第490回 群馬大学アナログ集積回路研究会

令和4年度 集積回路設計技術 次世代集積回路工学特論

PLL設計の基礎

元澤 篤史 (<u>atsushi.motozawa.kx@renesas.com</u>) Rev. 20220712.0.1

Biography: Atsushi Motozawa received B.S. and M.S. degrees in electrical engineering from Gunma University, Gunma, Japan, in 2006 and 2008, respectively. He joined Renesas Technology Corp., Takasaki, Japan, in 2008, where he was engaged in development of an RX analog front end for NFC LSIs. From 2010 to 2014, he was with Renesas Electronics Corp., Kawasaki, Japan, where he was engaged in designing sensors and a low power BGR for industrial ICs, and PLLs for automotive ICs. From 2014, he was with Renesas System Design, Co., Ltd. Since 2017, he has been with Renesas Electronics Corp., Kodaira, Japan. He is engaged in designing PLLs for SoCs.

PLL(Phase Locked Loop)とは

■基本機能

入力周波数のN倍の出力 周波数を生成する。

入力クロックと出力クロック の位相を同期させる。

(1) PLLの基本動作と要素回路ブロックの理解 (2) PLLのモデリング法 (3) PLLのシステム設計の基礎

・ずれのチェック、時間合わせ

・週に1回くりかえす

主なPLLの要求特性

- ·面積
- •消費電力
- •入力周波数範囲
- •出力周波数範囲
- ・ジッタ
- ・ロックタイム

PLLのブロック図

PFD(Phase frequency detector)

-入力CLK Finと帰還CLK Ffbの位相及び周波数の誤差を検出する。

CP(Charge pump)

-検出された誤差量に応じた電流を出力する。

Filter

-VCO制御電圧生成と安定性確保。

VCO(Voltage-controlled oscillator)

-入力電圧に応じた周波数で発振する。

Divider

-入力周波数を分周する。

PLLのループには複数 のドメインが含まれる。

(i)入力周波数 > 帰還周波数

PFDが周波数誤差を検知
 CPがfilterに電流を<u>流し込む</u>
 Vc電位が上昇し、出力周波数が高くなる。

(ii)入力周波数 < 帰還周波数

- ・PFDが周波数誤差を検知
- ・CPがfilterから電流を引き抜く
- ・<u>Vc電位が低下</u>し、出力周波数が低くなる。

(i), (ii)の状態を繰り返し 出力周波数が収束していく。 収束後は下記が成り立つ。 $f_{in} = f_{fb}$ $f_{out} = Nf_{in}$

位相/周波数比較器(PFD)と チャージポンプ(CP)のモデリング

PFDが入力位相のinと帰還位相のfbの 差を検出する。 CPはその検出された位相差に応じた 電流を生成する。

*PFDは周波数検出も行う。

位相/周波数検出器(PFD)

・位相と周波数検出が行える。

UP

VDD

Α

D

Q

位相/周波数検出器(PFD)

 $\omega_A = \omega_B$

В

А

 $\omega_A = \omega_B$

PFDとCPのモデリング

不感帯の対策は?

不感帯の対策は?

v0p3

UP側とDN側の電流源間のミスマッチに注意

Filterのモデリング

フィルタへの入力はCPからのパルス電流。 出力は電圧。 出力電圧がVCOの発振周波数を制御する。 フィルタの役割は信号の平滑化と安定性確保。

Filter (Lag-lead filter)

$$V_{c} = \frac{1}{s(C_{1} + C_{2})} \cdot \frac{sRC_{2} + 1}{sR\frac{C_{1}C_{2}}{C_{1} + C_{2}} + 1} \cdot I$$

$$H(s) = \frac{V_c}{I} = \frac{1}{s(C_1 + C_2)} \cdot \frac{sRC_2 + 1}{sR\frac{C_1C_2}{C_1 + C_2} + 1}$$

ボード線図

名称	比例 完全積分		1次遅れ	完全積分と 1次遅れ
伝達 関数	К	$\frac{1}{\tau s}$	$\frac{1}{\tau s + 1}$	$\frac{1}{s(\tau s+1)}$
ゲイン 曲線	0	-20dB/桁 0 1/て	-20dB/桁 1/τ	- 0 - 0 1/て-40dB/桁
位相 曲線	0	0 -45° -90°	0 -45° -90	- 0 -45° -90° -135° -180° 33

