International Conference on
Mechanical, Electrical and Medical Intelligent System

Nov. 29, 2017 (Wed)

Study on Digital Multiplier Architecture
Using Square Law and Divide-Conquer Method

Yifel Sun, Shu Sasaki, Dan Yao,
Nobukazu Tsukiji and Haruo Kobayashi

® Gunma University
Q Division of Electronics and Informatics
Kobayashi
BYEE ki t172d004@gunma-u.ac.jp Ktuoboryutury

OUTLINE

Research Background

Multiplication Algorithm using Square Law
Divide & Conquer Method

RTL Desigh and Simulation

Conclusion

2/32

3/32

OUTLINE

@® Research Background

4/32

Research Background

- Adder - Subtractor

Digital arithmetic devices { + Multiplier * Divider

DSPs, u Processors use several digital multipliers on a chip.

1 Requirements

Small scale
Low power
High speed

@ Digital multiplier hardware implementation algorithm
has been a research topic for 50 years.

@ Decrease of the multiplier scale is still a research topic .

How Digital Multiplier Works

Decimal

Binary

25 multiplicand

X 39 multiplicator
45
18 - Partial products
15
+ 6 .
975 product

011001:25,, multiplicand
x100111:39,, multiplicator

011001 |
011001

011001

000000
000000 AND gate

+011001 -

— Partial products

001111001111:975,, product

Calculation of the sum of partial products increases

5/32

6/32

Purpose of Study

5 y4 y3 y2 y1 y0

VA,

x0 / / /
1 VaAVayavAVAY,
' e a4
) YAy avVavAVAav,
J N7\ 7717
X3 / /£ / 7 ya
J\ 7 17 |7 |7 |
x4 // // // // A ’/
AW AWAWAWA
x5
OO0

p10 p9 p8 p7 p6 p5 p4 p3 p2 p1 p0

Composition of array digital multiplier

The multiplier can be implementation in two dimensions by adder

Multiplier (Using square array of full adders)
" Circuit size

*Power m=) Big

Computation time

Ex: In 6bit X 6bit situation
6 X 6 =64 full adders are needed

!

Reduce

circuit size = power * computation time

7/32

OUTLINE

® Multiplication Algorithm using Square Law

Investigated Multiplier Algorithm(1)

Based on square law

AB = %[(A +B)?2 — (A — B)?]

A+B

+— XLUTX“Mﬂ

2 bit
right shift

= YWTX [|

A-B

Realization circuit

®
@ Squaring 2 times
@ Addition once

@ Subtraction twice

1 , .
(] ” operation can be realized

with 2-bit left shift
or just interconnection change

General Multiplier Algorithm
AB=A+A+ - +A

Multiplier AXB
Number of additions : B times

8/32

9/32

Investigated Multiplier Algorithm(2)

Based on square law

AB = %[(A + B)? — (A*+ B%)] ®

A+ B (A + B)?

| | @ Squaring 3 times
<+ X LUT X4 @ Addition twice
1o @ Subtraction once
A— X LUT X3, + — T AB ® %operation can be realized
B—+{ X LUT Y2 with 1-bit left shift

or just interconnection change

Realization circuit

What is Look Up Table (LUT)

A) A2

Address

Memory

X/

address

1

Data

No calculation

1
(2 m) (4
3 9

1

R

LUT —— F(X)

data
LUT Memory (ROM ,RAM)

10/32

(4)

9

Using LUT mmmmp Memory reference processing

100

10000

10000

!

Disadvantage Efficient

o

LUT processing = handled large number of bits = Large circuit size

11/32

Number of Bits Handled by LUT

a1s a3ss
4 bit situation e = 8 bit situation

> a3 > azs3
a a
4 |a 8 | o
AH+ o 4 + o
(4bit) e (8bit) i
a a

ag Ao

Size | | | ceeeeeeeees |

Sire [T T eeeeeneens
16x8= 128 bit D7 Ds Ds Do 256 X 16, Dy5D14Dq3 Dy
AZ(8bit) = 4096 bit AZ(16bit)

Number of input bits is reduced by 1/2 - LUT size is reduced by 1/32

Do Not use LUT to Implement Square Law

Ap—~

(4bit)

lapooaQg ssalppy

ais

A14

a3

Qo

Size
16 X 8= 128 bit

Use LUT to realized squaring calculation » if lager number of bits was handled, memory size must be increased

D; D¢ Ds Dy

A% (8bit)

.

Qazs5

Ar54

ajs53

>

o

o

o

8 |wl| =

A / o
(8bit) o
o

o

®

Size

256 X 16
= 4096 bit

We have found that direct logic circuit Implementation of squaring can be simple.

12/32

Direct Squaring Calculation Logic Circuit

13/32

AB = %[(A +B)? — (A*+ BH)] ®

—AB

-4 X LUT x?
1bit
2
XLUT X + - Right shift AB
X LUT X3—
Input 5 bit
C Output 10 bit
direct squaring
+ calculation logic circuit
Sroct : 1bit
irect squaring — : .
A ¢ calculation logic circuit | | Right shift
direct squaring H
B calculation logic circuit .
/ %C=A+B
Input 4 bit

Output 8 bit

LUT part was replaced with squaring calculation circuit.

