
738 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 26, NO. 5, MAY 1991

An Active Resistor Network for Gaussian
Filtering of Images

Haruo Kobayashi, Joseph L. White, Student Member, IEEE, and Asad A. Abidi, Member, IEEE

Abstract —The architecture of an active resistive mesh con-
taining both positive and negative resistors to implement a
Gaussian convolution in two dimensions is described. With an
embedded array of photoreceptors, this may be used for image
detection and smoothing. The convolution width is continuously

variable by 2:1 under riser control. Analog circuits implement a
45X 40 mesh on a 2-pm CMOS IC, and perform an entire

convolution in 20 ps on applied images.

I. INTRODUCTION

H ARDWARE capable of sensing an input in two

dimensions and processing it in parallel to obtain

results in real time is of great interest in applications such

as low-power compact image recognition systems. In digi-

tal signal processors today, a 2D input from a sensor is

first scanned and quantized, and subsequently processed

using pipelined parallel algorithms to obtain a fast

throughput rate [1]. The data at each grid point in the 2D

input, corresponding to one pixel in the case of a sampled

image, serially enter this signal processor and flow through

it at some usually fast clock rate. A substantial increase in

throughput may be obtained over this signal flow rate by

using simultaneous processing per pixel, particularly if the

signal fan-out is eliminated by not digitizing the input but

retaining it as an analog quantity. This is how signal

processing takes place in natural biological systems [2]-[4].

Much of signal processing consists of data reduction

and the extraction of high-level content for purposes such

as identification, classification, or storage. The hardware

to accomplish this will very often implement an algorithm

derived from a study of physical or biological systems,

which naturally perform a similar task. In a pro-

grammable digital signal processor, an explicit algorithm

is entered as a sequence of instructions, or as their

hardwired equivalent in a dedicated processor. Analog

hardware, on the other hand, cannot be programmed as
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digital operations may be, and is almost always hardwired:

a circuit must be constructed in which Kirchhoff’s laws

and the terminal characteristics of the components to-

gether embody the desired algorithm. Insofar as this

synthesis is guided by experience, ingenuity, and taste, the

approach is ad hoc and limited in its generali~, but when

successfully executed, it may offer a savings in power and

enhancement in speed by orders of magnitude over the

digital approach [5]. The input to an analog signal proces-

sor is some current or voltage, the output some other

voltage or current determined by the laws of physics

governing the circuit. The early analog computers were

built on this principle, but being composed of building

blocks with quite general functions, they were not very

efficient in hardware for massively parallel tasks.

Translinear integrated circuits are one well-known exam-

ple of an efficient use of hardware to embody complex

nonlinear algorithms, although usually for scalar or one-

dimensional array inputs. They achieve hardware effi-

ciency by exploiting transistor device physics rather than

from complex building blocks such as operational ampli-

fiers; they are also hardwired to accomplish a specific task

[6], [7]. Our work deals with a class of circuits suited to

simultaneous signal processing in two dimensions also

using processing at the transistor level.

II. IMAGE SMOOTHING USING SIMULTANEOUS 2D

SIGNAL PROCESSING

This section will discuss the algorithm and architecture

of a particular image processing function we have imple-

mented for potential use in compact machine vision sys-

tems [8].

A. Smoothing Images by a Gaussian Operation

Many electronic image recognition systems tend to

replicate the hierarchy from low- to high-level processing

found in biological organisms. A raw image is usually

smoothed to suppress noisy features; its outline is then

obtained with some form of edge-enhancement operation,

and the outline after normalization and rotation is com-

pared with stored templates. While the quantity of data

might reduce along this chain, the complexity of the

operations increases significantly. Our work relates to the

lowest level of image processing, the smoothing of raw
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image data with a Gaussian convolution function of vari-

able width.

There is broad evidence suggesting that a noisy image is

best smoothed by a Gaussian convolution kernel prior to

edge enhancement. This corresponds to the defocusing

action of a lens, and is inherent in many biological sys-

tems. The defocusing blurs the small sharp features char-

acteristic of visual noise, which are extraneous to impor-

tant objects in the field of view. Unless the image is

properly smoothed beforehand, differentiating the inten-

sity map of the image to enhance the edges will also

accentuate the sharp noisy features. Theoretical work has

proven that a noisy image is best smoothed by a Gaussian

convolution kernel to obtain the largest signal-to-noise

ratio after differentiation [91, [101.

