socionext^{*}

@大岡山、東工大

2017/7/5

逐次比較型時間デジタイザ回路の統計的手法 による線形性自己校正技術の検討

小澤祐喜、姜日晨、小林春夫、築地伸和(群馬大)、塩田良治(socionext)、畠山一実(群馬大)

群馬大学 理工学部 電子情報理工学科 小林研究室 学部4年 小澤 祐喜 t13304037@gunma-u.ac.jp

Kobayashi Lab. Gunma University

研究目的

▶逐次比較型時間デジタイザの線形性を自己校正

▶タイミングテストに応用可能

▶小型•高分解能

▶FPGA実装向き 全デジタル構成

これらを満たすアルゴリズムと回路を提案

アウトライン

- 時間デジタイザ回路の役割
 - -時間デジタイザ回路の構成と動作
 - -具体的な応用例
 - -タイミングテストへの応用
 - -有用性
 - -技術課題
- ・ 逐次比較型(SAR)TDCの構成と動作
- 校正メカニズム
 - -ヒストグラム法による素子遅延値の推定 -逆関数による校正
- 測定回路を組み込んだSAR TDC
 -回路構成
 - -回路動作(ノーマルモード・テストモード)
- シミュレーションによる検証
- まとめと課題

アウトライン

- 時間デジタイザ回路の役割
 - -時間デジタイザ回路の構成と動作
 - -具体的な応用例
 - -タイミングテストへの応用
 - -有用性

-技術課題

- ・ 逐次比較型(SAR)TDCの構成と動作
- 測定回路を組み込んだSAR TDC
 -回路構成
 - -回路動作(ノーマルモード・テストモード)
- シミュレーションによる検証
- まとめと課題

時間デジタイザ回路(Time-to-Digital Converter、TDC); タイミング信号の時間差を測定しデジタル出力

逐次比較の原理

例 逐次比較型ADC

速度と精度のバランスが良く、チップ面積が小さく汎用ADCに最も多く使用される方式

逐次比較:2進探索アルゴリズム

SAR-ADCとSAR-TDCの比較

天秤の原理で動作:

● 天秤がコンパレータ

● 分銅がDAC

SAR-ADC

天秤の原理で動作:

- 天秤がD-FF
- 分銅が遅延素子

具体的な応用例

SIEMENS CO.,LTD.

放射線計測器 車間等の距離計測 イオン飛行時間分析

時間領域ADC 等

BMW AG CO., LTD.

JAXA Digital Archives

車載センサとしての応用

高信頼性

脱アナログ化 センサ回路の 全デジタル化

タイミングテストへの応用

- 2つの繰り返しクロック信号のタイミング テスト回路としてSAR-TDCを応用
- 例 DDRメモリのクロック信号

- テスト時間の短縮
- 高い正確性
- 全デジタル設計が可能

小さい回路規模でBOST/BIST実装可能

BOST: Built-Out Self-Test BIST: Built-In Self-Test

CMOS微細化に伴う傾向

CMOSプロセス技術の微細化

TDCの利点

利点①

TDCの利点

利点②

技術課題

- 時間デジタイザ回路の役割
 - -時間デジタイザ回路の構成と動作
 - -具体的な応用例
 - -タイミングテストへの応用
 - -有用性
 - -技術課題
- ・ 逐次比較型(SAR)TDCの構成と動作
- 校正メカニズム
 -ヒストグラム法による素子遅延値の推定
 -逆関数による校正
- 測定回路を組み込んだSAR TDC
 -回路構成
 - -回路動作(ノーマルモード・テストモード)
- シミュレーションによる検証
- まとめと課題

19/49 逐次比較型(SAR)TDCの構成と動作

回路構成

20/49逐次比較型(SAR)TDCの構成と動作

21/49逐次比較型(SAR)TDCの構成と動作

22/49逐次比較型(SAR)TDCの構成と動作

23/49逐次比較型(SAR)TDCの構成と動作

アウトライン

- 時間デジタイザ回路の役割
 - -時間デジタイザ回路の構成と動作
 - -具体的な応用例
 - -タイミングテストへの応用
 - -有用性
 - -技術課題
- ・ 逐次比較型(SAR)TDCの構成と動作
- 校正メカニズム
 - -ヒストグラム法による素子遅延値の推定 -逆関数による校正
- 測定回路を組み込んだSAR TDC
 -回路構成
 - -回路動作(ノーマルモード・テストモード)
- シミュレーションによる検証
- まとめと課題