14/32

Direct Squaring Calculation Logic Circuit

AB =-[(A+ B)?* — (A — B)?] @

2
E AR LT X2 ML‘
" 2 bit
;] right shift 4B
T e A-B '}]
3 ﬂ XLUT A" 1 gy

Using LUT to realize square

N

calculation
logic circuit

A + A 4 B | directsquaring (H+B)z

2bit
:E_ right shift A

A-B direct squaring
_ calculation
B logic circuit (A-B)*

Using direct squaring calculation logic circuit

Input Output

3121110 Ji
0Of00O00O 0 0
11000 1 1/ 0
210010 4 0
3|00 1 1 9(0
40100 16| O
9101 0 1] 25 0
6/01 10 36 O
7/01 11 49| 0
81000 64 0
91001, 81 0
101010 100 O
11{101 1] 121, 0
12| 11 0 0| 144| 1
13| 110 1| 169| 1
14111 0] 196, 1
15|11 1 1] 225 1

Truth Table and Logic Expression

@)

—_ —- 00 = == = 2 OO0 000000

O
o
O

- 0O - 0= - 000-= = 000000
OO0 = = 0= 0 =0 == 0000 -+

O
w
O

O o—=0—=— 00000 0—=C 0 O

O - 000 —=000—=000=00mMN

O
O

OO0 000000000000 oo
- o -0 -0 -0 -0 —-=0—-=0—=00

O3 In the situation of output
equalto 1 , the input are
0011, 0101, 1011, 1101

03 = I312I110

03 = I312I110

03 = 13121110

03 = 13121110

15/32

simplification

03 =2 11)I0

EXOR

Calculate logic expression O0~07

Write in a theoretical way

00 =10
01=0
02 = 1110

03 =2 I1)I0
04 = [312(I1 + 10) + 131210 + 13121110
05 = (I3 12)I1 + 131210
06 = I312 + 131211
07 = 1312

16/32

Usage of Absolute Value for Squaring Calculation

Consider to handle negative numbers for the multiplier

A or B are 3 bit situation

0 0
1 1
2 2
3 3
4 -4
5 -3
6 -2
7 -1
A+B=C
A—B=D

001
010
011
100
101
110
111

—8<(C<6
—7<D<7

AB = i[(A +B)?2 — (A - B)?]

N o o B WN -, O

A+B or A-B are 4 bit situation

mm mmmm

N o o B WN -, O

C orD

0000
0001
0010
0011
0100
0101
0110
0111

C=0

9
10
11
12
13
14
15

direct squaring calculation logic circuit

-8
=7/

®

1000
1001
1010
1011
1100
1101
1110
1111

Convert negative number
to its absolute value

!

Two’s complement

C < —1 reversal Cin every bit m)plus 1 =) obtain |C|
than realizes direct squaring calculation logic circuit

17/32

Circuit Realization of Absolute Value for Squaring Calculation

A2 Cout \
A dd a s3
B2 eric s Direct squaring
Bd MUX 1 calculation logic |
1 Do 50 circuit
Cin bo Adder
I~a
| C tj/ i 9 [Shit ri 7
1 Cout / 7 | 2bit right
/ 7 shite |7 LAB
D2 T
D1
T3
Subtr SF S - Direct squaring
— MUX 1 E?rl(f:tjiltatlon logic [|
— —Po— T0
BR_IN Adder
L o

This structure reduces the hardware whether it were implemented with LUTs or dedicated logic

18/32

OUTLINE

® Divide & Conquer Method

Improvement Plan of Implementation Circuit

A, B, A+B divide into upper bits and lower bits for calculation scale reduction

Come up with divide & conquer method

In 8 bit case : divide into

—

!

Cut LUT size

AB = %[(A + B)? — (A* + B%)] @

J

- 4bit

J\

- 4bit

\

—

upper 4 bit
lower 4 bit

LUT size becoming smaller

19/32

Divide & Conquer Method Analysis

20/32

In 8 bit case (4 = 11001001 : 201,,)

O

2 O 020042 4

8bit x 8bit divide 4bit [Ay], [A;]
Calculated by each [Ay], [4;]

o T
1
0 »AH
b 0
11
@)
L0 w4,
R 1
A=11001001

Divided input, output values up and down

A=11001001
AH — 1100 . 1210
AL — 1001 . 910

‘ Conquer

A% =10010000:144,
A% =1010001:814,
AyA;, =1101100:1084,

First method =)

Divide & Conquer Method Analysis

21/32

A? = A%(8bit left shift) + 2AyA; (4bit left shift) + A?