The optimal width, or extent, of the convolution used

to smooth a particular image depends on the spatial

standard deviation of the noise, and also on the scale of

the objects which is usually not known in advance. The

width of the Gaussian smoothing must therefore be vari-

able under the control of the user. Adaptive methods

such as scale space filtering [11] rely on this capability.

Our experiments suggest that a Gaussian with a width

variable by a factor of 2 is adequate to smooth the noise

in many simple images sampled at a resolution of 50 by 50

pixels.

We set about after these considerations to implement

one analog integrated circuit capable of sampling an

image at a resolution of 50 pixels on a side, smoothing it

by a Gaussian in about 5 ps, and giving the user the

flexibility of continuously varying the Gaussian width by a

factor of 2:1. This speed of operation is orders of magni-

tude faster than digital implementations of this convolu-

tion function, which in addition to the requirements of

image buffering also require the image to be circulated

several times through a filter to obtain the property of

variable width.

B. Computation in 2D Using Resistive Meshes

Resistor networks were used as analog computers in

the past to solve complex boundary value problems in

electromagnetic [12]–[15]. These were later replaced by

numerical simulation on digital computers, primarily be-

cause of the ease of programmability. Digital computa-

tion, however, could neither surpass the low power dissi-

pation nor the speed of analog computers, because when

the latter solve complex 2D problems, the currents and

voltages could attain their final values within a very short

RC relaxation time. This high speed is the main attraction

of analog computation for 2D real-time signal processing,

in that the number of calculations unlike digital computa-

tion does not grow proportionally to the resolution, but

more as the square root. The use of this concept for

similar applications has also been noted elsewhere [16].

Unlike a resistive sheet subject to a potential difference

between two edges, where the resulting lateral equipoten-

tial contours solve electrostatic or magnetostatic field

Network Structure

Resistive Network

RI R1 R1 Ri

Cusped Convolution Kernel

Fig. 1. lD mesh with leakage resistors to ground, and its convolution

kernel.

problems, the contours in a sheet which also has a contin-

uous leakage to ground will decay in a characteristic

fashion in response to a voltage applied at a single point.

The spatial rate of decay depends on the leakage conduc-

tivity to ground relative to the lateral conductivity. This

decay function may be thought of as the spatial impulse

response of the leaky resistive sheet, or, equivalently, its

convolution kernel; the potential contours in response to

multiple-point stimuli will then be determined by linear

superposition. Consider, for example, a one-dimensional

discrete version of the leaky resistive sheet composed of a

uniform linear mesh of resistors R 1 with resistors RO

from every node to ground (Fig. 1). In response to a

current excitation at one node, the resulting voltage dis-.

tribution on the mesh decays n nodes away from the

excitation according to an exponential function
exp(– nR ~/Ro) [16]. This convolution kernel differs from

a Gaussian in two important ways: it has a slower decay at

its tails, and the exponential on either side of the excita-

tion meet at the center to produce a CUSP (Fig. 1). The

discontinuity in derivative at this point would produce

undesirable results when this function is applied to a

noisy image and then followed by edge enhancement. The

mesh must therefore be modified to produce a character-

istic function which better resembles the flat-topped

Gaussian at the point of excitation. Obtaining a practical

realization of this mesh was one of the key contributions

of our work.

C. An Active Resistive Mesh Implementing

Gaussian Convolution

We first qualitatively examine why the resistive mesh in

the previous example produces a cusped convolution ker-

nel, and how it must be modified. An indirect procedure

for synthesizing the desired network is then described,

followed by methods to extend it to two dimensions.

The spatial derivative of voltage at a point in a resistive

sheet or discrete mesh specifies the potential gradient or

the electric field there. According to the point form of
Ohm’s law, J = uE, a current injected at a point (assum-

ing the point has nonzero extent, so that the current

density there is not infinite) on a resistive sheet with

leakage to ground will produce some nonzero electric

field (E) there, and therefore a nonzero potential gradi-

ent. A nonzero J may produce a zero E only if o –+%
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which implies that the sheet must appear perfectly con-

ductive at the point of injection. If a negative resistance is

introduced to locally neutralize the dissipation in the

sheet, while maintaining the dissipation across the large

scale, a convolution function may be obtained with a flat

top and decaying tails. It is plausible to achieve this in a

discrete resistive mesh by introducing negative resistors

not between every node, because that would simply mod-

ify the value of I?l, but between every other node, or

perhaps even straddling several nodes. Investigating this

numerically, we found that a mesh implementing a convo-

lution of the desired shape could be obtained using nega-

tive resistors of a certain value connecting nodes with

their second nearest neighbors. We also came upon an

alternative procedure to synthesizing the same mesh,

based on the theoretical work relating to the optimal

smoothing of images. This is now described.

