令和3年度 集積回路設計技術·次世代集積回路工学特論資料

3端子MOS構造

群馬大学 松田順一

1

概要

- ・反転層へのコンタクト
- 基板効果
- 反転領域
 - 強反転
 - 弱反転
- 基板電圧制御
 - ・ピンチオフ電圧

(注)以下の本を参考に、本資料を作成。

(1) Yannis Tsividis, Operation and Modeling of the MOS Transistor Second Edition, McGraw-Hill, New York, 1999.

(2) Yannis Tsividis and Colin McAndrew, Operation and Modeling of the MOS Transistor Third Edition, Oxford University Press, New York, 2011.

3端子MOS構造

3端子MOS構造におけるエネルギー・バンド図(1)

反転状態にある場合

3端子MOS構造におけるエネルギー・バンド図(2)

3端子MOS構造(電子密度)

深さy方向の電子密 $g_n(y)$ は以下になる。

$$n(y) = n_{i} \exp\left(\frac{E_{Fn} - E_{i}(y)}{kT}\right) = n_{i} \exp\left(\frac{\psi(y) - V_{CB} - \phi_{F}}{\phi_{t}}\right) = n_{0} \exp\left(\frac{\psi(y) - V_{CB}}{\phi_{t}}\right)$$
$$= p_{0} \exp\left(\frac{\psi(y) - 2\phi_{F} - V_{CB}}{\phi_{t}}\right) \cong N_{A} \exp\left(\frac{\psi(y) - 2\phi_{F} - V_{CB}}{\phi_{t}}\right)$$
$$\therefore \phi_{F} = \phi_{t} \ln\left(\frac{n_{i}}{n_{0}}\right) \Rightarrow n_{i} = n_{0} \exp\left(\frac{\phi_{F}}{\phi_{t}}\right), \quad \phi_{F} = \phi_{t} \ln\left(\frac{p_{0}}{n_{i}}\right) \Rightarrow n_{i} = p_{0} \exp\left(-\frac{\phi_{F}}{\phi_{t}}\right)$$

したがって、表面電子密度
$$n_{surface}$$
は、 $\psi(0) = \psi_s$ として
 $n_{surface} \cong N_A \exp\left(\frac{\psi_s - 2\phi_F - V_{CB}}{\varphi_t}\right)$ 3端子MOS
2端子MOS
2体Fを以下

3端子MOS構造の場合、 2端子MOS構造の場合の 2φ_Fを以下に変換するとよい

$$2\phi_F \Longrightarrow 2\phi_F + V_{CB}$$

 $n_{surface} \cong N_A e^{rac{\psi_s - 2\phi_F}{\phi_t}}$

2端子MOS構造の n_{surface}

3端子MOS構造(正孔密度)

深さy方向の正孔密度p(y)は $p(y) = n_i \exp\left(\frac{E_i(y) - E_{Fp}}{kT}\right)$ $= n_i \exp\left(\frac{\phi_F - \psi(y)}{\phi_t}\right)$ $= p_0 \exp\left(-\frac{\psi(y)}{\phi_t}\right)$ $\therefore \phi_F = \phi_t \ln\left(\frac{p_0}{n_i}\right) \Longrightarrow n_i = p_0 \exp\left(-\frac{\phi_F}{\phi_i}\right)$

3端子MOS構造の反転状態における関係式(1)

電圧と電荷の関係

$$V_{GB} = \psi_{ox} + \psi_{s} + \phi_{MS}$$

 $Q'_{G} + Q'_{o} + Q'_{1} + Q'_{B} = 0$
 $Q'_{G} = C'_{ox}\psi_{ox}$
 $Q'_{G} = C'_{ox}\psi_{ox}$
 $Q'_{B} = -\sqrt{2q\varepsilon_{s}N_{A}}\sqrt{\psi_{s}} = -\gamma C'_{ox}\sqrt{\psi_{s}}$
 $Q'_{I} = -\sqrt{2q\varepsilon_{s}N_{A}}\left(\sqrt{\psi_{s} + \phi_{t}e^{[\psi_{s} - (2\phi_{F} + V_{CB})]/\phi_{t}}} - \sqrt{\psi_{s}}\right)$
 $z\phi_{F} \Rightarrow 2\phi_{F} + V_{CB}$
 $2\phi_{F} \Rightarrow 2\phi_{F} + V_{CB}$
 $z\phi_{F} \Rightarrow 2\phi_{F} + V_{CB}$