2A4A; = [(Ag + A% — Ay* — A7)

A% = A%4(8bit left shift) + {(Ay + A;)? — Ay® — A *}(4bit left shift) + A2

Second method

Ayl T X jeft shift _—* left shift | L
¢ .FE'LL”'.I'f2 left shift - - . i ¥ LUT ¥2—e—+ 8|t.
SIL S L + | left shift
A A% (8bit left)[A bit
A X LUT XE H AL YLUT XL' I\ + —AZ
L

First method Second method
Realization circuit Realization circuit

Divide & Conquer Method Analysis

22/32

A? = A%(8bit left shift) + AyA;(5bit left shift) + A?

A=11001001 = (201)4,

A% =10010000=(144)10
AyA; = 1101100=(108):0
AZ — 1010001=(81)10

A% =1001110111010001 : 40401,
(A% = 201 x 201 = 40401)

A2 (8bit left shift) = 1001000000000000=(36864)x
Ay A, (5bit left shift) = 110110000000=(3456)x

A% — 1010001:(81)10 First method using

Divide & Conquer

A% = 36864 + 3456 + 81=40401

The value obtained by the Divide & Conquer method and the direct calculated value of square of A are the same

Divide & Conquer Method Circuit

23/32

Nbit

A(Nbit) — I x LuT x2— A%(2Nbit)
.
N/2+1bit
A x Left shift
H - 42
X LUT X?] I:b:.ft 1 + A
ert sni
A — bt =+
— X LUT X?
Ay %bit

N
A? = A% (Nbit left shift) + AyA, ((E + 1)bit left shift) + A2

Using divide & conquer with X times , LUT size will decrease 2%times

Divide & Conquer Method Circuit (8 bit case)

AB

(A + B)?

24/32

[1bit AB

1 x Sbit
— . Left shift
=—[(A+ B)? — (A% + B? 4bit .
2 [() ()] Y LUT XZ 8bit +
Left shift
L | Abit
. X LUT X2
Need LUT for 16 bit
Shit |
x 4b't Left shift AZ
|
X LUT 17| 8ot
A 4b|t Left shift
X LUT X2 T\ [
5bit |
X bit Left shift
X LUT X2 8bit |
B 4b|t Left shifk\ ‘
X LUT X2 \\ \\

Right shift

Need LUT for 8 bit

By dividing ,b

~___number of LUT bits = small

25/32

OUTLINE

® RTL Desigh and Simulation

RTL: Register Transfer Level

2017/12/3

1.RTL Simulation using Second Divide & Conquer Method

AB = %[(A + B)? — (A% + BY)] |®

Ons 200 ns I 400 ns | 600 ns I 400 ns

» B G[17:0] _ 1 P X 0 F 75 {300 \ ; 40000
p B A[7:0] f 0 ;: 5 00 200

p B B[7:0] / i \f ! Sa0 \

8bit X8bit
I .

G[17:0]) ;:' 75 / | 10000 ' 2
Al/7:0] . 100
B[7:0]

Input values A, B are changed every 100 ns and 200 ns.
A, B: input

G=AXB G : output.

26/32

2.Layout of Direct Squaring Calculation Logic Circuit

A | B Y
A — y L 0]0] o0
1 0 0
1 1 1
AND gate
Inout Output
A | B Y
A 0|0| O
Y |0 1 1
B 1 0 1
1 1 1
OR gate
Inout Output
A | B Y
0 1 1
B 1 0 1
1 1 0
EXOR gate
Inout Output
A Y A Y
0 1
1 0
NOT gate

This Circuit creates individual logic expressions by the number of bits of input

27/32

28/32

2.RTL Simulation using Direct Method

4bit X 4bit

Input 4 bit X 4bit circuit

Input values A, B are changed every 10 ns and 160 ns.
A, B: input
Z : output.

Using direct squaring calculation logic circuit was validated.

29/32

3.RTL Simulation using Absolute Value

3bit X 3bit

AB=A X B

Input values A, B are changed every 10 ns and 70 ns.
A B:input
AB: output

30/32

OUTLINE

Research Background
Digital Multiplier Algorithm

RTL Design and Simulation
® Conclusion

2017/12/3

31/32

Conclusion

@ Discussed multiplication algorithms based on square law

@® Proposed divide & conquer method to reduce LUT size
in RTL level validation by simulation

mm) reduce computation & circuit size

® Considered reduction of multiplication using squaring calculation logic
in RTL level validation by simulation

mm) create dedicated circuit to calculate square simple

@® Consider to handle negative numbers for the multiplier in RTL level
validation by simulation

32/32

Thanks for your listening

33/32

Qand A

1. You have investigated the multiplication algorithm, or multiplier algorithm. Can you extend this algorithm to divide or
division algorithm?

Answer: | have not consider use Divide & Conquer method to using division algorithm yet. Using Divide & Conquer
method may be also can reduce the LUT size in division algorithm. | will consider it in the future.

2. You have improve the speed of the circuit square calculation, could you tell me some limitation of your method?
Answer: For a large number of N, the LUT size is large and its speed may be slow. For a small number of N, its size is
reduced significantly and also its access speed may be much faster.