Poggio et al. [9] have analyzed how to smooth samples

~, –@< j < ~, of a noisy function to best estimate the

derivative if the noise were not present. They seek a

fitting function U(x) with continuous first derivative which

interpolates the sample points ~ with a least-mean-square

difference, but with the constraint that the derivatives of

U(x) are not allowed to fluctuate excessively to obtain the

least noisy estimate of the actual derivatives of the sam-

pled function. This is expressed as the problem of mini-

mizing an energy functional E, defined as the mean

square difference between the interpolating function and

the samples, subject to a penalty on excessively large

second derivatives. The strength of the penalty is con-

trolled by a parameter A, called the regularization param-

eter:

It is shown that the U(x) minimizing E in (1) is obtained

by convolving ~. with an almost exactly Gaussian kernel,

and the width of this kernel increases with A. We may use

this result by exploiting a fundamental connection be-

tween the minimum of an energy functional and the

operating point of a circuit. It is known from circuit

theory that Kirchhoff’s laws and the constituent relations

of the components drive a network to a state of minimum

energy dissipation, so it is reasonable to construct a

network whose energy dissipation is described by (l). The

network equations may be obtained directly by setting the
derivative of the right-hand side of (1) to zero.

Using a discrete estimate of the second derivative in

(l), we get

j j

where ~. = U(x = j). This is a quadratic form, and there-

fore has a unique minimum where dE/dLJ = O for all j, so

o=2(~-~)+A;~(U+l+q.1-2q)2for all j.
11

(3)

-R2 -R2 -R2 .R2

Fig. 2. ID mesh with negative resistors between second nearest neigh-

bors produces a cmvolution with a flat top.

Differentiating the terms in the sum and noting that

d~./dL$ = O if i #j,

o=(q–y)+A(6q -4(q.l+q+l) +(q-2+q+2)).

(4)

This describes the node equations of a one-dimensional

mesh [17] consisting of positive resistors (1? ~) connecting

nearest-neighbor nodes (i.e., j – 1, j and j, j + 1), negative

resistors ( – R2 = – 4R1) connecting second nearest

neighbors, and resistors R. = AR ~ to ground from every

node, which are the leakage resistors described previously

in the qualitative model (Fig. 2). The ~. correspond to

voltage excitations in series with the leakage resistors.

The network will produce as an array of node voltages

(1+) the convolution of the array of excitation voltages (~)
with a Gaussian kernel whose width is controlled by A. If

{~} were a set of photovoltages consisting of samples

along a scan line through an image, the output set of

voltages produced by the network would be the smoothed

scan line.

The desired smoothing in an image, however, must take

place across two dimensions. To obtain this, samples of a

2D image as a matrix of photovoltages should drive a

two-dimensional mesh to obtain the desired result. The

one-dimensional prototype of a Gaussian convolution

mesh must then be extended to implement the kernel

with circular symmetry in two dimensions. Noting, for

instance, that a two-dimensional Gaussian function

G(x, y) is separable, that is, G(x, y) = G(x). G(y), the

desired 2D convolution may be obtained by driving an

array of lD meshes parallel to the y axis with the matrix

of sampled photovoltages, and an identical array of lD
meshes along the x axis with the matrix of buffered

outputs from the first array. This is not very efficient in

hardware, because each mesh must have independent

active circuits to produce the negative resistances, and an

intermesh buffer must be used at every node.