ボード線図

名称	2次遅れ	位相進み	1次HPF	無駄時間
伝達 関数	$\frac{1}{(\tau_1 s + 1)(\tau_2 s + 1)}$	$\frac{\tau_1 s + 1}{\tau_2 s + 1} \\ \tau_2 < \tau_1$	$\frac{s}{\tau s + 1}$	e ^{-ts}
ゲイン 曲線	0 20dB/桁 1/τ ₁ 1/τ ₂ -40dB/桁	20dB/桁 0 1/τ ₁ 1/τ ₂	0 20dB/桁 1/て	- 0
位相 曲線 _ -	0 45° 90° 135° 180°	45° 0 -45° -90°	90° 45° 0 -45° -90°	- 0 -45° -90°

位相余裕、利得余裕

★位相余裕: [0dB利得時の位相]と[-180°]の差 ★利得余裕: [-180°の時の利得]と[0dB]の差

複数極の位相回転

開ループと閉ループ

開ループ、閉ループの伝達関数をそれぞれ次のようにおく。 $H_{op} = |H_{op}|e^{j\varphi}$ $H_{clsd} = |H_{clsd}|e^{j\alpha}$ $(|H_{op}|,\varphi), (|H_{clsd}|,\alpha)$ は下記のように書ける。 $|H_{clsd}| = \frac{1}{\sqrt{1 + \frac{1}{|H_{op}|}\cos\varphi + \frac{1}{|H_{op}|^{2}}}} \quad \alpha = -\tan^{-1}\left(-\frac{\sin\varphi}{|H_{op}| + \cos\varphi}\right)$

安定性

開ループ特性で-180degとなる周波 数と利得1の周波数が近い

ピークあり。 閉ループは不安定

ニコルズ線図

・開ループ、閉ループのゲイン/位相特性が読み取れる

・ナイキスト線図の(-1, j0)はニコルズ線図では(0dB, -180deg)に投影される

原点が軌跡の左側に位置する場合は安定

ボーデ線図とニコルズ線図;

、 位相が-180degでも 利得があれば安定!

42

発振器のモデリング

VCOの発振周波数は入力電圧で制御される。 ただ、PLLのループ特性の解析においては、 VCOの出力は位相[rad]であるので注意。

バルクハウゼンの発振条件

ω_0 において下記の2つの条件を満たすとき、 発振が持続する。

位相シフト条件 ∠H(jω₀) = 180°

利得条件 $|H(j\omega_0)| \ge 1$

位相と振幅

$$H(s) = G \frac{\left(1 + \frac{s}{\omega_{z1}}\right) \left(1 + \frac{s}{\omega_{z2}}\right) \cdots \left(1 + \frac{s}{\omega_{zn}}\right)}{\left(1 + \frac{s}{\omega_{p1}}\right) \left(1 + \frac{s}{\omega_{p2}}\right) \cdots \left(1 + \frac{s}{\omega_{pm}}\right)}$$

ω_0 での利得は

$$20 \log|H(j\omega_0)| = 20 \log|G| + 20 \log \left| 1 + j \frac{\omega_0}{\omega_{z1}} \right| + \dots + 20 \log \left| 1 + j \frac{\omega_0}{\omega_{zn}} \right|$$
$$-20 \log \left| 1 + j \frac{\omega_0}{\omega_{p1}} \right| - \dots - 20 \log \left| 1 + j \frac{\omega_0}{\omega_{pm}} \right|$$
$$= 20 \log|G| + 10 \sum_{k=1}^n \log \left(1 + \left(\frac{\omega_0}{\omega_{z1}} \right)^2 \right) - 10 \sum_{k=1}^m \log \left(1 + \left(\frac{\omega_0}{\omega_{p1}} \right)^2 \right)$$