Proceedings of International Conference
on Mechanical, Electrical and Medical Intelligent System 2017

Study on Digital Multiplier Architecture
Using Square Law and Divide-Conquer Method

Yifei Sun?, Shu Sasaki®, Dan Yao'*, Nobukazu Tsukijit¥, Haruo Kobayashi'®

! Division of Electronics and Informatics, Gunma University, 1-5-1 Tenjincho, Kiryu-shi, Gunma,
376-8515, Japan

a<t172d004@gunma-u.ac.jp>, P<t15804040@gunma-u.ac.jp>, °<yao_dan@outlook.com>,
d<ntsukiji@gunma-u.ac.jp>, °<koba@gunma-u.ac.jp>

Keywords: digital multiplier, square law, divide and conquer method, digital circuit, FPGA

Abstract. In this paper, we study digital multiplier architecture using a square law for obtaining the
product AB from the sum and square of the inputs A and B and a Divide & Conquer method for
small circuit implementation. We have designed them at the register transfer level (RTL) to confirm
its operation. We have investigated the squaring calculation circuit with look-up table (LUT) and
also direct squaring calculation logic. We show that in case of the squaring law usage, the Divide &
Conquer method can be utilized in both cases of squaring calculation circuits with LUT and direct
logic, and it can reduce the circuit. The digital multiplier is widely used for digital computers and
DSP chips. When it is realized directly, a two-dimensional array of full adders is required; as the
number of bit increases, its circuit size and power become large and its computation time is also
increased. The investigated architecture is expected to solve these problems.

1. Introduction

Digital multipliers are widely used for digital computers and DSP chips as well as MPU. Since the
multiplication of binary numbers is performed by adding of binary numbers repeatedly, a large
amount of calculation is required. If the digital multiplier is realized directly, it becomes a
two-dimensional array of full adders [1] (Fig. 1, Fig. 2); there is a problem that the circuit size,
power consumption and operation time become large [2]. Therefore, various algorithms and
architectures have been proposed to solve these problems for many years. Based on these, digital
multipliers have been designed and realized.

However, the digital multiplier architecture and algorithm are still important research areas even
now. In digital communication systems, massive digital computation in real time is required; if we
can realize small scale digital multipliers, many of them can be mounted and they can perform
parallel operation.

Here we consider using the following two equations [3, 4] for calculating the product AB from the
sum and square of the two digital inputs A and B.

AB =-{(A+B)*— (A—B)%) @)
AB = %{(A + B)? — A2 — B2})
Then we show that for squaring operation, the Divide & Conquer method can be applied which
reduces the circuit size. We consider that squaring and addition/subtraction with the Divide &
Conquer method are simple, compared to the direct multiplication.
In this paper, we compare our investigated architectures and algorithms for digital multiplier
with the direct implementation using a 2-dimensional array of full adders (Fig. 1, Fig. 2), because
there are many architectures and algorithms such as Booth algorithm and Wallace tree configuration,

and hence the direct implementation would be suitable as a reference.
In this paper, we will show the following: we investigate the architecture and algorithm in Eq.

(D).

Proceedings of International Conference
on Mechanical, Electrical and Medical Intelligent System 2017

DIf the squaring is implemented with logic circuit, the circuit size is comparable to the direct
implementation.

@If the squaring is implemented with Look-up tables (LUTS), their sizes are large and speed may
be slow for a large number of input data bits.

(@However, if the Divide & Conquer method is applied, the LUT sizes reduce drastically. Eq. (2)
plays an important role there.

@ If the Divide & Conquer method is applied for the dedicated logic implementation of squaring
operation, the circuit size is reduced by 2/3. There, Eq. (2) plays an important role again.

If the Divide & Conquer method is applied repeatedly, the hardware can be reduced further. We
have performed register transfer level (RTL) simulation and confirmed the validity of the
investigated algorithms and architectures.

2. LUT AND MULTIPLIER

2.1 Look-up Table (LUT)

The LUT is a memory (RAM or ROM), and its input is memory “address”, while itS output is
memory “data” (Fig.3). By storing the calculation data in the memory, a desired calculation result for
the input specified by “address” can be obtained as its output provided by “data” [5].

X3 xz x1

AND AND AND AND

X3 Xz X1 X0
o o
| | |

SlIEIEIE

Cin A3 B3 A2 B2 Al B1 A0 B0
Cout s3 s2 s1 S0

X3 x2 x1 X0
|

h | |

I
‘Cm A3 B3 A2 B2 A1 Bl AD 0

B
Cout 83 S2 S1 S0
X3 xX2 X1 X0
0
| | | v

iﬂl@l@ o)
| Cin A3 B3 A2 B2 A1 B1 A0 BO

Cout s3 s2 s1 s0

I | I T
4

z 6 z5

Fig. 1. 4-bit x 4-bit digital multiplier with a 2-dimensional array of full adders (direct
implementation as a reference)

| | | | || L | |

23 22 21 20

A B Cin A B Cin A B Cin A B Cin
Full Full Full Full
Adder Adder Adder Adder
Cout S Cout S Cout S Cout S

Fig. 2. 4-bit ripple carry adder used in Fig. 1 as a reference

address data

x —/— LUT [/ FW

Fig. 3. Look-up table (LUT)

2.2 Multiplication Algorithm using Logarithm and Exponential Functions

We consider to compute the multiplication using logarithm and exponential LUTs in Fig. 4. If we
calculate AB for the two data A and B, we will use an adder and LUTSs as follows:

(D Using logarithm data LUT to obtain logA and logB.

