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Abstract--Layered architecture is proposed for solving a class o f  regularization problems in image processing. 
There are two major hurdles in the implementation of  regularization filters with second or higher order smoothness 
constraints: ( a ) Stability: With second or higher order constraints, a direct implementation of  a regularization filter 
necessitates negative conductance which, in turn, gives rise to stability problems. (b) Wiring Complexity: A direct 
implementation of  an N-th order regularization filter requires wiring between every pair of  k-th nearest nodes for 
all k, 1 < k < N. Even though one of  the authors managed to layout an N = 2 chip, the implementation of  an N > 
3 chip wouM be an extremely difficult, i f  not impossible, task. The regularization filter architecture proposed here 
( a ) requires n o  negative conductance; and (b) necessitates wiring only between nearest nodes. Smoothing-Contrast- 
Enhancement filter is given as an example o f  application. Since this filter is extremely#st ,  it will have a natural 
application to smart sensing, i.e., to the simultaneous achievement of  sensing and processing. It is also explained 
how this architecture has been inspired by physiological findings on lower vertebrate retina by one of  the authors. 

Keywords--Regularization, Vision chip, Layered architecture, Analog CMOS, Image processing, Smart sensor. 

1. INTRODUCTION 

1.1. Purpose 

The Tikhonov regularization theory solves some of  the 
interesting early vision problems (Poggio, Torte, & 
Koch, 1985 ). When implemented on a parallel analog 
processing chip, regularization filters are endowed with 
an extremely high processing speed, and orders of  mag- 
nitude faster than digital signal processors. This is a 
result of the fact that the processing (computation) is 
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done by the dynamics induced by the parasitic capac- 
itors of transistors, and the processed image is given as 
a stable limit point of the dynamics. This naturally 
indicates an applicability to smart sensors. In other 
words, in addition to sensing, a chip performs signal 
processing (see, e.g., Gruss, Carley, & Kanade, 1991 ). 

Most of the early vision chips implemented so far 
have first order smoothness constraints (Harris, 1988; 
Harris, Koch, Luo, & Wyatt, 1989; Hutchinson, Koch, 
Luo, & Mead, 1988; Liu & Harris, 1989; Mathur, Lin, 
& Wang, 1990; Mead, 1989; Mead & Mahowald, 1988). 
This seems to be attributable to the fact that first order 
smoothness constraints can be implemented by a par- 
allel network where (a) each node is connected with 
only its immediate neighbors; and (b) only passive 
conductance is required. If one goes beyond the first 
order smoothness constraints, however, one encounters 
two major difficulties. In order to be precise, let us look 
at Figure 1, which shows the architecture of  a second 
order regularization solver (Kobayashi, White, & Abidi 
1990, 1991 ) implemented by one of  the authors. It is 
intended for smoothing out a noisy image in an ex- 
tremely fast manner (_<5 #s). Theoretical justification 
for this came from the important result that the second 
order regularization filter closely approximates a 
Gaussian filter (Poggio, Voorhees, & Yuille, 1985). 
Even though the chip did work successfully (Figure 
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FIGURE 1. Architecture of a 2nd order regularization chip. 

2 (a) shows a typical measured impulse response, Figure 
2 (b) shows several smoothed images, Figure 2 (c) shows 
a schematic diagram, and Figure 2 (d) shows a chip 
photograph), two hurdles had to be cleared: 

(a) 

Output with Wide Gausslan 

Output with Narrow Gausslan 

(b) 

FIGURE 2(a). Measured impulse response; and (b) Smoothed 
images. Narrow (resp. wide) Gaussian refers to narrow (resp. 
wide) Gaussian-like kernel for convolution. 

CH,P ~ .,~ 
OUTPUT~iiiiiii!iiii iiiiiiiii 

FIGURE 2(c). Schematic diagram. 

1. Stability: Since g2 < 0 (see Section 2), one has to 
be very careful about temporal, as well as, spatial 
stability issues. Although the chip implemented in 
Kobayashi et al. ( 1990, 1991 ) was stable and fully 
functional, rather elaborate work was necessary to 
perform a theoretical justification of the spatial, as 
well as temporal stability (Matsumoto, Kobayashi, 
& Togawa, 1991, 1992). 