3端子MOS構造の反転状態における関係式(2)

$$\begin{split} V_{GB} &= -\frac{1}{C_{ox}'} \Big[Q_{o}' + Q_{I}'(\psi_{s}) + Q_{B}'(\psi_{s}) \Big] + \psi_{s} + \phi_{MS} \\ &= \phi_{MS} - \frac{Q_{o}'}{C_{ox}'} + \psi_{s} - \frac{Q_{I}'(\psi_{s}) + Q_{B}'(\psi_{s})}{C_{ox}'} \\ &= V_{FB} + \psi_{s} - \frac{Q_{I}'(\psi_{s}) + Q_{B}'(\psi_{s})}{C_{ox}'} \Rightarrow Q_{I}' \ge Q_{B}' \vDash \mathbb{E}_{D} \text{ b. 85\% R} \\ V_{GB} &= V_{FB} + \psi_{s} + \gamma \sqrt{\psi_{s} + \phi_{t}} e^{[\psi_{s} - (2\phi_{F} + V_{CB})]/\phi_{t}} \end{split}$$

3端子MOS構造の反転状態における関係式(3)

容量と表面電位の関係

$$\frac{1}{C_{g}'} = \frac{1}{C_{ox}'} + \frac{1}{C_{c}'}, \quad \frac{1}{C_{g}'} = \frac{1}{C_{ox}'} + \frac{1}{C_{b}' + C_{i}'}$$
$$C_{c}' = \sqrt{2q\varepsilon_{s}N_{A}} \frac{1 + e^{\left[\psi_{s} - (2\phi_{F} + V_{CB})\right]/\phi_{t}}}{2\sqrt{\psi_{s}} + \phi_{t}e^{\left[\psi_{s} - (2\phi_{F} + V_{CB})\right]/\phi_{t}}}$$

$$C_{b}' = \sqrt{2q\varepsilon_{s}N_{A}} \frac{1}{2\sqrt{\psi_{s} + \phi_{t}e^{\left[\psi_{s} - (2\phi_{F} + V_{CB})\right]/\phi_{t}}}}}{2\sqrt{\psi_{s} + \phi_{t}e^{\left[\psi_{s} - (2\phi_{F} + V_{CB})\right]/\phi_{t}}}}{2\sqrt{\psi_{s} + \phi_{t}e^{\left[\psi_{s} - (2\phi_{F} + V_{CB})\right]/\phi_{t}}}}$$

$C'_g \Rightarrow$ 単位面積当たりのゲート〜基板間容量
C'ox ⇒ 単位面積当たりの酸化膜容量
$C_c' \Rightarrow$ 単位面積当たりの半導体側の容量
$C_b' \Rightarrow$ 単位面積当たりの空乏層容量
$C'_i \Rightarrow$ 単位面積当たりの反転層容量

2端子MOS構造の単位面積当たりの空乏層容量

$$C'_b = \sqrt{2q\varepsilon_s N_A} \frac{1}{2\sqrt{\psi_s + \phi_t e^{(\psi_s - 2\phi_F)/\phi_t}}}$$

2端子MOS構造の単位面積当たりの反転層容量
 $C'_i = \sqrt{2q\varepsilon_s N_A} \frac{e^{(\psi_s - 2\phi_F)/\phi_t}}{2\sqrt{\psi_s + \phi_t e^{(\psi_s - 2\phi_F)/\phi_t}}}$

3端子MOS構造の反転状態における関係式(4)

弱反転領域: $\psi_{x} \Rightarrow \psi_{x}$ (近似) $V_{GB} \approx V_{FB} + \psi_{sa} - \frac{Q_B(\psi_{sa})}{C} = V_{FB} + \psi_{sa} + \gamma \sqrt{\psi_{sa}}$ ψ。を解くと、 $\psi_{sa} = \left(-\frac{\gamma}{2} + \sqrt{\frac{\gamma^2}{4}} + V_{GB} - V_{FB} \right)^{-}$ 表面電位 ψ_{sa} は
ゲート~基板間電圧 V_{GB} の関数になる となる。また、nは、以下の如くになる。 $n \equiv \left(\frac{d\psi_{sa}}{dV_{CR}}\right)^{-1} = 1 + \frac{\gamma}{2\sqrt{\psi_{CR}}(V_{CR})}$