@ Using adder to calculate logA+ logB (=logAB).

Proceedings of International Conference
on Mechanical, Electrical and Medical Intelligent System 2017

@ Using exponential data LUT to obtain AB from logAB.
However, in order to obtain logarithm and exponential data with high precision, the LUT needs
large number of data bits and then its size becomes large and its operation becomes slow. Hence we

exclude this algorithm here.
logA

A X LUT logX logAB
B

#] e as

logB

Fig. 4 Multiplier with logarithm and exponential LUTs

3. Multiplication Algorithm using square law

In this section, the square law of Eq. (1) and Eq. (2) was examined. Multiplication by 1/2 or 1/4
can be realized by one or two-bit right shift operation (actually only wiring change is enough). The
square calculation uses LUT or logic circuit. Both of them can achieve the purpose for circuit size
and power consumption reduction as well as high speed operation.

3.1 Multiplier Using Square Law and LUT

Fig. 5 shows the circuit configuration to realize Eq. (1), where two LUTSs are used. Fig. 6 shows
the circuit configuration to realize Eq. (2), where three LUTSs are used.

a _.ﬂ X LUT X2 %" +BY’
I B 2 bit

| ‘;]Zii right shift 4B
= A-B 2 |

g E XWTX? |

Fig. 5 Multiplier configuration for realizing Fig. 6 Multiplier configuration for realizing

square law equation (1) using LUTs square law equation (2) using LUTs

Considering the calculation time balance in each path, the circuit configuration in Fig. 7 also can be
conceivable. Alternatively, one LUT can be used sequentially to perform calculations of AZ B2 and
(A+B)? as shown in Fig. 8, and there although the computation time becomes about three times as
large. Although the circuit amount can be reduced by one-third[5-7], but because of this architecture
needs some registers or memory to store the previous LUT data, the circuit size still large.

A~ XLUT X7 °°

1bit
a8

e—{x LT X

Fig. 7 Circuit that considering balance of Fig. 8 Circuit that sequentially uses one LUT
calculation time

B ———0 o

For N-bit x N-bit multiplication LUT, its address is N-bit and its data is 2N-bit. Then the LUT size is
2N x (2N). When N=8, the LUT size is 256 x 16=4096 bits (Fig. 9). When N=4, the LUT size is 16
x 8=128 bits (Fig. 10). Then we see that if N is reduced by a factor of 1/2, the LUT size is reduced by
a factor of 1/32.

Note that for a large number of N, the LUT size is large and its speed may be slow; hence this
implementation may not be efficient. However, for a small number of N, its size is reduced
significantly and also its access speed may be much faster, and this implementation is efficient.

Proceedings of International Conference
on Mechanical, Electrical and Medical Intelligent System 2017

a3ss

Q254

Azs3

(8bit)

Los]
Japodag ssalppv

2]
Size — [T T ieerveennns |

25616 Dys D14 D Dy
= 4096 bit AZ(16bit)

Fig. 9 LUT for 8-bit x 8-bit squaring

calculation

[| %s
ay4
» a3
o
o
4 |a
Ag—~ o
(4bit) b4
o
]
Size
16 x 8= 128 bit

Fig. 10 LUT for 4-bit x 4-bit squaring
calculation

3.2 Multiplier Using Square Law and Dedicated Logic

D; Dg Ds

A% (8bit)

Do

The squaring calculation circuit can be realized by the LUT. If the larger number of bits was
handled, the memory size must be increased. For this reason, we have examined a dedicated circuit

using the truth table of squaring. Fig. 11 shows its circuits based on Eqg. (1), Eq.(2).

2 bit

right shift

(a)
Fig. 11 Circuit using squaring operation logic circuit.(a) Based on Eq.(1). (b) Based on Eq.(2)

Dedicated B2
S S
B

Logic X2

Dedicated

(b)

Here is the square operation logic ciruit, for example in 4-bit x 4-bit case, its output is 8-bit, the
following equations are logic expressions obtained by the truth table in Table 1.

