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Spatial Versus Temporal Stability Issues 
in Image Processing Neuro Chips 

Takashi Matsumoto, Fellow, IEEE, Haruo Kobayashi, Member, IEEE, and Yoshio Togawa 

Abstract-A typical image processing neuro chip consists of a 
regular array of very simple cell circuits. When it is implemented 
by a CMOS process, two stability issues naturally arise: 

i) Parasitic capacitors of MOS transistors induce the temporal 
dynamics. Since a processed image is given as the stable 
limit point of the temporal dynamics, a temporally unstable 
chip is unusable. 

ii) Because of the array structure, the node voltage distribu- 
tion induces the spatial dynamics, and it could behave in a 
wild manner, e.g., oscillatory, which is highly undesirable 
for image processing purposes, even if the trajectory of the 
temporal dynamics converges to a stable limit point. 

The main contributions of this paper are (i) a clarification of the 
spatial stability issue; (ii) explicit if and only if conditions for the 
temporal and the spatial stability in terms of circuit parameters; 
(iii) a rigorous explanation of the fact that even though the 
spatial stability is stronger than the temporal stability, the set 
of parameter values for which the two stability issues disagree is 
of (Lebesgue) measure zero; and (iv) theoretical estimates on the 
processing speed. 

I. INTRODUCTION 

A, Motivation 

HIS study has been motivated by the temporal versus T spatial stability issues of an image smoothing neuro chip 
[l]. The function of the chip is to smooth a two-dimensional 
image in an extremely fast manner. It consists of the 45 x 40 
hexagonal array of very simple “cell” circuits, described by 
Fig. 1. An image is projected onto the chip through a lens 
(Fig. 2) and the photo sensor represented by the current source 
in Fig. 1 inputs the signal to the processing circuit. The 
output (smoothed) image is represented as the node voltage 
distribution of the array. With an appropriate choice of go > 0, 
g1 > 0, and g2 < 0, the chip performs a regularization with 
second-order smoothness constraint and closely approximates 
the Gaussian convolver, which is known to have an op- 
timal S/N as a preprocessor for edge detection [2], [3]. 
(APPENDIX IV explains why a regularization with second- 
order smoothness constraint demands negative conductance.) 
Conductance go is designed to be variable in order to control 
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the width of the Gaussian-like kernel. In engineering terms, 
this is a noncausal infinite impulse response (IIR) realization of 
a Gaussian-like convolver instead of a finite impulse response 
(FIR) realization, and this structure accomplishes high-speed 
processing while maintaining simplicity. The reader is referred 
to [ l ]  for responses actually measured from the chip. 

Since the negative conductance g2 < 0 is involved, two 
stability issues naturally arise: 

(i) Because the chip is fabricated by a CMOS process, 
parasitic capacitors induce the dynamics with respect to 
time. This raises the temporal stability issue of whether 
the network converges to a stable equilibrium point. 

(ii) Because a processed (smoothed) image is given as 
the node voltage distribution of the array, the spatial 
stability issue also arises even if the temporal dynamics 
does converge to a stable equilibrium point. In other 
words, the node voltage distribution may behave in a 
wild manner, e.g., oscillatory. 

In discussing relationships between the temporal and the 
spatial stability issues, several precautions need to be taken. 
In particular, it is important to realize that while the tem- 
poral dynamics is causal, i.e., t 2 0, the spatial “dynam- 
ics” (a precise definition will be given later) is noncausal. 
Namely the spatial dynamics can go into the negative di- 
rection as well as the positive direction. Furthermore, the 
spatial dynamics is not an initial value problem but rather 
a boundary value problem which gives rise to several delicate 
issues. 

Our earlier numerical experiments on these issues were 
rather intriguing. The results suggested that the network is tem- 
porally stable “if and only if” it is spatially stable. Fig. 3 shows 
spatial impulse responses at different sets of parameter values. 
For the sake of simplicity, the network is of a linear array 
instead of a two-dimensional array. The network has 61 nodes 
and the impulse is injected at the center node. Fig. 3(a) 
suggests that the network can be used for image smoothing 
because the response to an impulse is “bell-shaped.’’ In fact, 
the Gaussian-like convolver chip [ l ]  corresponds to Fig. 3(a) 
where go is variable. Fig. 3(b) indicates that it can enhance 
contrast of an input image after smoothing because it inhibits 
the “surround” responses in addition to smoothing. Fig. 4 
shows the corresponding temporal step responses of the center 
node. For simplicity, the only parasitic capacitors taken into 
account are those from each node to the ground. The responses 
shown in parts (a) and (b) of Fig. 4 are temporally stable 
while part (c) is not. Fig. 3(c) is spatially unstable because the 
response does not decay, which is highly undesirable for image 
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Fig. 1. The image smoothing neurochip. Only one “unit” is shown. 

processing purposes. (A precise definition of spatial stability 
will be given later.) All of our earlier numerical experiments, 
including those shown in Fig. 3 and Fig. 4, suggested the 
equivalence of the two stability conditions. However there are 
no apriori reasons for them to be equivalent. As will be shown 
rigorously, the two stability conditions are not equivalent. The 
spatial stability condition is stronger than the temporal stability 
condition. Nevertheless, the set of parameter values (go, g1,g2) 
for which the two stability conditions disagree turns out to 
be a (Lebesgue) measure zero subset, which explains why 
our numerical experiments suggested equivalence between the 
two conditions. (A measure zero subset is difficult to “hit”). 
We will prove, in a very general setting, that the network 
is temporally stable if and only if it is spatially regular, a 
new concept which is weaker than the spatial stability, and 
it amounts to a decomposability of eigenvalues of a matrix 
describing the spatial dynamics. Explicit analytic conditions 
will be given for the temporal as well as the spatial stabilities 
in a general setting. Also given is an estimate on the speed of 
temporal responses of the networks. 

Since our results are proved in a general setting, they can 
be applied to other neural networks of a similar nature, e.g. 
oriented receptive field filters [4] and Gabor filters [5] ,  which 
we intend to pursue in our future projects. The results in this 
paper, however, are only for linear array cases. Extensions to 

future paper. 

OUTPUT 

Fig. 2. A schematic diagram. 

B. Related Works 

two-dimensional array cases are nontrivial and are left for a A serious stability is Performed in L61 for lateral 
inhibition networks that are present, at least partly, in most 

7 
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Fig. 3. Spatial impulse responses with n = 61, rn = 2 ,  ]/go = 200 kR, 
l / g i  = 5 kR, U 3 1  = 10 PA, u k  = 0 for IC # 31. (a) 1/92 = -20 kR; 
stable. (b) l/gz = -18 kR; stable. (c) 1/92 = -17 kfl; unstable. 

of the early vision chips, e.g., [7]-[14] and the networks 

,) /-1 considered in the present paper. Each node has conductance 
connections only with immediate neighbors. However, the 
MOS capacitors, nonlinearities of MOS conductances, and 

the design, oscillations. On the one hand, the problem in 
[q is difficult than the one discussed in this paper 
because nonlinearities must be taken into account. On the 
other hand, it is simpler in the sense that each node has 
connections only with its immediate neighbors. In [6] sev- 
era1 sufficient conditions are given for temporal stability 
using a rather interesting argument. We close this section 
by noting that the observation was made in [15] that ac- 
tive conductances can cause instability in early vision neural 
networks. 

’ ? I ’  

111 i 
TI\IE I V S I  

amplifiers in the input circuit could cause, depending on Ijl  I1 

Fig. 4. Temporal step responses of the center node U31(t) with n = 61, 
rn = 2, ] / g o  = 200 kR, l / g ~  = 5 kR, CO = 0.1 pF, 

t < 50 ps 
U 3 1 ( t )  = (YO p A  t > 50 ps 

u k ( t )  3 0 for k # 31. (a) 1 / 9 2  = -20 kRTstable. (b) l /g2 = -18 kR; 
stab]e, (cl l/gz = -17 kR; unstable, 

11. STABILITY-REGULARITY 

Subsection A explains how the temporal and the spatial 
dynamics are described. It is pointed out that the boundary 
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conditions should be carefully examined for the spatial dynam- 
ics. Subsection B characterizes the spatial dynamics in terms 
of the eigenspaces of the matrix describing the dynamics. The 
first main result, Theorem 1, clarifies conditions under which 
spatial responses behave properly. In particular, it states that 
in addition to a condition on the eigenvalues of the matrix 
describing the dynamics, another condition on the boundary is 
necessary. In subsection C the second main result, Theorem 2, 
reveals a fundamental relationship between the temporal and 

defined. Propositions 2 and 3 give the stability as well as the 
regularity criteria in terms of the characteristic polynomial of 

the spatial dynamics by showing that a network is temporally 
stable if and only if it is spatially regular, a new concept to be 

the matrix describing the spatial dynamics. 

where 

A =  - 

. 

. 

. 

. 

. 

. 

A. Formulation 

Consider a neural network consisting of a linear array of 
n nodes where each node is connected with its pth nearest 
neighborhoods, p = 1, . . . .  m < n via a (possibly negative) 
conductance g p  and a capacitance cp. Fig. 5 shows the case 
where m = 3. The network is described by 

where vi and ui are the voltage and the input current at the 
ith node, and 

M = { p  integer 1IpI 5 m} (2)  
/ m \  

(3) 

bo = CO + 2 c p  (4) 
p =  1 

bhp = - cp ,  1 5 p 5 m. 
Equation (1) is obtained simply by writing down the 
Kirchhoffs current law (KCL) at each node. Letting v = 

one can recast (1) as 

T 
( V I ,  . . . .  v,) and U = (‘1~1, . . . .  u ~ ) ~  (T denoting transpose), 

dv 
d t  B -  = A v + u  (5 )  

B =  
b, 0 . .  . . . . . . . . . . . .  

(7) 

Note that A as well as B is symmetric and has a uniform band 
structure, which, as will be seen, yields interesting properties. 
If B is nonsingular, an equilibrium point of (5) satisfies 

- apv;-p = ui (8) 
PEM 

which is a difference equation instead of a differential equa- 
tion. Assuming that am # 0, one has 

vi+, = - - 
am 

Therefore, letting 

~~. 

r 0  1 0  ......................... 0 
0 

F =  

0 0 . . . . . . . . . . . . . . .  
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Fig. 5.  Network described by (1) when 7~ = 3. 

with v 
( b) T 2 m  E 1R x k  = ( v k - m r  v k - m + l r  ' '  ' r V k r  ' '  ' r V k + r n - l )  

y k  = (0, ' ' '  0, - u k / a m )  
T Fig. 6.  Boundary conditions with nz = 2 (a) The circuitry at the right end. 

E ]RZm (b) A modification of the boundary conditions establishes consistency. 

one can rewrite (9) as 

x k + l  = Fxk + Y k  (11) 

Observe that subscript k in (11) is not time. Equation (11) 
represents the spatial dynamics induced by the temporal dy- 
namics (5). Note also that dim w = n, the number of nodes, 
while dimzk = 2m, the size of the neighborhood, which is 
independent of n. 

