\frac{\text{Passband Gain}}{(\text{Stopband Gain})_{\text{MAX}}} = \left(\frac{\sqrt{\omega_2} + \sqrt{\omega_1}}{\sqrt{\omega_2} - \sqrt{\omega_1}}\right)^2$$

Nyquist Chart & Image Rejection Ratio



Nyquist chart visualizes image rejection ratio.

11