00 =10
01=0
02 = 1110

03 = (12 @ I11)I0
04 = I[312(I1 + 10) + 131210 + 13121110

05 = (3@ 12)I1 + 131210
06 = 1312 + I312I1
07 = 1312

Table 1: Truth table of square (in 4-bit x
4-bit case)

I3 1211 10 O7 06 O5 04 O3 02 O1 OO0

0Ol OO0 0O O o (o] o o o o o] (o] o
1 0O 0 0 1 1 (o] o o o o o] (o] 1
2/ 00 10 4 [0} o 0 o o} 1 [0} o
3/ 00 1 1 9 0O 0 o o 1 o o0 1
4, 01 0 0 16 0 o o 1 [0} [0} 0 o
5(0 1 0 1 25 0 o o0 1 1 (o] 0 1
6/ 01 10 36 (o] o 1 o o 1 (o] o
701 1 1 49 o] o 1 1 o o] o] 1
8 10 O O 64 o 1 o o o o o o
9 10 0 1 81 (o] 1 [s] 1 o (o] (o] 1
10 10 1 O 100 (s} 1 1 o o 1 (s} o
11 (1 0 1 1 121 o 1 1 1 1 o o 1
12/ 11 0 0| 144 1 o o i 0 0o 0 o
13 11 0 1 169 1 (o] 1 [0} 1 [0} 0 1
14| 11 1 0 196 1 1 0 o o 1 0 (o]
15 11 1 1 225 1 1 1 o o o] [0} 1

unsign sign

4]

L= T R T N

o

0| |l | 48 [[[0

binary

000
001
010
011
100
101
110
111

A+B or A-B are 4 bits situation

unsign sign

o

[- Y T

[S T
R w R R D

O U U ST P R

4]

binary
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

(3)

Table 2: Signed binary representation

Aor B are 3 bits situation

Proceedings of International Conference
on Mechanical, Electrical and Medical Intelligent System 2017

From Table 1, we can found the O1, i.e. the second bit, is always 0 which contribute the reduction
of circuits. We also have investigated the comparison of the multiplier AB with the direct logic
implementation (Fig. 1, Fig. 2) and the squaring circuit A% with the logic implementation
quantitatively. We have found that the squaring circuit A? is almost half of the multiplier AB. See
Appendix B. Hence the total size of the circuit based on Eq. (1) is almost the same as that of the
reference multiplier in Fig. 1 if they are implemented directly with logic circuits. Then we need the
Divide & Conquer method for the circuit size reduction, which will be discussed in the next section.

3.3 Usage of Absolute Value for Squaring Calculation

Let us consider to handle negative numbers as well as positive numbers and zero for the multiplier.
Then we remark that first taking its absolute value and then calculating its squaring reduce the LUT
and logic circuit size.

For example, the quarter square multiplication technique is easily demonstrated algebraically as

AB =>{(A+B)? — A2 — B%})
The number of addition and subtractions is 3. Consider the calculation in case of negative numbers.
We convert negative numbers to their absolute values, and then calculate their squares. As shown in
Table 2, the highest bit (the most significant bit) is the sign bit; if A or B are in 3-bit, (A + B) are
between -8 to 6, and (A — B) are between -7 to 7. If (A+ B) or (A — B) are negative, we reverse
every bit, and then add one to it (i.e., we obtain its two complement). Then we have its absolute
value and perform the squaring operation to it. If (A+ B) or (A — B) are positive, we directly use
squaring operation to it. Fig. 12 shows their circuit realization. This structure reduces the hardware
whether it were implemented with LUTs or dedicated logic.

a2 Cout , I
[
ALY
AGT lcL 1] 53
pedlIR Adder|cq o Direct squaring
o MUX = 51 calculation logic |
| 50 circuit
| | cin e Adder
1 [Ou[—‘l/ 7
| 7 AB
|
<|:7‘ D2 r [
D1
R T3
I Subtr Ego ‘T 2 Direct squaring
L actor calculation logic
— MUX T1 .
circuit
BR_IN 0]
L p|Adder |
- —
fo—o{ ’I/
|

Dout——

Fig. 12 Multiplier lleing quarter square law (3-bit x 3-bit)
4. Divide & Conquer Method

4.1 Two Divide & Conquer Algorithms

Let us consider the case that A is 8-bit, and its higher 4-bit is denoted as Ay, where its lower 4-bit
is denoted as A;, (Fig.13). Then A? were expressed by the following:

A? = A%(8bit left shift) + 24,A,(4bit left shift) + A? (4)
Also we have the following from Eqg. (2):
24pAL = (Ay + AL)Z - AIZ-I - A% ()

Then it follows from Eq. (4), Eq. (5) that
A% = (Ap)?(8bit left shift) + {(Ay + A.)? — A% — A2}(4bit left shift) + (4,)% (6)
The first method use equation (4), and the second method uses equation (6).

Proceedings of International Conference
on Mechanical, Electrical and Medical Intelligent System 2017

Then Fig. 14 (a), (b) show the squaring calculation circuit (A(8bit) — AZ(16bit)) based on the first
and second methods respectively. 8-bit A is divided into higher 4-bit and lower 4-bit, and each is
calculated and shifted appropriately and then all were added. Here bit shifts were realized only with
proper interconnection arrangement (no hardware overhead).