In image processing, input is U while output is ~(co ) ,  the 
stable equilibrium point of (5). Equation (11) describes how 
the coordinates of v(m) are distributed with respect to k .  
There are several issues that need care. 

First, the temporal dynamics given by (5) constitute an 
initial value problem while (8) or (11) is a boundary value 
problem. Namely, arbitrary w(0) and U( .) completely deter- 
mine the solution to (5) while for (8) or ( l l ) ,  one cunnor 
specify (for a given { y k } )  an arbitrary xo because a solution 
x k  must be consistent with the KCL's at the end points. 
Furthermore, the temporal dynamics given by (5) are causal; 
i.e., a solution at time t does not depend on the future. The 
spatial dynamics given by ( l l ) ,  however, are noncausal; i.e., 
a solution at node k depends on both the right-hand-side and 
left-hand-side neighbors. In order to be more specific, let us 
look at Fig. 6(a), where the right end point is shown with 
m = 2 ,  -K 5 IC 5 K ,  n = 2K + 1. Capacitors are omitted 
for the sake of simplicity. KCL's at the Kth and ( K  - 1)th 
nodes are, respectively, 

The right-hand sides are nonzero when independent current 
sources are present. These equations define a two-dimensional 
linear subspace to which the boundary state X K  must belong. 
Another two-dimensional constraint is imposed at the left end. 
If these constraints are independent (generically they are), then 
a four-dimensional trajectory xk E R4 is uniquely defined. 

For a general m, there are m boundary conditions at the 
right end and there are another m conditions at the left end. 
An impulse response of (ll), for instance, is determined in the 
following way. Let y o  # 0 whereas y k  = 0 for IC # 0 and 
consider XO, which is to be determined. Let R2" 2 T+ (resp. 
T-)  be an m-dimensional linear subspace to which X K  (resp. 
X - K )  must belong. Then 

XK = FKxo + FK-lyO E T+ 

X - K  = F P K x 0  E T-. 

(134 

and 

(13b) 

determine 2 0  provided that T+ and T- are independent. Other 
x k  's are determined by 

Moving to the second issue, observe that the boundary 
conditions (12) are not consistent with the temporal dynamics 
(5) because the last two equations of an equilibrium are 
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respectively. We will assume, throughout, that this type of 
modification is always done. 

Here, we are slightly abusing our notations of K and n. 
There will be no confusion, however. The difference between 
(12) and (14) lies in the coefficients of the first terms. By a 
slight modification of circuit parameters, one can make (1 1) 
consistent with (5). That is, if one replaces the last two go's 
in Fig. 6(a) with go + g1 + g2 and go + g 2 ,  respectively, as in 
Fig. 6(b), then it is consistent with (5). For a general m, one 
can maintain the consistency of (11) with (5 )  by replacing the 
last m go's by 

g1 

(a) 

p = l  p=2 - - 

I". T n  

90 f Q p .  go + g p ; .  . . , go + gm (15) K-1 K 
7 7 1 

eigenvalues of F lie inside the unit circle" does not work 
because F has a special structure (see (42) below): 

A 0 

does not work either, because (16) is always satisfied. As was 
shown in Fig. 3(c), Zk can behave in a wild manner even if 
n = 2 K  + 1 is finite, which is highly undesirable for image 
processing purposes. 

Finally, there is another problem concerning the finiteness 
of the network size n. Since A and B are symmetric, all 
eigenvalues are real. Thus, given a fixed n, while it is 
easy to say that (5 )  is asymptotically stable iff B-lA is 
negative definite, it is very hard to derive analytical (a priori) 
iff conditions for negative definiteness even with m = 2. 
One can derive, however, an interesting analytical condi- 
tion if one looks for negative definiteness of B - l A  for all 
n. Section I11 gives extremely simple analytical conditions 
for the temporal stability. With these conditions, a designer 
is guaranteed to have a stable network independent of the 
number of nodes. Without these conditions, a designer must 
compute all the eigenvalues of B-lA. If one or more of 
the eigenvalues turn out to be nonnegative, one has to re- 
compute the eigenvalues with a new trial set of parameter 
values. One also has to recompute eigenvalues when the 
network size is changed in response to certain design con- 
siderations. 

Definition I :  A neural network described by (5) is said to 
be temporally stable if B - l A  is negative definite for all n. 

B. Spatial Dynamics 

As was explained in subsection A, care needs to be exer- 
cised in studying the spatial dynamics (11). Let X s l ,  Xcz, and 

respectively, and let E", E", and E" be the (generalized) 
eigenspaces corresponding to Xsz, Act, and Xuz , respectively. 
They are called stable, center, and unstable eigenspaces, re- 
spectively. Let E = R2". Then [16] 

E = E" @ E c  @ E" (17) 

where @ denotes a direct sum decomposition, and 

F(E") = E", Q = s . c , u ,  (18) 

i.e., E", E", and E" are invariant under F .  

stability while maintaining consistency with (16) when K 
+m. 

Definition 2: A neural network described by (11) is said 
to be spatially stable if F is hyperbolic, i.e., if the center 
eigenspace E" in (17) is empty. 

Remark 1: Another way of saying this is that all the eigen- 
values of F are off the unit circle. Of course, eigenvalues can 
be outside the unit circle. Note that this definition does not 
depend on the network size n = 2 K  + 1. 

It is known that a noncausal linear system is stable in 
the sense of (16) iff its transfer function (in the frequency 
domain) has no poles on the unit circle. This, however, is 
when K 1' +cc and when there are no boundary conditions. 
One perhaps wants to argue (as, in fact, the authors did when 
they initiated the present study) that if the network size is 
sufficiently large, the behavior would be similar to that of the 
infinite case. This is simply wrong, as will be indicated by the 
following examples. 

Our task here is to give an appropriate definition of spatial 
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Fig. 8. Significance of boundary conditions. (a) Impulse response for Fig. 7(a) with go = g, g1 = 2g, l / g  = 50 k 0 ,  
2131 = 0.1 PA. (b) Impulse response for Fig. 7(b) with the same data except for gt = -9, ~ 3 1  = 0.1 PA. 

Example 1: Consider the simplest case, m = 1 in (11) with 
go = g, g1 = 29, g > 0 (Fig. 7(a)). Then 

F = [ ’  -1 4 ‘1 
and F is hyperbolic because eigenvalues are XI = 1/2 
and XZ = 2. Fig. 8(a) shows the impulse response when 
l / g  = 50 kR, where the impulse is injected at the center 
node. Let us now replace the rightmost go and the leftmost go 
with gt = -g as in Fig. 7(b). The impulse response is then 
given by Fig. 8( b), which “explodes” in the negative direction 
as Jkl increases. Note the difference of the voltage units. In 
both cases, the input current injected to the center node is the 
same and very small: 0.1 PA. It should be emphasized that the 
only difference is in the two gt7s, and the explosion happens 
in whichever way the network size is large. In fact, in our 
simulation with n = 61, an overflow occurred. 

If the reader says that changing gt = g > 0 to -g < 0 is 
unnatural, the following example shows the case in point. 

Example 2: Consider Fig. 7(a) again with go = g > 0 and 
g1 = -g/8. Since eigenvalues of F are -3 f 2&, F is 
hyperbolic, and Fig. 9(a) shpws the impulse response with 
l / g  = 100 kR. Next replace the rightmost and the leftmost go 

1/2 - withgt=go-(g$+4gog1) - g ( 1 - 1 / & )  > o  
341 kR). The impulse response is given by Fig. 9(b), which 
again explodes. In both cases the input at the center node 
is 1 PA. Observe that since g1 < 0 the stability issues 
are already nontrivial with m = 1. The stability issues for 
this example will be checked theoretically in Section I11 (see 
Example 5). 

There is another story about spatial responses. Our simu- 
lation results indicate that spatial responses behave quite 
properly even if the gt value is varied by a large amount. 
Namely, parts (a) and (b) of Fig. 3, Fig. 8(a), and Fig. 9(a) 
are very robust against variations of gt from go. 

Thus, two fundamental questions concerning the spatial 
dynamics must be answered: 
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Fig. 9. Impulse response can explode even when gt > 0. (a) Impulse response for Fig. 7(a) with go = g, gi = -g/S, 
l/g = 100 kQ, U31 = 1 PA. (b) Impulse response for Fig. 7(b) with the same data except for gt = g(1 - 1/fi). 

1) Why does a particular gt value give rise to explosion 
of impulse responses even if the eigenvalues are off the 

This means that X k  explodes as Ikl increases. For the network 
of Example 1 one can easily show that 

unit circle? 

range of gt values? 
2) Why do impulse responses behave properly over a wide 

One can answer the first question easily. Recall (13) and When St = -g in Fig. 7(b), KCL at the Kth (resp. - ~ t h )  
Observe that a spatial response X k  depends not only on the 
input Y k  but On the boundary conditions T+ and T-. 

node reads 29vK-1 - guK = 0 (resp. gv-K - = O), 
which implies (19). The situation is the Same for Example 2. 

Therefore, if Another way of looking at Fig. 8(b) is to consider Fig. 10, 
where Fig. lO(a) is the original network and Fig. 10(b) shows 
that an equivalent conductance, g,,(K), as seen from node 
K - l i s  

T+ = E" (resp. T- = E")  (19) 

then ZK (resp. X - K )  is forced to lie in E" (resp. E").  
E Since E" (resp. E") is invariant under F ,  one has Z k  ges(K) = (1/2g - l / g ) - I  = -29. 

E" (resp. %k E E")  for all k > 0 (resp. k < 0); hence 
Since g + ,qeQ(K) = -9, one sees that Fig. 10(b) is equiva- 

Xk = x ; ~ ~ ,  IXz l  > 1, e2 E > 
< 0). 

lent to Fig. 1O(c); hence geq(K - 1) = -29. It is clear that 
the equivalent conductance at any node k is -29. This implies 
that KCL at every node ( I C  > 0 )  is 2gVk-1- g V k  = o so that (resp. z k  = X?el, 1x11 < 1, el E E" ,  
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K - 2  K - 1  K 

Fig. 10. An equivalent circuit of Fig. 7(b). (a) Original network. (b) The 
equivalent conductance g e s ( h - )  seen from node li - 1. (c) A circuit equiv- 
alent to Fig. lO(a). 

V k  = 2 V k - 1 .  Thus V k  explodes as k > 0 increases. A similar 
argument shows that 'uk,  k < 0, also explodes as k decreases. 
The situation in Example 2 is the same. 