 ω_0 での位相は $\angle H(j\omega_0) = \tan^{-1}\frac{\omega_0}{\omega_{z1}} + \dots + \tan^{-1}\frac{\omega_0}{\omega_{zn}} - \tan^{-1}\frac{\omega_0}{\omega_{p1}} + \dots + \tan^{-1}\frac{\omega_0}{\omega_{pm}}$

$$=\sum_{k=1}^{n}\tan^{-1}\frac{\omega_{0}}{\omega_{zn}}-\sum_{k=1}^{n}\tan^{-1}\frac{\omega_{0}}{\omega_{pm}}$$

インバータ1段の利得と位相

3段リング発振器

3段の直列インバータのループ利得は

$$(H_{inv}(s))^3 = -\left(\frac{g_m r_o}{1 + r_o C_L s}\right)^3 = -H_{OSC}(s)$$
 $H_{OSC}(s) \equiv \left(\frac{g_m r_o}{1 + r_o C_L s}\right)^3$

従って、3段リング発振器は右図のように描くことができる。 Hosc(s) 利得と位相シフトは、

利得
$$\left(\frac{g_m r_o}{\sqrt{1 + (r_o C_L \omega)^2}}\right)^3$$
 位相シフト $3 \tan^{-1}(r_o C_L \omega)$

3段リング発振器の発振周波数

バルクハウゼンの発振条件よりHosc(s)の位相シフトが180[°]の時に発振が起こる。その時の周波数 ω_{osc} とすると、

$$\tan^{-1}(r_o C_L \omega_{OSC}) = \frac{\pi}{3}$$
$$r_o C_L \omega_{OSC} = \sqrt{3}$$

$$\therefore \omega_{OSC} = \frac{\sqrt{3}}{r_o C_L} \quad \text{[rad/s]}$$

利得条件より

$$\left(\frac{g_m r_o}{\sqrt{1 + (r_o C_L \omega_{osc})^2}}\right)^3 = \left(\frac{g_m r_o}{2}\right)^3 \ge 1$$

従って、3段リング発振器はインバータの 直流利得gmroが2より大きい時に発振する。

$$\omega_{OSC} = 2\pi \frac{I_{tail}}{3V_{OSC}C_L} = \frac{1}{2}\mu C_{ox} \left(\frac{W}{L}\right)_t (V_c - V_{th})^2 \frac{2\pi}{3V_{OSC}C_L} \text{ [rad/s]}$$

$$\mathcal{R}_{SC} = \mathcal{R}_{SC} \mathcal{$$

発振周波数はVcで調節できる。

VCOのモデル化

分周器(ディバイダー)のモデリング

発振器の周波数を分周して PFDに伝える。

分周回路(ディバイダー,カウンタ)

・FF(フリップフロップ)を用いて構成される。

■回路構成例

分周回路のモデリング

どこに0dBラインを置いたらよいか?

どこに0dBラインを置いたらよいか?

ユニティゲイン周波数の概算

PLL特性まとめ	PFD, CP φ_{in} $+$ $\frac{I_{cp}}{2\pi}$ \bar{s}	Filter $\frac{1}{s(C_1 + C_2)} \cdot \frac{sRC_2 + 1}{sR\frac{C_1C_2}{C_1 + C_2} + 1}$	VCO Kvco $\frac{1}{s}$ φ_{out}
	φ_x	Divider 1 N	
開ループ 伝達関数	$H_{op} = \frac{K_{VCO}I_{cp}}{2\pi N} \frac{1}{s^2} \frac{1}{C_1} + \frac{1}{C_1} \frac{1}{C_1} \frac{1}{C_1} + \frac{1}{C_1} \frac{1}{C_1} \frac{1}{C_1} + \frac{1}{C_1} \frac{1}{C_1$	$\frac{1}{FC_2} \cdot \frac{sRC_2 + 1}{sR\frac{C_1C_2}{C_1 + C_2}}$	L + 1
閉ループ 伝達関数	$H_{cl_x} = \frac{\varphi_x}{\varphi_{in}} = \frac{H_{op}}{1 + H_{op}}$	$-\frac{1}{\varphi_{out}}, H_{cl} = \frac{\varphi_{out}}{\varphi_{in}}$	$=\frac{N\varphi_x}{\varphi_{in}}=N\cdot H_{cl_x}$
帯域	$\omega_u \approx \frac{K_{VCO}I_{cp}}{2\pi N} \frac{RC_2}{C_1 + C_2}$	[rad/s]	
極	$0, \qquad \frac{1}{R \frac{C_1 C_2}{C_1 + c_2}}$	$\frac{1}{C_2}$ [rad/s]	
ゼロ	$\frac{1}{RC_2}$	[rad/s]	