A= ae | oM

. ™
2 A? s A2
A H > L
—2ApAT,

AH‘ Ay ‘ AL

A% = (A)%(8bit left shift) + 24,4, (4bit left shift) + (A,)?

Fig.13 Data (A) division into higher bits (Ay) and lower bits (Ay)

Sbit
Ay A, (Sbit left) [+ :
4 IZ‘ A2 = A} (Bbit left) + AyAy(Sbit left) + A} | " 7E7 : ‘e;l::‘.ﬁ
" i AH- 1 ‘ 2 . i | i
| B 1 +] P Ief?;bs}'tnift +] ‘
A‘L | A3 (8bit left) = - L 7}12
(@) (b)
Fig. 14 Squaring calculation with the divide & conquer method. (a) First method. (b) Second
method

Now let us consider 8bit data, A = 11001001 = (201),,. Divide A into higher 4-bit (Ay) and
lower 4-bit (Ay).
Ay =1100 (12)4,
A, =1001 (9)40
Then we proceed the calculation.
A% =10010000 (144)4,
Af, (8bit left shift) = 1001000000000000 (36864)
Af = 1010001 (81)10
Ay + A, = 00010101 (21)40
(Ay + AL)2 = 110111001 (441)4,
{(Ay + AL)? —A% —A?} (4bit left shift)
= 110110000000 (3456),
(Ag)? (8bit left shift) + {(Ay + AL)? — A% — A2} (4bit left shift) + (A)?
= 1001000000000000 (36864);, + 110110000000 (3456);0 + 1010001 (81)4,
=1001110111010001 (40401),, = A?

Then we see that the value obtained by the Divide & Conquer method and the direct calculated value
of A? are the same, and the validity of the Divide & Conquer is shown in the above.

These divided bit streams can be divided further, and the Divide and Conquer can be applied
repeatedly.

4.2 Effectiveness of Divide & Conquer Method for Squaring with LUTs

As Fig. 9, Fig. 10 shows, the LUT size for 8-bit A requires 4096 bits, whereas that for 4-bit is
128-bit, which is 1/32 of 8-bit case. In case of the Divide & Conquer second method in Fig. 14 (b), 3
LUTs are used and the size of each LUT is reduced by 1/32. Then the total LUT size is 3/32
compared to the LUT size without the Divide & Conquer method. Also note that the speed of the
small sized LUT access time is much faster.

Proceedings of International Conference
on Mechanical, Electrical and Medical Intelligent System 2017

For a general N-bit A case, the total LUT size is 2¥ x (2N) without the divide and conquer
N N
method, whereas that is 22z X (2 X g) x 3. Then the reduction of [2? X (2 X g) X 3] =+ [2N x

N
2N] = g X 27z is obtained.
We see the Divide & Conquer method is very effective.

4.3 Effectiveness of Divide & Conquer Method for Squaring with Dedicated Logic

Let us consider to calculate the right terms with direct calculation or dedicated logic.
AB = %{(A +B)? — A2 — B?})

The numbers of the full adders are almost the same, because the square calculation (A + B)? or
(A — B)? needs a half of the direct multiplication AB and Eq. (2) requires two square calculations
(A+B)? and (A—B)?.

Now let us consider to use the Divide & Conguer second method. Let

C=A+B
For each square calculation of the following requires 1/4 of direct calculation C2.
(Cw)?* , (€2 Cy+ C)?

Then using Eq. (6) from the above 3 terms, we have C? with 3/4 of the direct calculation.

5. RTL Design and Simulation

To verify the algorithm and validity of the circuit configuration, Verilog HDL circuit simulation
was carried out. Specifically, we have realized the circuit configuration on simulation software,
changed the two input values and calculated the output results. Then we checked whether the result
was correct or not.

We have used the second Divide & Conquer method, i.e. the following equation (7).

A% = (A)%(8bit left shift) + {(Ay + A)? — A4 — A2}(4bit left shift) + (AL)? (7)
If the inputs A, B are 4-bit x 4-bit and the output AB is 8-bit, there are 16 x 16 (=256) combinations.
If the inputs are 8-bit x 8-bit and the output is 16-bit, there are 256 x 256 (=65536) combinations. If
the inputs are 16-bit x 16-bit and the output is 32-bit, there are 65536 x 65536 (=4294967296)
combinations. In all these numerical values, the proposed algorithm was confirmed that the
multiplication was correct.

In dedicated circuit using the truth table of squaring situation, implement the circuit configuration
shown in Fig. 11(b) on the simulation software. The inputs are 4-bit x 4-bit and the output is 8-bit.
We changed two input values, calculated and outputted the result. Then we checked whether the
result is correct or not; the result proved its correctness.

In case of using absolute value for squaring calculation, the hardware was implemented with
dedicated logic circuit. In the situation of inputs 3-bit x 3-bit, 6-bit x 6-bit and 8-bit x 8-bit, the
results were also proved to be correct.