Answering the second question is much harder. The argu- 
ments used in answering the first question cannot be used here. 
Instead, it exemplifies the difficulty. Observe that KCL at the 
Kth node in Fig. 7(a) for Example 1 is 

T+ : - 3 g v K  f 2 g v K - 1  = O 

and hence 

T+ # E " ,  T+ # E "  (2 1 a) 
T- # E", T- # E " .  (21b) 

These facts imply that the response z k  is of the form 

decaying term Ate? (resp. A k e , ) .  This raises another serious 
question. Consider Example 1 again with gt = g > 0. Since 
everything is passive, our intuition demands that there should 
be no stability problems. Nevertheless, (22) says that there are 
expanding terms. 

Thus, another question arises: How can (22) involve ex- 
panding terms when everything is passive? In order to answer 
this, let us first consider the case where the network size is 
infinite and no boundary conditions are imposed. Let {Zk} ' :  

be the impulse response defined by 

Z k + l  = F Z k ,  k # 0 
Z 1  = FZo + y o .  

Then the network is stable in the sense of (16) only if for 
every Y 0 

IIFkZIII -+ 0 

l l ~ ~ 3 ~ l l  -+ o 

as k 'T +cc 

as k 1 --03. 

It will be shown later that this is possible only if E", the 
center eigenspace of F,  is empty. In order to see distinctions 
between solutions with and without boundary conditions more 
precisely, note that in image processing, the input { y k }  in (11) 
is not an impulse, but nonzero for 0 5 k 5 d. 

Definition 3: Consider (11) and let { y k }  be nonzero only 
for 0 5 k 5 d. Then { Z k } ' ~  is said to be afree-boundary 
solution if 

Z k + l  = F Z k ,  k < 0 (234 

Z d  = FdZo + Fd-'Yyl, (23b) 

Z k + 1  = F Z k ,  k 2 d. (234 

d-1 

k=O 

Remark2: If d = 1, then { y k }  is an impulse. If one redefines 
the summation term in (23b) as a new yo ,  then (23) can be 
replaced by 

g k + l  = F Z k ,  k # O (244  
(24b) Z 1  = FdZo + y o .  

Since no boundary conditions are imposed, { Z k } + z  is not 
unique. The following proposition clarifies the uniqueness 
issue in terms of stability. Let 

A,,, := max{ /A,;/ 1 A,; is a stable eigenvalue} 
Amin := min{ lAuil 1 A,i is an unstable eigenvalue} 

A, := min (  it,). (25) 

X k  = Ate: + Ate t ,  k > o (22a) Proposition I: 
2 k  = Ate, + Ate;, k < o (22b) 

where el* (resp. e;)  are the eigenvectors associated with 
A 1  (resp. A,) and all of them are nonzero. The situation 
given by (21) does not change for a wide range of gt 
variations. This means that there is always an expunding term 

i) The F matrix of the spatial dynamics is hyperbolic if 
and only if for any y o  there is a unique free-boundary 
solution { z k } ? z  satisfying 

+m 

/ / z k / / '  < -03. (26) 
Aie; (resp. Ate,) in (22a) (resp. (22b)), in addition to the k = - m  
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EU 

Yg + E" 

ES 

Fig. 11. Definition of z. 

ii) The unique { Z k } ' ~  is determined by 

Proof: 
i) 3) Since E" is empty (see (17)), 

E = E" @ E s .  

Since E" is invariant under F (see (18)), 

Remark 3: 
i) Consider a free-boundary solution for Example 1, i.e., 

when go = g and g1 = 29 extending indefinitely. In 
spite of the fact that everything is passive, exploding 
solutions are mathematically legitimate. However, by 
demanding the finite total energy (26), one forces all 
exploding solutions to be illegitimate and makes only 
one solution legitimate, which is given by (27). Con- 
versely, if a unique stable free-boundary solution exists, 
then the F matrix must satisfy hyperbolicity. 

ii) The stable free-boundary solution in terms of (21) can 
be characterized as e; = e l  = 0. 

Recall the boundary conditions T+ and T- in (13). 
Definition 5: Let { Y k }  be nonzero only for 0 5 k 5 d. Then 

{ Z k } : ;  is said to be a solution for (T+,T-, K )  if 

The following result thoroughly answers the second and 
third questions that arose in connection with spatial dynamics 
in a very general setting. 

Theorem I: Let a neural network described by (11) be 
spatially stable, i.e., let F be hyperbolic. If the boundary 
conditions T+ and T- satisfy 

and this intersection is a singleton set, say { z }  (Fig. 11). 
Define 

T + + E " = E ,  T - + E " = E  (34) 

Zo := F - d ( z  - y o ) ,  Z1 := z (29) 

and let other Z k  be defined by (24a). Then 

k=--03 k = - w  k=l  
30 

k=O k = l  

where A# is defined by (25). Note that (29) is equivalent 
to (27) and this is the only choice of 31 and ZO for 
which (26) holds, because if 31 $! E",  for instance, then 
Z1 = ZY + Zy, with nonzero Zp. Hence FkZu --f cc 
as K 1' +W. A similar argument holds or ZO. 
e) If E" is non-empty, then there is a yo # 0 such that 
(E" + y o )  n E" = 4. It is clear that for such yo  there 
is no way of choosing Z1 and 30 which satisfy (26). 

0 
Definition 4: The unique { Z k } : :  given in Proposition 1 is 

1 111 

ii) Clearly, (27) and (29) are equivalent. 

said to be the stable free-boundary solution. 

then a solution { Z k } ' ;  for (T+,T-,K) converges to the 
stable free-boundary solution {Zk}?:  as K 7 +CO: 

+ K  

k=-K  

Proof: See Appendix I. 

i) In words, this theorem tells us that if the F matrix 
of the spatial dynamics satisfies the spatial stability 
condition (Definition 2) and, in addition, if the bound- 
ary conditions satisfy (34), then response Zk not only 
behaves properly but also converges to the stable free- 
boundary solution Z k  as K T +CO. 

ii) It will be shown in subsection 111-B (see Example 3) 
that for parts (a) and (b) of Fig. 3, F is hyperbolic 
while for Fig. 3(c), it is nonhyperbolic. A simple 
computation shows that there are two distinct pairs of 
complex conjugate eigenvalues on the unit circle for 
Fig. 3(c). 

iii) Since T+, T-,  E", and E" all have the same dimension 
m, the vector sum + in (34) amounts to the same 

Remark 4: 

I 
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as the direct sum $. Therefore, dim T++ dim E" = E" 
dim E and dim T-+ dim E" = dim E;  hence con- 
dition (34) is extremely mild. It is satisfied unless Z K  

(resp. Z-K) is forced to lie in E" (resp. E"). This 
explains why all of our computer simulations look 
the same with various boundary conditions except for 
peculiar ones. What happens if T+ (resp. T-)  is very 
close to E" (resp. E")? This simply requires a very 
large K to observe a solution similar to the stable 
free-boundary solution. 

iv) Since E" is empty, zldefined by (32) can be written 
as 

2 1  =z'i+z;, z;l E E", xs E E" 

A crucial step in the proof of Theorem 1 given in 
Appendix I is to obtain estimates on llFkzp11, k 2 0, 

and F k x  , k 5 0, because these terms are expanding 
instead of decaying. The following is roughly what is 
happening. Let {zl~}?; be a solution for (T+, T-; K ) ,  
and let K < K' while T+ and T- are fixed. In order 
for { z k } ? : :  to be a solution for (T+, T-, K') ,  it must 
make more iterations to reach T+ from zi than that for 
{zk}?:. There are two ways to do this. In the first, 
zi locates itself farther away from the origin than 2 1 .  

In a second, ZKI hits T+ at a point closer to the origin 
than Z K  does (Fig. 12). There is a limitation to the first 
method because x i  must satisfy (32) while yo and d 
are fixed. On the other hand, there is no such limitation 
to the second method because the dynamics can get as 
"slow" as it pleases as the origin is approached.' This 
allows one to give an appropriate estimate on F'zl  , 
lc 2 0. A similar argument holds for T-. 

v) It is rather interesting to observe that the network given 
in Example 1 is exactly a D/A converter widely used 
in practice. See [17] for instance. The network is called 
the R-2R ladder because go = 9 and 91 = 29. In order 
to convert an n-bit binary signal into an analog signal, 
one inputs a constant current source at the lcth node if 
the lcth bit is "I"; otherwise the current source is set 
to zero. In such a D/A converter, the rightmost go is 
replaced with gt = 29 instead of2 g so that KCL gives 
WK-1 - 2VK = 0, which forces (see (20b)) 

I1 4 

ll / I  

XK E E". (37) 

Since E" is invariant and since the stable eigenvalue is 
l /2 ,  one has X K  = ( l / 2 ( K - k ) ) z k .  If the leftmost gt 
is 29 also, then X - K  E E". Any response of a linear 
network is a superposition of impulse responses, hence 
the rightmost voltage W K ,  which is the output, is given 

/ 
Fig. 12. An illustration of the proof of Theorem 1 

as 

VK = constant x 1/21C (38) 
k 

where k runs over those nodes where "1" is present. 
Note that if gt were not chosen as 29, the D/A 
converter would give a wrong analog output. 

C. Temporal Stability S p a t i a l  Regularity 

Now we turn to the relationship between the temporal and 
the spatial dynamics for which a new concept is needed. 

Definition 6: A neural network described by (11) is said to 
be spatially regular if there is a nonsingular 2m x 2m matrix 
T such that 

E " 8  E" E'L 

where a blank indicates a zero matrix, and elements of G 
consist of +1 or 0. 

Remark 5: Spatial regularity demands several particular 
structures in the dynamics: 

i) dim E" = dim E" and 
FIE" = ( ~ 1 ~ ~ l - l  (40) 

where FIE" (resp. FIE") denotes the restriction of 
F to E" (resp. E"). Namely, the dynamics on the 
unstable eigenspace E" are exactly the same as the 
inverse dynamics on the stable eigenspace E" .  

ii) The center eigenspace E" is decomposed as EC1 @ Ec2, 
dim Eel = dim E"', and FIEc1 and FIEc2 have 
essentially the same structure. 

iii) If a neural network described by (11) is spatially stable, 
E" is empty. It will be shown later (see (43)) that (40) 
is satisfied for (10). Therefore, spatial stability implies 
spatial regularity, but not conversely. 

'The dynamics z ~ + ~  = Fzk have "zero" speed at the origin because 
FO = 0; i.e., it does not move. Since a solution depends continuously on its 
initial condition. one sees that the dvnamics gets slower without limit as it 

The following standing assumptions are made throughout 
the paper stated Otherwise. 