25/49ヒストグラム法による素子遅延値の推定

ヒストグラム法 🔶 素子遅延値を間接的に知ることが可能

ヒストグラム・エンジンによる統計処理

26/49ヒストグラム法による遅延素子値の推定

全体の面積に対して 無作為に点を打つ それぞれの<u>片の面積の比</u>は それぞれの<u>点数の比</u>に近似できる

TDCの線形性劣化

各素子

逆関数による校正

非線形な特性の逆関数を用いて線形に校正

デジタル出力

逆関数による校正

校正後のTDC特性

デジタル出力

- 時間デジタイザ回路の役割
 - -時間デジタイザ回路の構成と動作
 - -具体的な応用例
 - -タイミングテストへの応用
 - -有用性
 - -技術課題
- ・ 逐次比較型(SAR)TDCの構成と動作
- 校正メカニズム

 -ヒストグラム法による素子値の推定
 -逆関数による校正
- 測定回路を組み込んだSAR TDC
 -回路構成
 - -回路動作(ノーマルモード・テストモード)
- シミュレーションによる検証
- まとめと課題

回路構成

SAR-TDCに測定回路(素子:青 導線:赤)を付加

SAR-TDCに測定回路(素子:青 導線:赤)を付加

遅延素子値測定モード

リング発振器とランダム信号は独立

回路動作

無作為に点を打つことに対応

遅延素子値測定モード

素子遅延値の比をそれぞれ測定

フラッシュ型に比べ時間を要する

Histogram-Engineのブロック図

Histogram-Engine

簡略化したテストモード回路の構成

簡略化したテストモード回路の構成

簡略化したテストモード回路の動作

- 時間デジタイザ回路の役割
 - -時間デジタイザ回路の構成と動作
 - -具体的な応用例
 - -タイミングテストへの応用
 - -有用性
 - -技術課題
- ・ 逐次比較型(SAR)TDCの構成と動作
- 校正メカニズム
 -ヒストグラム法による素子値の推定
 -逆関数による校正
- 測定回路を組み込んだSAR TDC
 -回路構成
 - -回路動作(ノーマルモード・テストモード)
- シミュレーションによる検証
- まとめと課題

シミュレーションによる検証

Scilab 5.4.1で検証:

逐次比較型TDCのヒストグラム法を用いた校正手法を下記の条件でシミュレーション

実際の値を生成

ヒストグラム法の検証

逆関数による校正の検証

非線形なTDC特性の 逆関数を用いてキャンセル

校正後のTDC特性

誤差について比較

- 時間デジタイザ回路の役割
 - -時間デジタイザ回路の構成と動作
 - -具体的な応用例
 - -タイミングテストへの応用
 - -有用性
 - -技術課題
- ・ 逐次比較型(SAR)TDCの構成と動作
- 校正メカニズム

 -ヒストグラム法による素子値の推定
 -逆関数による校正
- 測定回路を組み込んだSAR TDC
 -回路構成
 - -回路動作(ノーマルモード・テストモード)
- シミュレーションによる検証
- まとめと課題

- 逐次比較型TDCの非線形な特性を校正できる回路の考案
- ヒストグラム法を用いた、逆関数による校正メカニズム
- Scilabによるシミュレーション

50	5	37	04	1 219	11 00	0	26	36833	77	0 71	62	60	2	69	7 62	3	869
59	66	9 44		4805	639		3	61687	91	1845	0			8	77	7	80 8
41	3	892		5232	3 20			0160	61	97 33		45	9	8	7886	2	3 (

高速に過ぎゆく時间を測定

新しい付加価値の創出

6	31 1	83 2	7	б	98	56	5	59	4	4	0	62721 06	8	2	63517	
21	16 8	41 0		4	65	69	8	08	9	8	2	0229407 28		1 1	93216	(
9	40 0	48 7	6	1	07	90	35	33	1	1	3	5875035 6		3 1	64838 9	8

ADCにおける自己校正方法

Reference : F.Malobeti. 2007. Data Converters. Springer Press. pp.409-414

DNL & INL

Previous & Alternative Solutions

Alternative solution

Alternative Solution

Pseudo-random digital sequence

0110101101001010100101 • • • • •

Analog filter & Low-pass filter

Random voltage

Sine wave test signal

Even with distorted sine wave , We can obtain an excellent control of the sinusoidal shape

Accurate estimation of probability density function is

$$p(V) = \frac{1}{\pi\sqrt{A^2 - x^2}}; \quad x = V - V_{os}.$$
(9.22)

Possible offset : $V = A \cdot \sin(x) - V_{os}$

Result of Simulation

Non linear ramp

$$X(t) = 0.99kt - 0.02(kt)^3 + x_n(t);$$

-1/k < t < 1/k

Sinewave

$$p(V) = \frac{1}{\pi\sqrt{A^2 - x^2}}$$

Probability density function