Another possible implementation on a 2D rectangular

grid is to connect every node to its four nearest neighbors

oriented 9(P apart with resistors RI, and the four second

nearest neighbors at the same orientations with resistors

– R2. The simulated spatial impulse response of this

network decayed more rapidly along the diagonals than

axially, producing an unacceptably large deviation from
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Fig. 3. (a) Extension of the mesh to 2D on a hexagonal grid produces (b) the best circular symmetry in the convolution
kernel.

circular symmetry. A better circular symmetry was ob-

tained by adding similar positive and negative resistive

connections along the four diagonal directions, but

weighted four times larger in magnitude. It became evi-

dent that a large number of components would be re-

quired to contrive circular symmetry on a rectangular

grid, but not so on a hexagonal grid which inherently

possesses a circular symmetry. The image must also be

sampled on a hexagonal grid for compatibility with the

mesh, “which now consists of equal resistive connections

6@ apart in orientation to nearest and second nearest

neighbors. A hexagonal grid affords the greatest spatial

sampling efficiency in the sense that the least photorecep-

tor sites will attain a desired coverage of the image [181,

and the fewest network elements will yield the desired

circular symmetry (Fig. 3(a)). The latter was verified in

the simulated convolution kernel of this 2D network (Fig.

3(b)).

We required the kernel width to be variable by a factor

of 2 under user control. That the convolution width

depends on the ratio RO /R1 was known from the synthe-

sis procedure, but the strength of this dependence was

not, Simulations of the network showed a weak depen-

dence (Fig. 4)

()
1/4

Convolution width a ~ .
1

(5)

It was simplest in terms of implementation to keep RI

and Rz fixed to preserve the Gaussian shape, and make

RO alone variable by 16:1 to obtain the desired 2:1

variation in smoothing width.

Several aspects of this design procedure and simulated

results invite analysis. Is there a systematic way to gener-

alize a lD mesh prototype with circular symmetry to 2D?

Is the characteristic function of this combination of posi-

tive and negative resistors stable in space (i.e., does it

decay rather than oscillate indefinitely)? Stable in time?

Can the network be generalized to other convolution

functions? What is the analytical relation between the

width of the convolution function and the network ele-

ments? We have answered some of these questions else-

where [19].
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Lambda

Fig. 4. The width of the convolution kernel increases as the l/4th

power of the grounded resistor.

III. CIRCUIT DESIGN

The practicality of implementing this signal processing

technique depends greatly on whether it is realizable on a

standard (digital) CMOS IC process. We discuss now the

circuit design of the required components, including the

photosensors, and the special considerations for layout of

this highly interconnected 2D network as a monolithic

integrated circuit.

Inuut Circuit

Photo-Transistor
Light

Light Vdd
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Fig. 5. The vertical bipolar transistor in a CMOS well produces loga-
rithmic compression at the gate voltage by a MOSFET in subthreshold.
A transconductance buffer drives the network.
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A. Logarithmic Photoreceptor

An image focused on the chip surface maybe sampled

by a matrix of photoreceptors, one at every node of the

network. The intensity across a simple image may vary by

two to three orders of magnitude in a Iaboratoty environ-

ment, more in natural backgrounds, so a linear photore-

ceptor, which converts the intensity to a proportional

voltage or current, would drive the active circuits in the

network into saturation. A logarithmic photoreceptor is

II = K[(VC - Vt) Vin -~Vin2]
(in triode region)

12= K[(Vc+Vin -Vt)Virr-~Vin2]

1=11+12= 2K[Vc-Vt]Vin

Fig. 6. The linearized variable resistor, with implementation of gate

bias.

therefore required, and as studies on image Processing level-shift PMOS driving a resistively degenerated

have shown, perfectly adequate for the task on hand [3]. NMOSFET, which appears to the photoreceptor as a
photosensing is most economically obtained using the voltage-controlled current source (Fig. 5).

parasitic vertical bipolar in a CMOS well as a phototran-

sistor, whose collector current becomes proportional to

the light intensity incident on the collector junction along

the well bounda~. This may be compressed into a loga-

rithmic voltage by a diode-connected MOSFET biased in

the subthreshold region by the small photocurrent density

produced under room lighting conditions. A compact

logarithmic photoreceptor is in this way obtained with a

two-transistor circuit [20], [21] (Fig. 5).