Y 

approaches the origin. Standing Assumptions: In (9, 
'Recall that in Fig. 8(a) gt = y, while in Fig. 8(b) ,qt = -g. (i) a0 < 0, am # 0; 



MATSUMOTO et al.: SPATIAL VERSUS TEMPORAL STABILITY ISSUES 551 

(ii) B is positive definite for all n. 
Since we are looking for conditions under which B - l A  is 

negative definite for all n, the diagonal element a0 of A must 
be negative (provided that B is positive definite), which is 
the inequality in (i). If a ,  = 0, then the neighborhood M 
is of a smaller size. No restrictions will be imposed on the 
sign of up,  p # 0. In image processing neuro chips, cp in 
(4) are parasitic capacitors of MOS processes, and positive 
definiteness of B is a mild condition. The following result 
establishes a fundamental relationship between the temporal 
and spatial dynamics. 

Theorem 2: A neural network described above is temporally 
stable if  and only if  it is spatially regular. 

Proof: Consider the characteristic polynomial of F: 
m 

PF(A) := det(A1 - F )  =A" 

The determinant of the (2rn - 1) x (2m - 1) principal minor 
of A 1  - F is given by 

because F has no zero eigenvalues. This shows (47). Thus, 
for each eigenvalue X of F ,  there is only one elementary 
Jordan block [16]. Therefore the real canonical form of FIE'" 
restriction of F to the eigenspace corresponding to A,, is given 

by 

which satisfies I 
A, 1 I I 

This implies that if A, (resp. A,) is a stable (resp. unstable) 
eigenvalue, i.e., IA,I < 1 (resp. IA,I > l), then A;' (resp. 
A;') is also an eigenvalue and unstable (resp. stable). F 
is nonsingular, for det F = 1; hence there are no zero ei- 
genvalues. This implies that dim E" = dim E" and 

FIE" = (FIE")-l. (43) 

In order to discuss FIE", let 

w = A + x - '  or 
2 

By a repeated use of the binomial formula: 

one sees that 
m m 

a0 + ap (A" + A - P  ) = E a P w p  := & ( U )  (45) 
p=o am am P I 1  

for real ap's. Since F has no zero eigenvalues, 

PF(X) = 0 iff & ( U )  = 0 (46) 

where X and w are related via (44). Hence if A, is real and 
[A,[ = 1, then (44) forces A, to be a double eigenvalue 
{Acl  A=} or its multiple. We next claim that 

dim ker(A1 - F )  = 1 (47) 

for any eigenvalue A, where "ker" denotes the kernel of a 
matrix. In order to see this, note first that A being an eigenvalue 
implies 

det(X1 - F )  = 0 

where 2q is the multiplicity. This is clearly of the form (39). 
So far, no use has been made of the negative definiteness 

of B - l A  and yet we are already close to (39), the regularity. 
The situation, however, is slightly subtle when it comes to 
a nonreal Ac with IA,I = 1, because (42) tells us nothing 
except for the fact that A:, the complex conjugate, is also an 
eigenvalue. This last is of no use since F is a real matrix and 
A: also being an eigenvalue is automatic. We now assume 
that B - l A  is negative definite for all n. Since B is positive 
definite for all n, A is negative definite for all R. It is known 
[18], then, that there are zp E R, p = 0, .  . . rn, such that the 
elements of A satisfy 

i = O  

i.e., up's can be decomposed as in (49). Substitution of (49) 
into (41) yields 

Since 0 # a ,  7 -z0zm and since F has no zero eigenvalues, 
one sees that 

PF(A) = O  iff R(X)R (51) 
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where 
m 

R(A) = & A Z .  (52) 
i=O 

Therefore if A is a nonreal eigenvalue with IA,I = 1, 
(51) forces the eigenvalue configuration to be of the form 
{A,, A,", A,, A,"} or its multiple. It follows from (47) that the 
real canonical form of F on this eigenspace is given by 

24' 

where 

Q - P I 1  
P Q I  1;- --- 

I s  
1-- --- 

I 
I 
I 
I 
I 
! 

I 
1 1  

--I--------- -P 11 

I 

*. *. .. I *** 

I *. 
**. .* **. .* ** 

'*. 

I 

I 
I *. 

I 

cy2 + p2 = 1 

(53) 

(54) 

and 2q' is the multiplicity. This, again, is of the form (39). 
If a neural network is spatially regular, the real canonical 

form of the spatial dynamics F is equivalent to (39). The 
characteristic polynomial of F,  then, admits a decomposition 
of the form given by (50). Comparing (50) with (49 ,  one sees 
that (49) holds. This condition is known [18] to be not only a 
necessary but also a sufficient condition for A to be negative 
definite for all n. Since B is positive definite and symmetric 
for all n, it follows from [19] that - 

v3 AV 
V#O V T B V  

max. eigenvalue of B- lA  = max - < 0 (55 )  

for any n which implies temporal stability. 0 
Remark 6: Suppose that a neural network is temporally 

stable. Although its spatial dynamics can be unstable, it has 
a sort of symmetry in that the spatial dynamics cannot have 
a component which is essentially different from the rest; i.e., 
every component has its partner. 

i) Consider (1) and let 
Remark 7: 

n 

w := 5- v;u; 

which is the power injected into the network. It follows 
from (1) that 

dui-, 
W = - viapvi-p + vibpdt 

i P  i P  
dv 

= -vTAv + vTB- 
d t  

:= WR + wc. 
Thus the first term 

WR = -vTAv = power dissipated by the resistive part 

of the network. Therefore a neural network is tem- 
porally stable iff its resistive part is strictly passive, 
i.e., 

WR > 0, v # 0 for all n. 

ii) It follows from the previous remark that spatial stability 
demands more than strict passivity of the resistive part. 

iii) Observe that 
vTBv/2 = energy stored in the capacitors. 

Therefore (55) says that 
max. eigenvalue of B - l A  

-power dissipated by resistors 
= m a (  2 .  energy stored in capacitors 

power dissipated by resistors 
2 .  energy stored in capacitators 

- min - - 

Remark 8: Since the capacitance matrix B has exactly the 
same structure as that of A, one can derive an iff condition 
for its positive definiteness. If all cP's are positive, however, 
then the positive definiteness is straightforward because 

m m m 

bo = CO + 2 cP > 2 cP 2 lbpl (56) 
p = l  p = l  p = l  

i.e., the diagonal element is larger than the sum of the 
row elements. Since B is symmetric, this implies positive 
definiteness. 

Remark 9: Since an actual chip is made up of MOS 
transistors, the formulation given by (1)-(4) is naturally a 
model. For example, in [ l ]  both the variable conductance go 
and the negative conductance 92 are composite CMOS circuits. 
As one of the reviewers correctly points out, a reasonable 
justification of the model should be given. Appendix VI1 
supplies a justification. 

Now the question naturally arises as to how one checks 
temporal stability or spatial regularity. Since temporal stability 
is equivalent to spatial regularity, we will say, hereafter, that 
the stability-regularity condition is satisfied if a network is 
temporally stable or spatially regular. Recall & ( U )  defined by 
(45). 

Proposition 2: The following are equivalent: 
i) Stability-regularity. 

ii) Every nonreal eigenvalue Ac of F with J A c J  = 1 has 

iii) Every real zero W R  of Q with I w ~ l  < 2 has an even 

Proof: Equivalence between (i) and (ii) was demon- 
strated in the proof of Theorem 2. To show that (ii) and (iii), 
suppose that A, = ej', 0 # k7r, is an eigenvalue of F.  Then 
(44) implies that the corresponding w is real and IwI < 2. 
Conversely, if w is real and IwI < 2, then (44) says that 

0 
For the sake of the completeness, we will state the follow- 

Proposition 3: The following are equivalent: 

an even multiplicity. 

multiplicity. 

A, = e.+je, 0 # k7r. 

ing: 

i) Spatial stability. 
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ii) Eigenvalues of F are off the unit circle. 
iii) Q has no real zero on [-2,2]. 

111. EXPLICIT STABILITY CRITERIA 

Even though both conditions (ii) and (iii) of Proposition 2 
give a specific way of checking the stability-regularity, ex- 
plicit analytical conditions in terms of the circuit parameters 
greatly help in designing circuits. The same is true for the 
spatial stability. In subsection 111-A two stability indicator 
functions will be given for a general m, with which one can 
easily check the stability -regularity or the spatial stability in 
terms of circuit parameters. In subsections B through D, the 
stability indicator functions will be specialized to m 5 3. In 
particular, it will be shown that the conductance values of the 
neuro chip which motivated the present study satisfy the tem- 
poral as well as the spatial stability conditions. Furthermore, 
it will be rigorously shown why our numerical experiments 

show this, consider (see (45)) 
m 

a,Q(w) = a0 + up (Ap + A-’) (61) 
p=l 

where w and X are related via (44). Since we are interested in 
w on [-2,2], X is represented as 

x = e!@, 8 E [0,7r]. 

Hence 
m m 

p =  1 p=l 
7” 

= 2 up cos(p8) 
p = l  

It follows from 

l ” 2  c a p  cos(p8) d8 = 0 (63) 
p=l 

indicated the “equivalence” between the temporal and the 
spatial stability. 

that (62) is either identically or changes sign [O, . r r~ .  
Since a, # 0, the first possibility is excluded. Therefore, if 
a. < 0, then (61) cannot be always positive on [-2,2]; hence 

U the second inequality in (60) is always violated. 
A. Stability Indicator Functions Proposition 5: A neural network described by (11) is spa- 

tially stable if and only if The following functions play a crucial role throughout the 
rest of the paper and will be called the stability indicator 
functions: 

r I Proof: It follows from Proposition 3 that the spatial 

a + ( a o , a l , ~ ~ ~ , u m )  := max amQ(w) 
w E I- 2,21 

stability is equivalent to the fact that Q has no real zero on 
[-2,2], which, in turn, is equivalent to 

max a,Q(w) < 0 or min a,Q(w) > 0. (65) 
wE[-2,2]  wE[-2 ,2]  

(57) I a - ( a o , a l , ~ ~ ~ , a , )  := min a,Q(w) 
w E [ - 2,2] 

I By using the argument used in the proof of Proposition 4, one 
sees that the second inequality in (65) is always violated. 0 

The following fact gives upper and lower bounds for eigen- 
values of the temporal dynamics A. 

Proposition 6: 

where Q is defined by (45). 

satisfies the stability-regularity condition if and only if 
Proposition 4: A neural network described by (5)  and (11) 

’ 

i) Any eigenvalue p of the temporal dynamics A for any 
a+(ao, a1,. . . ,  a,) I 0. (58) n satisfies the following bounds: 

Pro08 It follows from Proposition 2 that the stability- 

multiplicity. This means that, if Q has a zero on (-2,2),  it 
must be an extremum. Since any zero at k 2  is necessarily even 

to (resp. a-(ao,a~,~~~,a,) <.I-) 

regularity holds iff every real zero of Q on ( -2>2)  has an even ii) The bounds (66) are optimal in the sense that if a; 
(resp. 8) is any number which satisfies 

(see (44)), one sees that the stability-regularity is equivalent gr < o + ( ~ o ,  all ’ .  ’ ?urn) 

max Q(w)  5 0 or min Q(w)  2 0. (59) then there is an eigenvalue p of A for some n such that 
wE[-2,21 w E [ - 2,2] . .  