表面電位、ゲート容量、反転層電荷のV_{GB}及びV_{GC}依存性

破線:V_{CB}=0 実線:V_{CB}(>0)印加

表面電位とゲート基板間電圧(V_{CB} :パラメータ)

- 強反転の状態で V_{CB} 増大(反転層/基板 ⇒ N⁺(シート形状) / P接合と同じ)
 - 反転層電荷密度低下
 - ・同じ反転状態を保持 ⇒ より大きなV_{GC}が必要(電荷バランス)
 - しきい値電圧 V₇ 増大
- 上記 V_{CB} 増大に伴う V_T 増大
 - 基板ドーピング濃度増大と酸化膜厚増大 ⇒ V_T はより増大する
- ・弱反転又は空乏領域

基板バイアス係数

*V_{CB}*の表面電位への影響なし

各反転領域の境界

	境界		
	空乏領域と弱反転領域	弱反転領域と中反転領域	中反転領域と強反転領域
表面電位 ψ_s	$\phi_F + V_{CB}$	$2\phi_F + V_{CB}$	$2\phi_F + V_{CB} + \phi_Z$
V_{GB} for a given V_{CB}	$V_{LB} = V_L + V_{CB}$	$V_{MB} = V_M + V_{CB}$	$V_{HB} = V_H + V_{CB}$
V_{GC} for a given V_{CB}	$V_L = V_{FB} + \phi_F + \sqrt{\phi_F + V_{CB}}$	$V_M = V_{FB} + 2\phi_F + \sqrt{2\phi_F + V_{CB}}$	$V_{H} = V_{M} + V_{Z}$
V_{CB} for a given V_{GB}	$V_{U} = \left(-\frac{\gamma}{2} + \sqrt{\frac{\gamma^{2}}{4} + V_{GB}} - V_{FB}\right)^{2} - \phi_{F}$	$V_{W} = \left(-\frac{\gamma}{2} + \sqrt{\frac{\gamma^{2}}{4} + V_{GB} - V_{FB}}\right)^{2} - 2\phi_{F}$	$V_{Q} = \left(-\frac{\gamma}{2} + \sqrt{\frac{\gamma^{2}}{4} + V_{GB} - V_{FB} - V_{Z}}\right)^{2} - 2\phi_{F}$

(注1) ϕ_{Z} : プロセス・パラメータ、温度、V_{CB}の弱い関数、(注2) V_Z: 0.5~0.6V (室温)

各反転領域の範囲:3端子MOS構造

	弱反転	中反転	強反転
ψ_s の範囲	$\phi_{F} + V_{CB} \leq \psi_{s} < 2 \phi_{F} + V_{CB}$	$\begin{array}{l} 2\phi_{\scriptscriptstyle F} + V_{\scriptscriptstyle CB} \leq \psi_{\scriptscriptstyle S} < \\ 2\phi_{\scriptscriptstyle F} + V_{\scriptscriptstyle CB} + \phi_{\scriptscriptstyle Z} \end{array}$	$2\phi_F + V_{CB} + \phi_Z \leq \psi_s$
V_{GB} for a given V_{CB}	$V_{\textit{LB}} \leq V_{\textit{GB}} < V_{\textit{MB}}$	$V_{\rm MB} \leq V_{\rm GB} < V_{\rm HB}$	$V_{\scriptscriptstyle HB} \leq V_{\scriptscriptstyle GB}$
V_{GC} for a given V_{CB}	$V_L \leq V_{GC} < V_M$	$V_{_M} \leq V_{_{GC}} < V_{_H}$	$V_{H} \leq V_{GC}$
V_{CB} for a given V_{GB}	$V_U \ge V_{CB} > V_W$	$V_W \ge V_{CB} > V_Q$	$V_{Q} \geq V_{CB}$