Although the stimulus to the prototype network in the

discussion above was a voltage source in series with the

variable resistor RO, the circuits for the photosensor out-

put and RO (described below) are naturally grounded on

one end, so the Norton transformation must be invoked

to convert the stimulus into a parallel combination of a

grounded current source and a shunt resistor. A transcon-

ductance photoreceptor buffer was used, consisting a

B. Variable Resistor

The width of the convolution kernel is set by a resistor

RO, whose value should ideally be continuously variable

under user control. A single MOSFET operating in triode

region used as a variable resistor would introduce an

undesirable parabolic nonlinearity in the 1 – V character-

istics. Two MOSFET’S in parallel obeying the simplified

square law equations, however, can exactly cancel each

other’s parabolic nonlinearity in the triode region of oper-

ation if their gate biases are applied in a particular way,

and the resulting linearized resistance is controlled by the

bias. We used this as the variable resistor (Fig. 6). The

floating-gate bias voltages were obtained as the V& of

source-follower FET’s carrying a control current.
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Fig. 7. (a) An NIC inverts the polarity of a resistor. (b) One NIC
serves all resistors converging on a node.

The mean network voltage at a given level of ,photosen-

sor illumination will change with the convolution width:

for example, when the convolution width is decreased by

making all RO large, the mean voltage will also increase

because the buffered photocurrents will flow into larger

resistors. This will impose the unnecessary demand of a

large common-mode range of operation in active circuits

such as RO. We used a scheme to normalize the network

inputs by slaving the buffer transconductance of the loga-

rithmic photoreceptor proportionally to RO, so as to

maintain a constant mean network voltage at all illumina-

tions.

C. Network Resistors

The 5-kfl resistors for the nearest-neighbor internode

connections in the network were implemented using p-well

diffusions. A Gaussian convolution kernel would be ob-

tained in spite of tolerances in the p-well resistivity as

long as the relative magnitude of the positive and nega-

tive resistors remains 1:4. To make this ratio on the chip

depend only on geometry, both RI and Rz were imple-

mented in the same material, p-well diffusion, and a

negative impedance converter (NIC) was attached to R2
to invert its polarity.

Our NIC implementation (Fig. 7) consists of the combi-

nation of a voltage follower and current inverter. The

op-amp-based followers at each end of Rz impose across

it the potential difference at their inputs, and the result-
ing current flow, forced through the Class-B type output

stages, is sourced from or sunk into the positive or nega-

tive power supply. Current mirrors in series then apply

the same current at the input leads of the followers,

inverting the sense of current flow as perceived at the

network nodes. A negative resistance – R2 is presented

to the network.

Six negative resistors converge on every node in this

hexagonal mesh. Six different NIC’S are, however, not

required at each node; instead, a single NIC placed at the

node after the confluence of the resistors will simultane-

ously make them all negative (Fig. 7(b)). The dc gain in a

simple five-FET op amp was large enough to obtain

accurate inversion of the resistor 1– V characteristics and

eliminate the crossover nonlinearity in the Class-B stage.

The NIC at every node thus contained only 11 FET’s.

D. Layout Considerations

A key concern in the implementation of this network as

an IC is whether the usual two layers of metal and one of

polysilicon can implement the starlike fan-out of intercon-

nections emanating from every node. We proved to our-

selves at the outset of this work that this was possible. A

hexagonal grid was obtained by horizontally staggering

successive rows of cells, and their interconnections imple-

mented on a Manhattan geometry (Fig. 8(a)). All three

available layers of interconnect were used to create abut-

table cells. The power, ground, control, and output rails

ran parallel to these rows from edge to edge of the chip.

A unit celI, including its portion of interconnect, mea-

sured 170 X 200 ~m in 2-pm CMOS (Fig. 8(b)). The area

of the photoreceptor collector–base junction, the blank

rectangle in the cell layout at the lower left, measured

56X 24 pm. No wires were allowed to traverse the photo-

sensor because metal would absorb the incident light.

Parasitic photocurrents generated in the source/drain

junctions of other active circuits would have negligible

effect on the voltages at the low-impedance nodes there.

We observe finally that the active circuits occupied only

57% of the cell area, a measure of the toll exacted by the

richness of interconnect in this circuit.

E. Output Means

This convolution network accepts a 2D input in the

form of an incident image, does 2D signal processing

across the resistive mesh, but on a standard IC is re-

stricted to ID output at the pins along the periphe~. The

output therefore must be read at the pins (Fig. 9) by

accessing one row of nodes at a time, and, at least in this

implementation, becomes the bottleneck to the through-

put rate. Addressable MOS switches were used to con-
nect every node to output lines, and on-chip vertical

bipolar transistors connected as emitter followers served

as analog buffers at the pads. The speed of signal process-

ing was determined by the relaxation time of this un-

clocked network, but a clock was introduced at the output

to scan out the rows. To relieve this bottleneck, one can
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Fig. 8. (a) The layout of interconnects among a cluster of seven cells
on a hexagonal grid; the blank areas contain the photoreceptor and
associated active circuits in each cell. (b) Unit cell layout.
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Fig. 9. Output mechanism. The network has 2D input, accomplishes
2D signal processing, but is forced to output results in ID.