One can easily show that (59) is equivalent to 0; < p (resp. p < a?). 
Proof: See Appendix 11. 

wE[-2,2]  max 5 Or w E min [-2,21 2 0. (60) Remark 10: Note that (58) is a weak inequality, i.e., equality 
is allowed, while (66) does not allow the equality. This is ex- 
actly what it should be. If, for instance a+(ao, ai, . . . , am) = 
0, then Proposition 4 tells us that the network is temporally 

We claim that the second inequality in (60) is always violated 
under our standing assumptions: a0 < 0, a, # 0. In order to 

I 
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stable and hence that all the eigenvalues of A are strictly 
negative, which is what (66) says. 

We would like to emphasize the if  and only if  nature of 
Proposition 4 as well as Proposition 5 and the optimality 

u-(ao, a l , .  . . , a,) are crucial to the stability issues of our 
interest. The above propositions, however, would not be 
very useful unless one could compute explicit formulas for 
a+(ao, a l , .  . . , a,) and a-(ao, a l , .  + .  , a,). In the following, 

(Appendix IV gives a simple explanation for this choice of 
conductance values.) Propositions 4 and 7 tell us that the 
stability-regularity is equivalent to 

of Proposition 6, which indicate that a+ (ao, al,  . . . , a,) and a+(go,g1,g2) = -90 I O ,  

i.e., passivity of go. Furthermore, Proposition 5 says that the 
network is spatially stable iff 

we will compute these functions for m 5 3. a+(go,g1,g2) = -go < 0,  
B . m = 2  

i.e., iff go is strictly passive. Thus go can be safely varied over 
any range as long as it is positive. We begin with m = 2, which motivated the present study. 

Proposition 7: When m = 2, the stability indicator func- Remark 11: 
tions are given by 

2 4  

2 4  

Proof: See Appendix 111. 

i) Even when g1 as well as g2 is negative, a network 
can satisfy the stability -regularity or/and the spatial 
stability condition provided that go is “sufficiently” 
passive because 

a+(go,g1,g2) = 
-90 + 4191 I when 191/92( 1 4 
-go + 21gi1+ 4 1 B  + g?/41g21 when Ig1/g21 5 4. 

iii) Since Q is quadratic, conditions (ii) and (iii) of 
Proposition 2 are sharpened, respectively to the 
following: 

(ii)’ F has no simple nonreal eigenvalue on the unit circle. 

(iii)’ Q has no real zero on (-2,2). 
It follows from Proposition 4 (resp. Proposition 6) that , -  

Example 3: With Propositions 4-7 at hand, we can now the set of parameter values (go, g1,gz) for which stability- 
check Fig. 3 and Fig. 4 theoretically. In Figs. 3 and 4, l/go = 
200 kR and l /g l  = 5 kR are fixed while g2 is varied: 
(a) l/ga = -20 kR; (b) l/g2 = -18 kR; and (c) l /g2  = 
-17 kR. In order to check (a), note that 1g1/g21 = 4; hence 
(67) gives 

a+(go,g1,g2) = -go < 0. 

Propositions 4 and 5 guarantee the temporal as well as the 
spatial stability. For (b), 1g1/g21 = 18/5 < 4 and (67) reads 

which checks Fig. 3(b) and Fig. 4(b). Finally, for (c), 

and hence the network is temporally and spatially unstable, 
which checks Fig. 3(c) and Fig. 4(c). 

Example 4: For the Gaussian-like convolver [ l ]  

regularity and the spatial stability hold are given, respectively, 
by 

We will now give a fact which, as its by-product, explains 
why our numerical experiments suggested SR = SS, which 
is untrue. Let 

on which our numerical experiments were performed. 
Proposition 8: 

i) meas[SSnG] > 0 
ii) meas[(SR - SS) n GI = 0 

where meas[.] denotes the Lebesgue measure on R3. 
Proof: It follows from (67) that SS n G contains an 

open set o f  W3 and hence it is of positive Lebesgue measure. 
Since SR 3 SS, the set difference SR - SS makes sense, and 
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meas[SR n G] > 0. The set (SR - SS) n G is a subset of 
SR n G such that 

we need to prepare several notations. First note that, when 
m = 3, 

(71) 

The zeros of the derivative d Q / h  are and since this is nonvanishing, (71) forces (go, g1,gZ) to lie 
0 

Remark 12: This proposition explains why our experiments 
suggested SR = SS for a Lebesgue measure zero subset is 
“hard to hit.” 

C . m = l  

in a Lebesgue measure zero subset [20, lemma 41. 

where 

Neural networks with m = 1 are used in an extensive man- D =  ( 3 2 - 3 ( 3 + 9 =  ( $ 3 ( 3 + 9 .  (75) 
ner [6]-[8]. Although those networks contain only positive 
conductances (go,g1 > 0), it would be worth clarifying the 
temporal as well as the spatial stability issues when g1 < 0. 
We will state the result without proof because the proof is 
much simpler than in the m = 2 case. 

Using (74), one has 

Proposition 9: When m = 1, the stability indicators are &(GI = 3& [ -- 2 (%)2+”(”)  3 a3 given by 9 a3 
1 a2 a1 5 a2 a0 - + -  9 a3 a3 3 a3 a3 

- _ - - - -  

Example 5: When go > 0 but g1 < 0, the stability issues are 
nontrivial. The network is temporally (resp. spatially) stable 
iff 

In Example 2, l/go = 100 kR, l / g l  = -800 kR, and a+ 
(g0,gl) = (-1/100 + 4/800) x lop3 < 0 and the network is 
temporally as well as spatially stable which checks Fig. 9(a). 

Remark 13: One can show for this case also that the set of 
(go, 91) values on which the temporal stability holds, and yet 
the spatial stability fails, is of measure zero, 

Note that 

and define 

D . m = 3  k : = as&(&) 
As was remarked earlier, neurochips with m 5 2 have 

already been designed and fabricated. Although no result 
has been reported on chips with m = 3, we conjecture 
that this architecture might be suitable for noncausual IIR 
implementations of interesting image processing filters. 

We saw in subsection 111-B and Appendix I11 that the case 
m = 2 is already sufficiently complicated to require a careful 
analysis. Naturally, the case m = 3 is even more involved and 

(79) 
11 
3 - go - 291 - -g2 - 293. 

Proposition 10: When m = 3, the stability indicator func- 
tions are given by 
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f+ when g 3  > 0, D 5 0 
or g 3  > 0, D > 0, 2 5 E- < E +  
or 9 3  < 0, D > 0,  I- I -2, 2 5 I+ 
when g 3  > 0, D > 0, E- 5 -2, 2 5 E+ 
or 9 3  < 0, D I 0  or g 3  < 0, D > 0, E- <I+ 5 -2 

or g 3  < 0, D > 0, 2 5 5- < I+ 
when g3 > 0, E- 5 -2 5 I+ 5 2 
or 9 3  < 0,  -2 < E -  5 2 5 E+ 
when g3 > 0, I- 5 -2 5 I+ 5 2 
when g 3  > 0, -2 5 I- 5 2 I E+ 
when g 3  > 0, -2 5 E- < I+ 5 2 
when g3 < 0, -2 5 E- 5 E+ 5 2 

or 9 3  > 0, D > 0, I- < I+ 5 -2 

f- 

max[f+, f-] 

h+ 
h- 
max[f+, h-] 
max[f-, h+] 

f+ when g 3  > 0, D > 0,  <- 5 -2, 2 5 E+ 
or g 3  < 0, D > 0, E- < E+ 5 -2 
or g 3  < 0, D > 0, 2 I E- < E +  
when g3 > 0, D 5 0, 
or g3 > 0, D > 0,  2 5 E- < E +  
or 9 3  < 0, D > 0, E- < -2 ,2  5 E+ 
when 9 3  < 0, -2 5 I- 5 2 5 E+ 
or g 3  > 0, E- 5 -2 5 E+ 5 2 
when g3 > 0, -2 5 5- 5 2 5 E+ 
when g3 < 0, E- I -2 5 I+ 5 2 
when g 3  < 0, -2 5 E- I I+ 5 2 
when 93 > 0, -2 5 5- < E+ 5 2. 

or g 3  < 0, D 5 0 

f- or g 3  > 0, D > 0, I- < I+ 5 -2 

min[f+, f-] 

h+ 
h- 
min[f+, h-] 
min[f-, h+] 

Proof: See Appendix V. 

IV. TRANSIENTS 

This section analyzes the capacitance matrix B in (4) using 
the method used for analyzing A. As a by-product, an estimate 
will be obtained of the "processing speed" of neuro chips. 

It follows from (4) that the capacitance matrix B has exactly 
the same structure as that of A. Therefore, one can derive 
conditions under which B is positive definite and bounds on 
its eigenvalues. Let 

where bo,. . . , b, are as in (4) while w and X are as in (44). 
Define 

~ + ( b o , h , . . . , b m )  := max b m Q B ( u )  (80) 
wE[-2,2] 

v-(bo,bl,...,b,) := min b m Q B ( u )  (81) 
w E [ - 2,2] 

The following fact can be proved by an argument similar to 
that used for the negative definiteness of A. 

Proposition 11: Replace (ii) of the standing assumptions 
(subsection 11-C) by 

bo > 0, b, # 0. (82) 

i) The following conditions are equivalent: 

a) B is positive definite for all n. 
b) Every nonreal zero A, of &(A) with (A,( = 1 

c) Every real zero W R  of QB(w)  with I W R ~  < 2 has 
has an even multiplicity, 

an even multiplicity. 
d) 

q-(bo,bi,...,b,) 2 0 (83) 

and the bounds are optimal. 
Corollary 1: Assume (82) and consider the temporal dy- 

namics (5)  with v(0) = 0. If (58) and (83) are satisfied, then 
the solution v( t )  of (5 )  satisfies the following bounds: 

Proof: See Appendix VI. 
Remark 14: 

i) The result tells us how fast/slow a step response of 
(5)  grows. Although there is no precise concept of the 
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time constant RC for (5) (dim v >> l), (85) can be 
interpreted as 

(86) rl+ 
g- g+ 

-- '- 5 "time constant" 5 --. 

ii) Let us compute the upper bound in (86) for m = 2. It 
is not difficult to show that 

CO + 2Cl + 2)Cl) when c2 < 0 or 

CO + 2c1 + 4c2 + c:/4c2 

rl+(co, c1, c2) = 

c2 > 0 and Ic1/c21 2 4 
when c2 > 0 and 
ICl/C21 5 4 .  

If go, 91, CO, c1, c2 > 0, then it follows from (67) and 
the above formula that 

(J+ go 
-_ V+ = rl+ 

(CO + 4Ci)/90 when Ic1/c2( 2 4 = {  (CO + 2c1 + 4c2 + c:/4c~)/g0 when Jc1/c21 I 4. 