各反転領域の特性:3端子MOS構造

	弱反転	中反転	強反転
$rac{\left \mathcal{Q}_{I}^{'} ight }{\left \mathcal{Q}_{B}^{'} ight }$	≪1	Varies	≫1
$rac{\left C_{I}^{'} ight }{\left C_{b}^{'} ight }$	≪1	Varies	≫1
$rac{d\psi_{s}}{dV_{{}_{GB}}}$	Approximately constant	Varies	Small
$rac{d \psi_{s}}{d V_{CB}}$	Very small	Varies	Close to 1
Dependence of Q _I on V _{GB} or V _{GC} for V _{CB} constant	Approximately exponential	—	Approximately first- degree polynomial
$\frac{d\ln \left Q_{I}\right }{d\psi_{s}}$	$\frac{1}{\phi_t}$	Varies	$\frac{1}{2\phi_t}$

強反転領域(1)

 $V_{GB} \ge V_{HB}(V_{CB}), |Q_I| \gg |Q_B|$ 表面電位

$$\psi_s \cong \phi_0 + V_{CB}, \quad \phi_0 \cong 2\phi_F + \Delta\phi \qquad \Rightarrow \frac{d\psi_s}{dV_{CB}} \cong 1 \qquad \Delta\phi \cong 6\phi_t$$

$$d_{Bm} = \sqrt{\frac{2\varepsilon_s}{qN_A}}\sqrt{\phi_0 + V_{CB}}$$

空乏層電荷

$$Q_B' = -\sqrt{2q\varepsilon_s N_A}\sqrt{\phi_0 + V_{CB}}$$

反転層電荷

$$Q_{I}^{'} = -C_{ox}^{'} (V_{GB} - \phi_{MS} - \phi_{0} - V_{CB}) - Q_{o}^{'} - Q_{B}^{'} = -C_{ox}^{'} (V_{GB} - V_{TB})$$
$$V_{TB} = V_{FB} + \phi_{0} + V_{CB} + \gamma \sqrt{\phi_{0} + V_{CB}}$$

$$\phi_t = \frac{kT}{q}$$
 (熱電圧)

強反転領域(2)

 V_{TB} は

10		
$V_{TB} = V_T + V_{CB}$	<i>V_{TB}</i> :基板(B)に対するしきい値電圧	
$V_T = V_{FB} + \phi_0 + \gamma \sqrt{\phi_0 + V_{CB}}$	<i>V_T</i> :n ⁺ 領域(C)に対するしきい値電圧	3.5
である。また、V _T は		3
$V_{T} = V_{T0} + \gamma (\sqrt{\phi_{0} + V_{CB}} - \sqrt{\phi_{0}})$		2.5 $\gamma(V^{0.5})$
$V_{T0} = V_{FB} + \phi_0 + \gamma \sqrt{\phi_0}$	V_{π} :基板バイアスゼロ($V_{CB}=0$) における n+領域(C)に対	2 1 F -0.5
である。ここで、 $\phi_0 = 2\phi_F$ の場合、	するしきい値電圧	1.5 -1
$V_T = V_M$		0.5
となる。また、反転層電荷は、		0
$Q_{I} = -C_{ox}(V_{GB} - V_{TB}) = -C_{ox}(V_{GC})$	$(V_T - V_T)$	0 1 2 3 4 5
である。V _{GB} は以下で表される。		$V_{CB}(V)$
$V_{GB} = V_{GC} + V_{CB}$		

弱反転領域(1)

表面電位は、

$$\psi_s \cong \psi_{sa}(V_{GB}) = \left(-\frac{\gamma}{2} + \sqrt{\frac{\gamma^2}{4} + V_{GB} - V_{FB}}\right)$$

2

したガジって、 $Q_{I}^{'} = -\frac{\sqrt{2q\varepsilon_{s}N_{A}}}{2\sqrt{\psi_{sa}(V_{GB})}}\phi_{t}e^{[\psi_{sa}(V_{GB})-2\phi_{F}]/\phi_{t}} \cdot e^{-V_{CB}/\phi_{t}}$

弱反転領域(2)