envisage connecting several 2D computational IC’S per-

forming a cascade of low-level vision tasks, with micro

solder balls joining together matrices of pads on their

surfaces, or through via holes on the back sides of the

chips. This technique, originally developed for “flip-chip”

mounting, is used at very high densities today to mate 2D

focal plane array sensors to active substrates [22]. Once

the desired data reduction has taken place at the output

Fig. 10. Chip photograph.

of the such a cascade of chips, a few high-level outputs

containing image features could be scanned out in paral-

lel on pins with no loss in throughput speed.

IV. EXPERIMENTAL RESULTS

We were able to fit a 45x 40 array of unit cells on a

7.9 x9.2-mm die, the largest die size available to us

through the MOSIS foundry service. Power supplies of

+ 5 and – 5 V were used, mainly for convenience in

circuit design; the circuits could be modified with a minor

effort for operation on a single 5-V supply. The fabricated

chip (Fig. 10) contained more than a 100000 transistors

and was fully functional.

The network response to optical input was measured by

shining light on the exposed chip, and reading the outputs

using a specially developed interface board under control

of a personal computer. An array of analog column volt-

ages along an addressed row were digitized and stored,

and the smoothed output image reconstructed on the

computer screen after all rows had been scanned.

A. Component Characteristics

Test circuits were included to independently verify op-

eration of some of the key building blocks in the network.

The log compression FET and the transconductance

buffer following the photosensor gave the desired log-lin-

ear relationship across 2.5 decades of photocurrent (Fig.

1 l(a)). The variable resistor could be changed by the

control current by a factor of 16:1 in magnitude, from 20

to 320 kfl (Fig. n(b)). The network simulations described
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Fig. 11. Measured characteristics of the component circuits: (a) loga-

rithmic compression at the photoreceptor output (Vd) versus photocur-
rent; (b) the variable resistor, which becomes nonlinear when one FET
goes from triode to saturation; and (c) the negative resistor.

previously predict that this would yield the desired 2:1

variation in convolution width. A strong nonlinearity in

the 1– V characteristics appeared for voltages larger than

0.3 V, but we had designed the range of the network

voltages not to exceed this value under normal illumina-

tion. A negative resistor of the desired value was also

obtained (Fig. 1l(c)), with very little observable nonlinear-

ity at applied voltages of 0.3 V of either polarity.

B. Response to Optical Inputs

The network function was characterized with two sim-

ple incident images, a pinhole excitation representing a

spatial impulse, and the character “T.” The images were

produced on the chip surface by light transmitted through

Input Image Output Image Convolution Kernel
1

,; 1~
.>!. ,,!0,, . . . . .

Narrow

Fig. 12. Measured convolution kernel of the network. The measured
network stimulus is deconvolved from the output. Dashed lines superim-

posed on output show the numerical smoothing used.

.200:
4a

Node
(a)

160,

.20J ~ I
10 15 20 25 30 35 40

Node
(b)

Fig. 13. The uniformity of output (a) across one chip, and (b) between
three chips.

a mask used in place of the lid on the cavity of the

ceramic PGA package. We had also made provision on
the IC to measure the actual compressed signal driving

the network, so that the true network function could be

obtained by deconvolving it from the measured output.

The convolution kernel was thus deduced from mea-

surements of the network input and output (Fig. 12). It

was difficult at this sampling resolution to accurately
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Fig. 14. (a) Measured outputs at two different smoothing widths on

character “T.” (b) Uniformity of network action versus rotation.

ascertain that it was a Gaussian function, but the charac-

teristic inflection in the function as it approaches the

peak value was evident. This would not appear unless the

network contained negative resistors. We were able to

change the full width at half maximum of the kernel by a

factor of 2, from 4.7 to 9.4 pixels wide, by changing RO

across its full span with the control current. The network

output was most noisy at its tails at minimum RO, and we

had to use smoothing in the sense of a least-mean-square

fit to deduce the kernel function. Light through the

pinhole nominally sampled only a small neighborhood on

the chip; we moved the pinhole to points on the chip
either side of the center, and found an acceptable uni-

formity in the response (Fig. 13(a)), which is determined

here by MOSFET matching across the extent of the chip

surface [23]. The slight uptilt of the output at the ends of

the measured response was caused by the edge effect

when the network terminates at the chip boundaw. The

uniformity across three chips was also acceptable at this

sampling resolution (Fig. 13(b)), except for one chip where

a particularly large uptilt appears.