Simulation results are shown in Appendix A. With this program, the proposed algorithm can be
implemented on FPGA. This time, we implemented 4-bit x 4-bit circuit (second method of Eq. (2)),
4-bit x 4-bit circuit (dedicated logic of Eq. (2)) and 3bit x 3bit circuit (absolute value of Eq. (1)) by
using Spartan 3E FPGA and confirmed the operation.

6.Conclusion

We have investigated the square law algorithms with the Divide & Conquer methods to realize
digital multipliers. We propose two Divide & Conquer methods, and show that one of them was very
effective. If the squaring was implemented with LUTSs, their size were reduced significantly and its

Proceedings of International Conference
on Mechanical, Electrical and Medical Intelligent System 2017

access time becomes faster. If the squaring was implemented with dedicated logic, the size was
reduced by 3/4. If the Divide & Conquer method were applied repeatedly, the hardware is expected
to reduce further.

We have examined its hardware implementation and confirmed its operation by RTL simulation
for FPGA implementation.

We will focus on the following as future works:

(D Quantitative evaluation of the proposed circuit amount.

@ Clarification of calculation precision, arithmetic unit and number of bits in LUT.

@ Clarification of implementation FPGA operation clock frequency and calculation speed.

@ Bit division for Eq. (1).

All digital multipliers are expressed in binary number, when there is minus situation, it expresses
minus by two’s complement. We have considered how to deal with minus number, although
consideration is necessary for bit division, we will discuss it in the future.

Acknowledgements

The authors would like to thank Prof. Shugang Wei and Prof. Hiroyuki Makino, Prof. Yasushi
Yuminaka, Mr. Junshan Wang, Dr. Congbing Li, Mr. Shohei Shibuya and Mr. Takuya Arafune for
valuable suggestions.

Appendix A

B z17:0]
B A[3:0]

Fig. Al 4-bit x 4-bit simulation (using the Fig. A3 Quarter square multiplication circuit
second Divide & Conquer method) (3-bit x 3-bit) simulation (equation (1))

The input values A and B were changed every 10ns and every 160ns, and the calculation result in
that section was displayed on the waveform. In Fig. Al, the value of the cursor position in the
simulation result were displayed. Here A=13 B=6 C=78. All these calculations were done in binary
numbers. For the sake of clarity, the results were displayed in decimal.

ozt anizt

LPM_XO0R2_1
e [Yo

D nEDY
. 00 T it 4 ooner | {5 o 2. arsonon .t 2_anooe
or S5 3300000

LPH_XORZ 1 .
4 b e)

sl] e T AR
e e s A

data o 6_or0000_imp_cksts_o_6_or00007

sqare e

Fig. A2 Square calculation logic circuit (4-bit x 4-bit) simulation (equation (2))

Proceedings of International Conference
on Mechanical, Electrical and Medical Intelligent System 2017

As showing in Fig. A3, the input circuit program is for 3-bit x 3-bit. The input values A and B
were changed every 10ns and every 70ns. The calculation results were displayed on the waveform.
Here A= -3 B= -4 AB=12. The calculations were done in binary numbers. It was shown that the
algorithm studied by this can be reflected on the circuit.

Appendix B

Multiplication AB and square A2 calculations in 10-bit case is shown in Fig. B. We see that the number of full
adders for Square A? is about a half of that for multiplication AB.

Multiplicar . a r -2
Multiplier 2 - b b7 be bs ba

Multiplicand A as a8 a7 a6 ad a3 az a1 a0
Multiplier A & a8 a a6 a p 3 3 5 B

a9 a0 as ao a7 a0 a6 ao as a0

,,,,,,,,,

Fig. B Multiplication AB and SquareAZ2calculations in 10-bit

References

[1] A. V. Oppenheim, R.W. Shafer, Digital Signal Processing, Printice-Hall, Englewood Cliffs, NJ,
1975, pp. 56.

[2] K. Gentile, and R Cushing, A Technical Tutorial on Digital Signal Synthesis, Analog Devices,
Inc. 1999, pp.78.

[3] N. Weste, D. Harris, CMOS VLSI Design: A Circuits and Systems Perspective, Addison Wesley,
2010. Pp.125-126.

[4] E. L. Johnson, "A Digital Quarter Square Multiplier, " IEEE Trans. on Computers, Vol. C-29,
No. 3, pp.258-261, March 1980.

[5] S. Sasaki, H. Kobayashi, "Study of Computation Architecture for Short-Time Spectrum Analysis,
" The 5th Technical Meeting of IEEJ Tochigi Gunma Branch, Utsunomiya, March 2015.

[6] S. Sasaki, H. Kobayashi, "Study of Digital Multiplier Algorithm Using Addition and Square
Formula, " The 38th Mul-valued Logic Forum, Sapporo, Japan, Sept. 2015.

[7] S. Sasaki, H. Kobayashi, "Study of Digital Multiplier Algorithms Using a Square Law and Its
FPGA Implementation, " IEICE Signal Processing Workshop, Chiba, Japan, Aug. 2016.