 Ψ_s 表面電位とゲート電圧との関係は $\psi_{sa}(V_{GB})$ Slope = $\frac{1}{2}$ $\psi_{sa} - \left(2\phi_F + V_{CB}\right) \approx \frac{1}{n} \left(V_{GB} - V_{MB}\right)$ $\Delta \phi$ $2\phi_F + V'_{CB}$ (V_{GB}, ψ_{sa}) $(2\phi_F + V_{CB}') - \psi_{sa}$ $=\frac{1}{n}\left(V_{GC}-V_{M}\right)$ $\phi_F + V_{CB}'$ V_{MB} - V_{GB} $V_{CB} = V_{CB}$ = constant ここで、 $n = 1 + \frac{\gamma}{2\sqrt{\psi_{sa}(V_{GB})}} = 1 + \frac{\gamma}{2\sqrt{2\phi_{r} + V_{GB}}}$ $\blacktriangleright V_{GB}$ V_{LB} V_{MB} n Weak したがって、 inversion $Q_I' \approx Q_M' e^{(V_{GC} - V_M)/(n\phi_t)}$ $Q_{M}^{'} = -\frac{\sqrt{2q\varepsilon_{s}N_{A}}}{2\sqrt{2\phi_{-} + V'}}\phi_{t}$ $\blacktriangleright V_{LB}$ 0 V_{LB} V_{LB}

基板電圧制御(1)

基板電圧制御(2)

V_{GB}(固定)、*V_{CB}*を上昇 (強反転⇒弱反転) $V_{GB1} < V_{GB2} < V_{GB3} < V_{GB4} < V_{GB5}$

 V_U, V_W, V_Q の導出(1)

V_w の導出

$V_{GB} = V_{FB} + \psi_s + \gamma \sqrt{\psi_s}$
ここで、 $\psi_s = 2\phi_F + V_W$ とおくと、
$V_{GB} = V_{FB} + 2\phi_F + V_W + \gamma \sqrt{2\phi_F + V_W}$
$\sqrt{2\phi_F + V_W} = -\frac{\gamma}{2} + \sqrt{\frac{\gamma^2}{4} + V_{GB} - V_{FB}}$
$\therefore V_W = \left(-\frac{\gamma}{2} + \sqrt{\frac{\gamma^2}{4} + V_{GB} - V_{FB}}\right)^2 - 2\phi_F$

$V_U:$ 弱反転領域と空乏領域の境界での V_{CB}
Vw:中反転領域と弱反転領域の境界でのVcB
V_Q : 強反転領域と中反転領域の境界での V_{CB}

 $V_{\mu}, V_{\mu}, V_{\rho}$ の導出(2)

同様に、

 $V_{7} = V_{H} - V_{M}$

 V_U の場合、 $\psi_s = \phi_F + V_U$ V_Q の場合、 $\psi_s = 2\phi_F + V_Q + \phi_Z$ とする。ここで、弱反転と中反転の境界から 中反転と強反転の境界、 ψ_s が ϕ_Z 上昇 し、 V_{GB} は V_Z 上昇する。

基板電圧vs.表面電位、反転層電荷、空乏層電荷

ピンチオフ電圧

ピンチオフ電圧
$$V_P: Q'_I = 0$$
となる V_{CB}
ピンチオフ電圧の導出
反転層電荷は、
 $Q'_I = -C'_{ox} (V_{GB} - V_{TB} (V_{CB}))$
 $= -C'_{ox} (V_{GB} - V_{FB} - \phi_0 - V_{CB} - \gamma \sqrt{\phi_0 + V_{CB}})$
 $Q'_I = 0$ から、
 $V_{GB} - V_{FB} - \phi_0 - V_P - \gamma \sqrt{\phi_0 + V_P} = 0$ (但し、 $V_{CB} \Rightarrow V_P$)
 $\sqrt{\phi_0 + V_P} = -\frac{\gamma}{2} + \sqrt{\frac{\gamma^2}{4} + V_{GB} - V_{FB}}$
 $\therefore V_P = \left(-\frac{\gamma}{2} + \sqrt{\frac{\gamma^2}{4} + V_{GB} - V_{FB}}\right)^2 - \phi_0$

ピンチオフ電圧の別表現(1)