	PFD, CP	Filter	VCO
PLL特性まとめ C2が20C1以上の場合	$ \phi_{in} + I_{cp} \\ + 2\pi $	$\frac{1}{s(C_1+C_2)} \cdot \frac{sRC_2+1}{sRC_1+1}$	Kvco $\frac{1}{s}$ φ_{out}
$\frac{C_1}{C_2} \ll 1 , \frac{C_1 C_2}{C_1 + C_2} \approx C_1$	φ_x	Divider 1 N	
開ループ 伝達関数	$H_{op} = \frac{K_{VCO}I_{cp}}{2\pi N} \frac{1}{s^2} \frac{1}{C_1}$	$\frac{1}{+C_2} \cdot \frac{sRC_2 + 1}{sRC_1 + 1}$	
閉ループ 伝達関数	$H_{cl_x} = \frac{\varphi_x}{\varphi_{in}} = \frac{H_{op}}{1 + H_o}$	$\frac{1}{p_{p}}$, $H_{cl} = \frac{\varphi_{out}}{\varphi_{in}}$	$=\frac{N\varphi_x}{\varphi_{in}}=N\cdot H_{cl_x}$
帯域	$\omega_u \approx \frac{K_{VCO}I_{cp}}{2\pi N}R$	[rad/s]	
極	$0, \frac{1}{RC_1}$	[rad/s]	
ゼロ	$\frac{1}{RC_2}$	[rad/s]	

極、ゼロから位相を求める

位相余裕とPLL出力

位相余裕=50deg

位相余裕=20deg

レポート課題

下記条件を満たすように
 PLLのパラメータR, C1, C2, Icpを机上設計してください。
 1. 位相余裕60°以上

- 2. C1+C2<200pF かつ C1>1pF
- 3. 1uA<lcp<100uA
- 4. R<50kΩ

5. $\omega_u > 2\pi * 500k$ [rad/s] ただし、Kvco=1.396G [rad/s/V]、N=10とする。

レポートへは下記を含めてください。 1. 設計方針、過程 2. 設計結果 (R, C1, C2, Icp, **位相余裕, ω**_u)

3. 本日の感想

<u>備考</u>

位相余裕が高い→安定 容量が小さい→小面積 Icpが小さい→低消費電力 ω_u が高い(*)→VCOノイズ抑制 *入カクロックのノイズが大きい場合は低い ω_u が 必要となる。

	#	Name	Note
	1	Кусо	VCOゲイン
	2	Ν	逓倍数
	3	Іср	チャージポンプ電流
	4	C1	フィルタ定数
	5	C2	フィルタ定数
	6	R	フィルタ定数
VCO			
$\frac{1}{1}$			

PFD

CLKin

レポート課題提出について

■提出方法(下記のいずれか)

1. 元澤へ電子データを直接メール

email: atsushi.motozawa.kx@renesas.com

2. 電気電子工学 事務室(3号館1F)へ レポート(紙面)提出

■締め切り 7月29日(金)

用語

- PLL: Phase-looked loop
- CLK: Clock
- PFD: Phase frequency detector
- CP: Charge pump
- VCO: Voltage-controlled oscillator
- DIV: Divider
- LPF: Low pass filter
- HPF: High pass filter
- FF: Flip-flop
- PM: Phase margin

参考文献

[1]黒田忠広 監訳, Behzad Razavi 著「アナログCMOS集積回路の設計, 応 用編」 丸善, 2003年

[2]松澤昭 著「アナログRF CMOS集積回路設計, 基礎編」培風館, 2010年 [3]明石一, 今井弘之 著「詳解 制御工学演習」共立出版, 1981年

[4]野波健蔵, 西村秀和 著「MATLABによる制御理論の基礎」東京電機大 学出版局, 1998年

[5]湯山俊夫 著「ディジタルIC回路の設計」CQ出版, 1986