The smoothing effected by the network on a character

“T” was also measured (Fig. 14(a)), and its symmetry
after rotations relative to the chip axis verified (Fig.

14(b)). Both were satisfacto~. ‘
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(a) An 8 X 8 subnetwork simulated at the transistor level onFig. 15.

SPICE, and (b) at various distances away from excitation, showing
settling within 2 p.s.

Precautions were required in making the measurement

to compensate for the effects of the 2-W power dissipa-

tion when no heat sink was mounted on the package. This

large power dissipation produced a thermal gradient

across the IC, peaked at the center with circularly sym-

metric isotherms spreading out towards the chip bound-

ary. We deduced this from a corresponding pattern in

photoreceptor dark currents, which appeared as a stimu-

lus to the network in the absence of an optical input. This

had to be calibrated and subtracted from all measure-

ments to obtain the true optical response. We emphasize

that this relatively large power dissipation was not funda-

mental to the network; 75% of it was due to an unneces-

sarily large bias current in one building block, the control

circuit for the variable resistor. A further reduction in

quiescent power could be obtained by devising a voltage

drive to the network nodes, because the current sources

in the present implementation produce some steady power

dissipation through RO, even when the chip is not illumi-
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TABLE I
ELECTRICAL CHARACTERISTICS

Photosensor sites 45x 40
Sampling geometry Hexagonal

Area per pixel 170 X200 pm

Rise time of network (l@90yo) 2 ps

Rise time of photosensors 20 #s

Width of convolution (FWHM) 4.7–9.4 pixels

Chip size 7.9 x9.2 mm
Technology 2-pm CMOS, single poly,

double metal
Power dissipation 2 W (75% in one function block)

nated. The power dissipation could be made even smaller

by scaling down all the currents in the IC, but at a

trade-off of longer relaxation times.

The settling time of the entire network in response to a

step input from the photoreceptors determined the 2D

computational speed. For all practical purposes, a step

change in a photoreceptor has only to propagate a few

nodes away before the decay in the convolution function

will swamp it out, and the voltages at nodes farther away

will remain relatively unchanged. We simulated an 8 X 8

subnetwork at the transistor level on SPICE, and the

results indicated settling in less than 2 KS in response to a

step in photocurrent (Fig. 15). However, a settling time of

20 KS was experimentally observed in response to illumi-

nation from a light chopper, which we surmise was domi-

nated by the slow response of the phototransistors [20].

The graceful settling in the transient SPICE simulation

verified the stability of the network response in time. A

similar waveform of the settling of node voltages was also

observed experimentally.

The electrical performance of the Gaussian convolution

IC is summarized in Table I.

V. CONCLUSIONS

Parallel processing of images per pixel will offer the

highest possible speed in functions related to low-level

vision. This is indeed the present trend in real-time hard-

ware for digital image processing. We have described a

single-chip analog implementation of this concept to per-

form a Gaussian convolution with the use of an active

mesh. Although it may be argued that a variable focus

lens also effects this function, there are two significant

differences: the active resistive mesh may be extended to

many different convolution functions, including orienta-

tion selective ones [19], most of which cannot be simply

implemented with geometric optics; furthermore, no me-

chanical system could attain the physical compactness and

microsecond control of the convolution functions. The

difference in output of two independent meshes on the

same chip, for example, could implement the much sought
after difference of Gaussian function in image processing

[3]. In short, the notion of an active mesh opens many

new opportunities for realizing application-specific analog

signal processors. Digital signal processors have as advan-

tages an immunity to component noise and mismatches,

more ready programmability, and shorter development

times, but tend to be considerably larger chips than their

analog equivalents. On the other hand, inaccuracies in

analog computation may not be limitations in low-level

vision functions, but much more of a detriment in high-

level classification tasks. This leads us to believe that

compact hardware with the least power dissipation to

implement real-time image recognition and classification

may ultimately consist of a judicious mix of analog comp-

utation of the type described here, and conventional

digitaI signal processing.
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