Since it is difficult to estimate parasitic capacitances 
accurately, this is as much as one can tell from the 
corollary. 

V. CONCLUDING REMARKS 

(i) We would like to call the reader's attention to the fact that 
the spatial dynamics of the class of neural networks discussed 
here are zero phase and yet IIR. More specifically, consider 
the transfer function of the spatial dynamics in the frequency 
domain: 

1/H(z)  = 1/ [a,z-mPF(z)] 

where PF is the characteristic polynomial defined by (41). 
Then 

m 

p = l  

which is real. Obviously, a zero-phase filter is ideal in signal 
processing, for if the phase does not behave properly, the 
signal would be distorted. It is known [21] that a stable linear- 
phase IIR cannot be realized by a causal system (linear-phase 
meaning here that the phase is linear in w). Thus the spatial 
dynamics (11) are a zero-phase noncausal IIR filter. The results 
reported here establish conditions under which those noncausal 
IIR filters are temporally and/or spatially stable. 

(ii) Using an argument used in the proof of Lemma A2, 
one can show that if a0 > 0, i.e., if the diagonal element 
of A is positive, then A is positive definite iff the spatial 
dynamics is regular. Since the definition of spatial stability 
(Definition 2) is the hyperbolicity of F ,  the spatial dynamics 
can be stable even when a0 > 0. Thus, the spatial regularity or 
stability can be satisfied even when A is positive definite, while 
temporal stability is certainly violated if A is positive definite. 
This asymmetry is due to the fact that the spatial dynamics is 
noncausal whereas the temporal dynamics is causal. 

(iii) Recall Proposition 8, which states that, for m = 2, the 
temporal stability coincides with the spatial stability except 
for a measure zero subset of R3. 

Conjecture: Proposition 8 will be true for a general m. 
(iv) The following is a list of possible future research 

projects: 
Generalizations to nonlinear cases, e.g., the chip reported 
in [ll]. While the temporal stability results can be estab- 
lished under reasonable conditions, the spatial stability 
results may not be easy to obtain because the spatial 
dynamics are not only nonlinear but also nonautonomous 
with respect to node number I C .  More specifically, let 

(87) 
dv 
dt 

B- = G(v) + U  

be the temporal dynamics where G : R" + R". Let v 
be an equilibrium of (87) and suppose that 

zk+l = F ( z k )  + y k  (88) 

represents the spatial dynamics in the sense of ( l l ) ,  
where F : R2" + R2". Therefore, the spatial stability 
means the stability of the trajectory (88), which is 
not necessarily a fixed point of F .  Furthermore, if the 
conductances are nonlinear, the temporal dynamics are 
not necessarily of the popular form -dv . .  1 

d t  R 
B -  = --U + TG(v) + U  

where T is symmetric, G = (G1,. . . , G"), and Gi, 
i = 1, 
Generalization to two-dimensional array cases. 
IIR implementations and associated stability of other 
interesting filters, e.g., oriented receptive field filters [4] 
and Gabor filters [5]. 
It could be interesting to investigate the relationship, if 
any, with the stability results for neural field equations 

,n, is sigmoidal. 

[221, ~ 3 1 .  

APPENDIX I 
PROOF OF THEOREM 1 

Throughout this appendix, the center eigenspace E" is 
empty. Hence any vector z E E can be written as z = 
z" + z", z" E E", z" E E". Proposition A1 says that 
a slight enlargement of E" does not destroy the property 
E" n T+ = ( 0 ) ;  i.e., the intersection between E" and T+ 
is the singleton set (0) and that the same is true for E" 
and T-. Proposition A2 says that 21 (resp. 20) approaches 
E" (resp. E") as K + $00. Lemma A1 tells us that 2 1  (resp. 
20) approaches Z1 (resp. ZO) as K + +W. 

PropositionAl: There are positive numbers a+ and CY- 

such that 
L + ( E " )  n T+ = (0) 
&-(E") n T- = (0) (All 

where R,+(E") and A a - ( E S )  are the a+ sector of E" and 
the CY- sector of E", respectively (Fig. 13): 
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A 1 
Fig. 13. The CY+ section of E" and the a- section of E". 

Lemma A l :  Let ~ 1 ,  €2 > 0 satisfy 
~ 1 ( 1  - ~ 1 ) - ~ , ~ 2 ( 1  - ~ 2 ) - ' , ~ 1 , ~ 2 ]  I 1 / 4  

and 
Proof: Since T+ @ E" = E" @ E", there is a unique 

linear map 7111 : E" + E" such that 
T+ = { (zU,711+zu) E E" E" I Z" E E"}. 

Since T+ n E" = {0), the map ry is nonsingular; hence 
a+ := inf{ )lrlL+zuII 1 z" E E", llzull = l}  

is positive. Clearly (Al) is satisfied. A similar argument is 
valid for A,-(E"). z = Z" $2, Z" E E", Z" E E",  

then 

Proof: If (A6) holds, z E &2(ES) implies 

Proposition A2: I f  { ~ k } f z  is a solution for (T+, T-,  K ) ,  

11eII I "+lA#  114II 

and llZUll I E211ZSIl 

llZ"ll = llz - ZUlI I llzll + Ilz"Il I llzll + EZlIZsll 

-2(K-1) which, in turn, implies 

hence 

The other inequality can be derived in a similar manner. 

E" and E" respectively: 

0 
Now let & ( E U )  and &(E") denote the closed E sectors of 

Then Proposition A2 says that a solution {zk}?; for 
(T+ , T- , K )  satisfies 

Therefore 

Since z E K E ~ ( E " )  + yo ((A6)), one has 
z - yo = W" + w", W" E E", W" E E' 

llW"lI I ~l l lwUl l  (A131 

from which it follows that 
lIw"II I E l ( 1  - &l)-lllwll. ('414) 

Let us rewrite the equality (see (A13)) 
z" + z s  = wu + w" +yo 

and 

Then the uniqueness of the stable free-boundary solution 
(Proposition 1) implies that there is a unique pair (TI, 30) 
satisfying (see (24)) 

3 1  = zs - wS FdZo = W" - z". (A15) 
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It follows from (All) ,  (A12), (A14), and (A15) that 

112 - 51 1 )  = JJZ" + 2" - (2" - w")II 

= llzU + W"ll I 11~"Il + l l ~ s l I  
I E l ( 1  - +lllwll + E2(1 - ~z)-'11~11 

which proves (A9). Similarly 

- FdZo/l = llw" + w" - (w" - zU)ll 

I llw"Il + llzUII 
= E l ( 1  - E1)-lIIwlI + EZ(1 - E2)-1114 

I14 - ll%Il I llz - 2111 

which proves (A10). In order to show (A8), observe that 

and 

llwll - / /FdZo//  I l(w - FdZo 11 
imply 

llzll I l l % l l  + Ilz - 5111 
I I l % l l  + &1(1 - &l)-ll lwll  + 4 1  - .2)-11141 

559 

and 

114111 I lI211l I T .  ( A W  

Since ZK = FK-'z1, (A18) implies 

(A191 -(K-1) 
112K11 I A# T .  

In order to estimate 11zi11, let 

T$ : E' -+ E" 

be the linear map such that 

T+ = { (?+zS,zs)  E E" @ E'lz" E E"} .  (A20) 

This map is well defined and is unique because of (34). It 

follows from (A20) that 

Adding (A16) and (A17), one has 

It follows from this that 

E g ( 1 -  Ez)-l] 

< A-(K-k) < A-(K-k) (K-1) 

- X-ZKfk+l 

. (Ilwll + 1141) 
- # llz%ll - # A# lIT",lT 

- # 11~;11T. 
where (A4) was used. This inequality together with (A5) 
implies 

0 

Completion of the Proof: It follows from Proposition A2 that 
(A4) is satisfied for K sufficiently large. Since Fd expands the 
vectors in E" while it contracts the vectors in E", one sees 
that 

On the other hand, 

I 2 m a x ( E 1 ,  €2). 

I 2 ~ ; ' ~  max(a_l,  a;l~2#)r 
zo E K E ~ ( E " )  implies Fdzo E &1(E"). where (A3) was used. Therefore 

I 



560 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 3, NO. 4, JULY 1992 

It follows from (A21) and (A22) that 

k = l  

K 

- 0  as K-++co. 

Using a similar argument, one can show that 
0 

1 ( 2 k  -Zk112  + O as K -+ +m. 0 
k = - K  

APPENDIX I1 
PROOF OF PROPOSITION 6 

(i) If p is an eigenvalue of A,  

A , : = A - p l  ('423) 
is singular, and hence it is not negative definite. Therefore A, 
cannot be temporally stable. If 

a o - p < O  (A241 
then Proposition 2 says that &,(U) defined by (45) for A, 
has a real zero on ( - 2 , 2 )  with odd multiplicity. Since the 
multiplicity is odd, the zero on ( - 2 , 2 )  cannot be an extremum 
of &, so that 

min &,(U) < 0 and max &,(U) > 0 (A25) 
w E [ -2,2] w E [ - 2 ,2] 

which is equivalent to 

min a,&,(w) < 0 < max a,&,(w). (A261 
w E [ -2,2] w E [ - 2,2] 

Since 
m 

u,&,(u) = ao - ,U + a p  ( A p  + A-") (A27) 
p=l 

where w and X are related via (44), one has 

a m & p ( ~ )  = am&(w) - P. (A281 
Equations (A26) and (A28) imply (66). In order to consider 
the case 

u o - p > o  (A291 
one needs the following: 

Lemma A2: If a. - p > 0, the following are equivalent: 
i) A, is positive definite for all n. 

ii) The corresponding spatial dynamics are regular. 

iii) Every real zero of Q, on (-2,2)  has an even multi- 
plicity. 

Proof: Recall (49) and replace -ap by ap:  

p=l 

u o - p =  2 z;. 
p=o 

One can use an argument similar to that used in the proof of 
0 

In order to complete the proof of (i) of Proposition 6, 
observe the fact that A, being singular violates (i)-(iii) in 
Lemma A2. Since (iii) of Lemma A2 is the same as (iii) of 
Proposition 2, one can use the same argument as for a. - 1-1 < 
0. It is clear from the form of A and a0 # 0, a ,  # 0 that 
a0 - p = 0 is impossible. 

(ii) In order to prove the optimality of the upper bound, 
note that for any y E R 

Theorem 2 and Proposition 2 to show the result. 

u + ( ~ o  + 7,  ~ 1 , .  . . , a,) = a+(ao, a i , .  . . ,U,) + 7.  (A30) 

Now fix a l ,  . ' ' , a ,  and consider 

Pn(ao - p,  a l , .  . ',a,) := det(A - p1)  (A311 

where n denotes the size of A. It follows from (A31) that 
if { p n , z ( a ~ ) } z , ,  and {pn ,J (a~)}J=l  are the eigenvalues of 
A when the diagonal is a0 and ab, respectively, then by an 
appropriate relabeling, 

pn,a(ao) - ao = pn,%(ab)  - ab, a 1, .. . ,n. (A32) 

In order to demonstrate the optimality of the upper bound, we 
first consider the case 

a+(ao, a1,. ' .  ,a,) = 0. 