反転層電荷は、

$$V_{TB} = V_{FB} + \phi_0 + V_{CB} + \gamma \sqrt{\phi_0 + V_{CB}}$$

であるから、 V_P は、 $V_P = V_{CB} \mid_{V_{TB} = V_{CB}}$

となる。ここで、

$$V_{T0} = V_{FB} + \phi_0 + \gamma \sqrt{\phi_0}, \quad V_P = \left(-\frac{\gamma}{2} + \sqrt{\frac{\gamma^2}{4} + V_{GB} - V_{FB}}\right)^2 - \phi_0$$

上の2式からV_{FB}を消去すると、

 $Q_{I}^{'} = -C_{or}^{'} (V_{GR} - V_{TR} (V_{CR}))$

$$V_{P} = V_{GB} - V_{T0} - \gamma \left[\sqrt{V_{GB} - V_{T0} + \left(\sqrt{\phi_{0}} + \frac{\gamma}{2}\right)^{2}} - \left(\sqrt{\phi_{0}} + \frac{\gamma}{2}\right) \right]$$

 $V_{GB} = V_{T0}$ の場合、 $V_P = 0$ となる。

 $V_{GB} \stackrel{+}{\xrightarrow{}} V_{CB}$

 V_{CB} の増大に伴い V_{TB} が上昇し、 V_{TB} が V_{CB} になった時の V_{CB} が V_P

ピンチオフ電圧の別表現(2)

弱反転における以下の式と

$$\psi_{sa}(V_{GB}) = \left(-\frac{\gamma}{2} + \sqrt{\frac{\gamma^2}{4} + V_{GB} - V_{FB}}\right)$$

ピンチオフ電圧の以下の式

$$V_{P} = \left(-\frac{\gamma}{2} + \sqrt{\frac{\gamma^{2}}{4} + V_{GB} - V_{FB}}\right)^{2} - \phi_{0}$$

を対比すると、

 $\psi_{sa} = V_P + \phi_0$ したがって、nは、

$$n = \left(\frac{d\psi_{sa}}{dV_{GB}}\right)^{-1} = \left(\frac{dV_P}{dV_{GB}}\right)^{-1}$$

つまり、 $V_P vs. V_{GB}$ の傾きは1/nになる。

また、

$$\begin{split} n &= 1 + \frac{\gamma}{2\sqrt{\psi_{sa}(V_{GB})}} = 1 + \frac{\gamma}{2\sqrt{\phi_0 + V_P(V_{GB})}} \\ & \varepsilon_{x0}, n \varepsilon_{x0} \\ & \varepsilon_{x0} \\ &$$

ピンチオフ近傍の反転層電荷(強反転の場合)

強反転の場合、反転層電荷が $Q_{I} = -C_{0r} \left(V_{CB} - V_{EB} - \phi_{0} - V_{CB} - \gamma_{1} \sqrt{\phi_{0} + V_{CB}} \right)$ であるから、 $\frac{dQ'_{I}}{dV_{CB}}\Big|_{V_{CB} \to V} = C'_{ox} \left(1 + \frac{\gamma}{2\sqrt{\phi_{0} + V_{CB}}} \right)\Big|_{V_{CB} \to V} = C'_{ox} n$ となる。したがって、 $V_{CB} = V_p$ 近傍で1次の展開をすると、 $Q_{I}' \approx \left(\frac{dQ_{I}'}{dV_{CB}}\Big|_{V_{CB}=V_{P}}\right) \left(V_{CB}-V_{P}\right)$ $O'_{L} \approx -nC' (V_{P} - V_{CP})$

ピンチオフ近傍の反転層電荷(弱反転の場合)

弱反転の場合、反転層電荷が $Q_I = -\frac{\sqrt{2q\varepsilon_s N_A}}{2\sqrt{\psi_{sa}(V_{GB})}} \phi_t e^{[\psi_{sa}(V_{GB})-2\phi_F]/\phi_t} \cdot e^{-V_{CB}/\phi_t}$ であるから、上式に $\psi_{sa} = V_P + \phi_0$ を代入すると、 $Q_I = -\frac{\sqrt{2q\varepsilon_s N_A}}{2\sqrt{\psi_{sa}(V_{GB})}} \phi_t e^{[\phi_0 - 2\phi_F]/\phi_t} \cdot e^{(V_P - V_{CB})/\phi_t}$