If this is not optimal, there is a S > 0 such that 

~ n , z ( a ~ , a l , . . . , a r n )  < -6 < a+(ao,al,...,arn) (A33) 

for all n and 1 5 a 5 n. It follows from (A32) that 

Pn,a(ao + 6/27 al,  ' .  ' , a m )  - (a0 + 612)  
- Pn,z(aO, a1,. . . , a,) - a0 

~n,z(ao ia l , . . . , am)  = ~ n , z ( a o  + 8/2 ,a l , . . ' , a rn) -S /2  

- 

whence 

('434) 

(A351 

for all n and 1 5 z 5 n. Equation (A33) and (A34) imply 

pn,,(a0 + 612, al . .  . ' ,a,) < -6/2 < 0 

for all n and 1 5 z 5 n. This means that (ao  + S / 2 ,  a l , .  . . , a,) 
results in the temporal stability. On the other hand (A30) 
implies 

u + ( ~ o  +6/2 ,a l , . . . , a rn)  = ~ + ( a o , a l , . . ' , a m )  
+ s/2 = s/2 > 0. 

This contradicts (A35) because Proposition 4 says that the 
temporal stability is equivalent to U+ < 0. In order to show 
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the general case one has 
a2Q(2)  when a2 > 0 

o+(ao,a1,an) = { a2Q(-2) when a2 < 0 
when a2 < 0 
when a2 > 0. 

a+(@, * . . , a,) = a* 

suppose that o* is not optimal. Then, there is a 6 > 0 such 
that o- - (ao ,a l ,a z )  = 

Pn,i(ao,al, . . . ,a,)  < c7* -6 (A36) Case 2: 
1 a1 

2 a2 
2 2  -- - for all n and 1 5 i 5 n. It follows from (A32) that 

p,u,,z(ao,a1,...,a,) -a0 = p,L,,i(ao -o*,a1,...,a,) 

for all n and 1 5 i 5 n. Equations (A36) and (A37) imply 

- (a0 - o*) (A37) 
max & ( U )  = Q ( - 2 ) ,  min & ( U )  = Q ( 2 )  

wE[-2,21 wE[-2,2]  

a2Q(-2) when a2 > 0 
when a2 < 0 

pn,i(ao - a * , a  l , . . . , a , )  < -6 (A38) 

o+(ao, a1, a2) = { azQ(2)  for all n and 1 5 i 5 n. It follows from (A30) that 

a+(ao - a*,  a1,. . ’ ,a,) = 0. 

It was shown earlier than when o+ = 0, it is the optimal upper 
bound. Therefore, (A38) contradicts the optimality. In order to 
show the optimality of the lower bound a- (ao ,  al, . . . , urn),  
note that 

a2Q(2)  when a2 > 0 { a2Q(-2) when a2 < 0. o-(ao, Ul, a2)  = 

case 3.. 
l a  
2 a2 - 

w:fl‘;,21 & ( U )  = Q ( - a i / 2 ~ 2 )  

-2 5 -- 2 < 0 

o+(-ao, -a1,. . . , -a,) = -(T-(no, (21,. . ’ , urn).  

Furthermore, if p, is an eigenvalue of A, then - p  is an 
eigenvalue of -A. Since -a-(ao, a l , .  . . , a,) is the optimal 
upper bound for -A, i.e., 

max & ( U )  = Q ( 2 ) ;  
w E 1-2,21 

and o- is optimal. 0 Case 4: 

APPENDIX 111 
1 a1 
2 a2 

o < - - - < 2  

PROOF OF PROPOSITION 7 

We will give all the details for the sake of completeness. max Q ( w )  = & ( - a ) ,  w~!i,zl & ( U )  = Q(-al /2a2)  
Since m = 2, F is 4 x 4 and is given by w E I- 2,2] 

0 1 0  

-1 -% - E L  
a2 a2 a2 

The characteristic polynomial is 

+ A-1) + ( A 2  + r2) 
and 

a1 a0 

a2 a2 
& ( U )  = w2 + -U+ - - 2 

Case I :  

-_  EL 5 - 2 .  
2 a2 

Since 

max Q(w) = Q ( 2 ) ,  min &(U) = Q ( - 2 )  
w E [ -2 ,2]  W E [ - 2 , 2 1  

Now note that 
a1 a0 Q ( 2 )  = 2 + 2 -  + -  
a2 a2 

(A401 
a1 a0 &(-a)  = 2 - 2- + - 
a2 a2 

In order to obtain the desired final form, we need to check 
the following cases: 

i) a2 > 0 and case I c) a1 2 4az > 0 
ii) a2 > 0 and case 2 H a1 5 -4a2 < 0 

iii) a2 > 0 and case 3 H 0 5 al < 4a2 
iv) a2 > 0 and case 4 H - 4 ~  < al < 0 
v) a2 < 0 and case 1 ++ a1 5 4a2 < 0 

I 
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vi) a2 < 0 and case 2 ts a1 2 -4a2 > 0 
vii) a2 < 0 and case 3 H 4a2 < a1 5 0 

viii) a2 < 0 and case 4 t-$ -4a2 > a1 > 0. 
It follows from (A39)-(A41) that 

a+(ao, all 4 = 
azQ(2) 
azQ(-2) 
azQ(-a1/2az) when (vii) or (viii) 

when (i) or (iii) or (vi) 
when (ii) or (iv) or (v) 

(A42) 

reasonable way of accomplishing this is to minimize 
n n 

2 
G(w)  = (xk - vk)' + 1 (2vk - vk-1 - ~ + l )  

k=l k=l 

('447) 

with respect to v = ( V I ,  ' ' . , vn). The first term is called the 
data term while the second term is called the penalty term and 
it represents the penalty on the "second-order derivative," i.e., 

a - ( ao , a l , az )  = and X > 0 is the weight on the penalty. Since this is a 
straightforward quadratic minimization problem, the solution 
is obtained by differentiating (A47) with respect to v k  and 

azQ(2) 
a2 Q( - 2) 
azQ(-al/2a2) when (iii) or (iv). setting it to zero: 

when (ii) or (v) or (vii) 
when (i) or (iv) or (viii) 

(A43) Xk - V k  f X [ - 6 ~ k  f 4('Uk-i + V h + l )  - (vk-2 -k 'Uk-2)] = 0 

and hence 

{ 
It follows from (3) that 

ao = -(go f 291 f 2g2), ai = 91, U2 = 92 -(1/X + 6)vk + 4(21k-1 + w ~ + I )  - 

-(go + 291 + 2gZ)vk + gl(wk-1 + .k+l) + ('444) 

92(wk-2 + v k + Z )  f uk = 0 

('445) which is exactly (8) with rn = 2, where Uk = ( l / X ) z k .  Thus, 
by varying go while g1 and g2 are fixed, one can control 
the weight X which corresponds to varying the width of the 
Gaussian-like kernel. It should be noticed, however, that the 

for the two-dimensional problem. 

total cocontent: 

architecture shown in Fig. 1 is a rather crude approximation 

Conversely, given a circuit, one can recover G(u) as the 

= -90 - 491 

1 1 (-2) = g2 [ -$ (2) - -(go 9 2  + 2g1 + 2g2) - 

= -90 - 291 - 4g2 - 9?/4gz. (A46) 

Substituting (A44)-(A46) into (A42) and (A43), one has the 
relations shown at the bottom of the page. It is easy to see that 

cl these are the ones given by (67). 

APPENDIX IV 
In [l], go,g1 > 0 while g2 < 0, and g1 = 4(g2(. We will 

give a simple explanation for the reader who is unfamiliar with 
the regularization theory [2], [3]. 

Let a set of noisy data 21, . . , x, be given. Suppose one 
wants to interpolate the data with appropriate smoothness. A 

1 
2 

G(v)  = --uTAu + uTu 

and the dynamics of the circuit minimizes -G(u) by 

Note, however, that if A were not symmetric, the total cocon- 
tent would be undefined even if the circuit were linear. 

APPENDIX V 
PROOF OF PROPOSITION 10 

Recall D defined by (75). 
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Case I :  D < 0. It follows from (72) and (74) that dd/dw 
has no real zero and hence Q is monotonically increasing. 
Therefore 

('449) 

(A501 

a3Q(2) when a3 > 0 
= { U,Q(-2) when a3 < 0 

a3Q(-2) when a3 > 0 
when a3 < 0. CT- = { U3Q(2) 

Case 2: D = 0. In this case dd/dw has a double zero. But 
since Q is cubic, it is monotonically increasing and (A49) and 
(A50) are true. 

Case 3: D > 0. This means that dd/dw has two distinct 
real zeroes and hence Q has a local maximum at (- and a 
local minimum at (+, (- < (+. 

a) (- < (+ 5 -2: It is clear that Q is monotonically 
increasing on [-2,2] and hence (A49) and (A50) still 
hold. 

b) 2 5 5- < (+: Q is monotonically increasing on [-2,2] 
and (A49) as well as ( M O )  is true. 

c) (- 5 -2,2 5 (+: Q is monotonically decreasing on 
[-2,2] and 

(MI) 
a3Q(-2) when a3 > 0 

CT+ = { a3Q(2) when a3 < 0 
a3Q(2) when a3 > 0 

CT- = { a3Q(-2) when a3 < 0. 

d) (- 5 -2 5 E+ 5 2: In this case, Q has a local minimum 
at (+ and hence 

a3 max[Q(-a), Q(2)] when a3 > 0 
ff+ = { a3Q(5+) when a3 < 0 

when a3 > 0 
o- = { :z:t:A(-2), Q(2)] when a3 < 0. 

e) -2 5 E- 5 2 5 E+ Since Q has a local maximum at 
E- 9 

when a3 > 0 
= { ::$$i(--2), Q(2)] when a3 < 0 

when a3 > 0 
= { a3Q(E-) when a3 < 0. 

a3 min[Q(-2), Q(2)] 

f )  -2 5 (- < (+ 5 2: Since Q has a local minimum as 
well as a local maximum within [-2,2], 

Combining all these cases, one obtains the relations given 
at the bottom of the page, where f* and hk are defined by 
(77)-(79). 0 

APPENDIX VI 
PROOF OF COROLLARY 1 

One can show that the right derivative, 

0- (go, 91, g2,93) = 

f +  

f -  

max[f+, f-] 

h+ 
h- 
max[ f + ,  h-] . max[ f - ,  h+] 

when g3 > 0 and (case 1 or case 2 or case 3-a or case 3-b) 
or g3 < 0 and case 3-c 
when g3 < 0 and (case 1 or case 2 or case 3-a or case 3-b) 
or g3 > 0 and case 3-c 
when g3 > 0 and case 3-d 
or g3 < 0 and case 3-e 
when g3 < 0 and case 3-d 
when g3 > 0 and case 3-e 
when g3 > 0 and case 3-f 
when g3 < 0 and case 3-f 

' f +  

f -  

min[f+, f-] 

h+ 
h- 
min[f+, h-] 
min[f-, h+] 

when g3 > 0 and case 3-c 
or g3 < 0 and (case 1 or case 2 or case 3-a or case 3-b) 
when 93 < 0 and case 3-c 
or g3 > 0 and (case 1 or case 2 or case 3-a or case 3-b) 
when g3 > 0 and case 3-d 
or g3 < 0 and case 3-e 
when g3 > 0 and case 3-d 
when 93 < 0 and case 3-e 
when g3 < 0 and case 3-f 
when g3 > 0 and case 3-f 
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I 

Vin Vin Vin 

f 7  

- 

vc,p 

I1 = K[(Vc - Vt) Vin -$Vin2] 

12 = K 1 (VC + Vin - Vt ) Vin - $ Vin * 1 
I = II + 12 = 2 K [vc - ~ t ]  Vin 

( in triode region 

One can easily show that the right-hand limit of the first term 
in (A53) also exists. Denoting this limit by 

one has the right differential inequality: 

D+ll4t)ll I m(B-1A)I14t)ll + IIB-1411 

I l 4 O ) I l  = 0. 

It is not difficult to show that a solution of a differential 
inequality is bounded by the solution of the corresponding 
differential equation: 

dw 
- = m ( B - l A ) w  + IJB-lulI, 
dt 

w(0) = 0. 

Therefore 

Similarly, the left derivative satisfies 

Fig. 14. Variable conductance go. (a) vc controls the value of go. (b) Actual which yields 
implementation. 

1 
Ilu(t)lI - m ( - B - l A )  exists despite the fact that Ilu(t)II it is not differentiable. Since 

. [exp(-m(-B-lA)t)  - 11 IIB-l~II. 
dvo = B-lAv(t )  + B-lu (A551 dt 

and since Finally, it is known [24] that 

m ( B - l A )  = max. eigenvalue of B - l A  (A561 Ilu(t) + hB-lAu(t) + hB-'ul( 

I 111 + hB-1Alll14t)ll + hllB-'u(l and hence 

one has -m( -B- lA)  = min. eigenvalue of B - l A .  (A57) 

It follows from (66), (84), and (A56) that 
(111 + hBi lAl l  - 1 

D+llf+)ll = pz 
g+ 

h=O 

+ IIB-lUII (A531 m ( B - l A )  5 -. rl+ 

where the matrix norm is induced by the Euclidian norm: similarly 
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1 

( b) 

Fig. 15. Equivalent circuit of the go circuit. (a) Equivalent circuit of an NMOS transistor; ids(.) indicates that the controlled 
current source is nonlinear, and css( .) and c g d (  .) stand for nonlinear capacitors. (b) Equivalent circuit of Fig. 14(b). 

Substituting (A58) and (A59) into (A54) and ( A S ) ,  one has 
the desired bounds. 0 

APPENDIX VI1 
This appendix tries to justify the model given by (1)-(4). 

There are two aspects that must be examined: 
i) resistive part go, 91, . . . , g m ;  

ii) capacitive part C O ,  c1, . . . , em. 
Although these parameters are implementation dependent, we 
can give a fairly reasonable account of them by checking the 
Gaussian-like convolver chip [l], where m = 2. Let us first 
look at Fig. 14, which implements go. Fig. 14(a) shows how 
go can be made variable by controlling wc, while Fig. 14(b) 
shows the actual implementation. In order to examine how 
this circuitry affects the resistive as well as the capacitive 
part of the model, one naturally has to have an equivalent 
circuit of each transistor. While a resistive part of an MOS 
transistor can be described by a simple nonlinear model, the 
capacitive part is known to be difficult to model [25]. In 
some cases it is described as a nonlinear distributed parameter 
element [26], and in some other cases it is described as 
a nonlinear, nonreciprocal multiterminal capacitor [27]. In 
many practical situations, parasitic capacitors are reciprocal 
and each is regarded as constant in each of the operating 
regions (cutoff, triode, and saturation) [25], [28], although they 
are still nonlinear, i.e., piecewise constant. (One has to be 
careful about the charge conservation because the incremental 
capacitance is discontinuous.) In many cases, a zero bulk 

charge is assumed. Fig. 15(a) gives such an equivalent circuit, 
where ids (.) indicates that the (controlled) current source 
is nonlinear, and cgs (.) (resp. cgd (.)) represents nonlinear 
gate-source (resp. gate-drain) capacitor. A similar circuit 
can be given for a PMOS. Fig. 15(b) shows an equivalent 
circuit of Fig. 14(b) using Fig. 15(a). In order to examine the 
resistive part of the circuit, open-circuit all the capacitors. 
Fig. 16(a) shows the SPICE-simulated w;, -2  characteristics 
while Fig. 16( b) gives measured characteristics which verify 
that the resistive part behaves in a sufficiently linear manner 
within the operating range. It should be noted that no small- 
signal argument is used. Namely, the linearity of the q n - Z  

characteristics does not mean that each transistor operates 
linearly. In fact, the four PMOS transistors are designed to 
operate in the saturation region. 

Next let us look at Fig. 17(a), which implements 92, where 
R2 > 0 is a p-well resistor and the remaining circuit realizes 
a negative impedance converter, where a triangle stands for 
a standard transconductance amplifier. Parts (b) and (c) of 
Fig. 17 give SPICE simulated and measured characteristics, 
respectively. In [l], g1 is realized by a p-well resistor. Fig. 18 
shows a SPICE simulation of a spatial impulse response at 
the transistor level. The reader is referred to [ l ]  for measured 
impulse responses. 

The capacitive part of the circuit needs more care to 
examine. In order to evaluate co, let us first check the go 
circuit. To this end, open-circuit the current sources and short- 
circuit the voltage sources of Fig. 15(b) and obtain Fig. 19(a). 

I 
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Operating Range 
* * 

( b) 

Fig. 16. The q n - Z  characteristics of Fig. 14(b). (a) SPICE simulated. 
(b) Measured. 

That the resistive part behaves linearly does not guarantee 
that the capacitive part also behaves linearly. However, the 
pair of NMOS’s in the middle is designed to operate in the 
triode region while the rest is designed to operate in the 
saturation region. Since we are assuming that each capacitance 
is constant in each operating region, cgd7s and cgs’s can be 
regarded as constant so that one can compute the overall 

Vdd Vdd 

V+dV 

2‘ vss 

A -R2 B 
4 

- 
V 

I=dV/R2 

(a) 

V+dV 

Ac tua l  Nega t i ve  Res is to r  

- Ideal  Nega t l ve  R e s i s t o r  _ -  

I (A) 

5 

Operating Range 

( 4  

Fig. 17. Negative conductance 9 2 .  (a) Circuitry. (b) SPICE simulated. 
(c) Measured. 

equivalent capacitance, say C;, between the win terminal and 
the ground. Since Fig. 19(a) is reduced to Fig. 19(b), one 
has 
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Node 

Fig. 18. SPICE simulated spatial impulse response at the transistor level 
where l / g l  and l/gz are intended for 5 kR and -20 kQ, respectively. 

id 

Vin d 

Vin- 

Cil i  

Fig. 19. Capacitive part of Fig. 15(b). (a) Original circuit. (b) Equivalent 
circuit. 

Despite the fact that there are as many as nine capacitors 
contributing to cb, the actual cb value would be very small. 
This stems from the fact that in the triode region, cgs = 
Cgd M (1/2)WLc,,  while in the saturation region cgs M 
(2 /3)WLcox ,  Cgd NN 0 [25], [28], where W ,  L, and cox 
stand for the channel width, the channel length, and the 
capacitance (per unit area) of the oxide layer separating 
the gate from the channel. In this particular implementation, 
W / L  = 318 (pm) for MI and Ms, 413 for M2 and M4, 

and 712 for M2 and MG, and cox M 12 x pF/pm2 in 
the present process. Since g1 is a p-well resistor, its substrate 
is connected to U&. Thus there is a (distributed) diffusion 
capacitance between each node to U d d  (not between two 
nodes). In discussing the capacitive part of a circuit, one short- 
circuits voltage source as was done in the go circuit. Therefore, 
this diffusion capacitance, say cb/, contributes to CO. The value 
of cb/ would be larger than cb because (a) the area of the g1 
in this particular implementation is larger (36 x 20 pm2) and 
(b) diffusion capacitance is the sum of a term proportional 
to the area and a term proportional to the peripheral length 

As for the contribution to CO from the g2 circuit, there are 
two factors: (a) the parasitic capacitors of MOS transistors and 
(b) the p-well diffusion capacitance of R2 > 0 (see Fig. 17(a)). 
The former can be calculated by using the same argument as 
the one used to compute cb, while the latter can be estimated 
using the argument used to discuss the g1 diffusion capacitance 
c:. If we call the resulting composite capacitance c y ,  the 
total capacitance between each node and the ground would 
be CO = cb + c i  + c r .  

Since conductance g1 is implemented by a p-well, c1 
naturally represents associated parasitic capacitance between 
each node to its immediate neighbor. It should be noted, 
however, that e1 appears in off-diagonal elements of B. 

Finally, using the same argument, one can compute the 
composite capacitance c2 from each node to its second nearest 
neighbor. The parasitic capacitor c2 also appears in off- 
diagonal elements of B. 

It follows from (56) that B satisfies the diagonal dominance 
so that all eigenvalues are (strictly) positive. Naturally, in 
an actual implementation, B cannot be exactly symmetric. 
However, eigenvalues being strictly positive is an “open” 
condition, i.e., small variations of parameters do not destroy 
the property. We will leave quantitative estimates of those 
parasitic capacitances for a future paper. We will simply 
remark that CO = 0.1 pF used in Fig. 4 would not be too 
unrealistic. 

Fig. 20 shows a simulation result at the transistor level 
on SPICE where llgo, l/g1, and l/g2 are intended to be 
200 kR, 5 kR, and -20 kR, respectively. A subnetwork of 
8 x 8 is simulated (on a Cray) where a step current of duration 
5 ps is injected into the four nodes as indicated in Fig. 20(a). 
Fig. 20(b) shows the voltage responses of the eight nodes on 
the fourth row. Although the above arguments are far from 
being complete, we believe that our model is sufficient for the 
present purpose. 

P I .  
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Fig. 20. SPICE simulated temporal step responses at the transistor level. (a) 8 x 8 array is simulated where step current of 
duration 5 ps is injected to the four nodes as indicated. (b) Voltage responses at the eight nodes in the fourth row. 
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