FIGURE 2 (d). Chip photograph. 
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2. Wiring Complexity: In Figure 1, only one unit is 
shown. Since every node has connections with its 
second nearest nodes in addition to the nearest node 
connections, the actual implementation, excluding 
the go's is given by Figure 3. This figure naturally 
explains a high complexity of the wiring. In fact, 
the wire occupies 47% of the total chip area. More- 
over, the architecture of Figure 1 is only a rather 
crude approximation of the biharmonic operator 
(see Section 3). A better approximation demands 
even more wiring. Connections between the third 
(or farther) nearest nodes are extremely difficult, if 
not impossible, to implement. 
The purpose of this paper is to propose layered ar- 

chitecture for regularization problems with higher order 
smoothness constraints which demands wiring only 
between nearest nodes and requires no negative con- 
ductance. Section 2 describes the architecture and then 
shows how the network solves regularization problems. 
Section 3 explains several aspects associated with two- 

dimensional problems. Section 4 shows an application 
to the Smoothing-Contrast Enhancement filter. Section 
5 discusses the wiring complexity issue in a quantitative 
manner. Section 6 explains how the architecture has 
been inspired by the physiological experiments on lower 
vertebrate retina performed by one of the authors. 

1.2. Related Works 

All of the analog early vision chips (Harris, 1988; Harris 
et al., 1989; Hutchinson et al., 1988; Kobayashi et al., 
1990, 1991; Liu & Harris, 1989; Mathur et al., 1990; 
Mead, 1989; Mead & Mahowald, 1988) have at least 
one thing in common; massively parallel resistor net- 
works. The networks discussed in this paper are no 
exception. One of the networks closely related to the 
networks presented in this paper is the one reported in 
Kobayashi et al. ( 1990, 1991 ) in that it also solves a 
second order regularization problem, as explained in 
Section 1.1. There are several important distinctions, 

gl 

" go 

FIGURE 3. Actual implementation demands connections with every second nearest neighbor, in addition to the immediate neighbor 
connections. 
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however, which will be explained later. Interesting hi- 
erarchical architecture is reported in Harris (1988) and 
Liu and Harris (1989) for higher order regularization 
problems. This implementation requires "tri-direc- 
tional subtract constraint devices." The architecture 
given in the next section does not require such devices. 
It should be noted, however, that the present architec- 
ture is not the result of an attempt to improve upon 
the one in Harris (1988) and Liu and Harris (1989). 
Rather, it has been inspired by the physiological ex- 
periments performed by one of the authors, which will 
be explained in Section 6. After the completion of this 
work, the following related works were brought to our 
attention. K. Uchiyama of NTT VLSI Laboratory 
pointed out that a layered network with discrete ele- 
ments, though it is different from ours, is discussed in 
Yasuda, Yamaguchi, Fukushima, and Nagata ( 1971 ). 
More specific comparative remarks will be given in 
Section 4. J. Harris of MIT AI Laboratory indicated 
that in their theses, Terzopoulos (1984) and Harris 
(1986) also suggested layered resistive networks even 
though detailed analysis was not performed. Harris also 
indicated that Suter ( 1991 ) has architecture similar to 
Harris'. This paper is a full account of our earlier results 
reported in Kobayashi, Matsumoto, Yagi, and Shimmi 
(1991). 

2. ARCHITECTURE 

When a solution to an operator equation (not neces- 
sarily linear), 

A v = d ,  v E X ,  d E  Y, (1) 

loses existence or uniqueness or continuity in d, eqn 
( l ) is called ill-posed. Ill-posedness typically arises when 
"data" d is noisy, while the solution v sought should 
be reasonably smooth. It can also result from the nature 
of A. The Tikhonov regularization (1963a, 1963b, 
1965 ) converts eqn ( 1 ) into a family of minimization 
problems: 

G(v, d, X) : [lay - dll 2 + M~(v) (2) 

where II" II denotes a norm (on Y), Q : X --~ Y~ is con- 
tinuous and strictly convex, X > 0. IfAv* = d*, then 
under reasonable conditions, eqn (2) regularizes eqn 
( l ) in the sense that for any e-neighborhood N~(v* ) of 
v* (with respect an appropriate topology), there is a 
~-neighborhood N , ( d *  ) o ld*  such that if d E  N~(d* ), 
and if X(~) > 0 is appropriate, then there is a unique 
v (d ,  ~(6))  ~ N , ( v* )  which minimizes eqn (2).  It 
should be noted, however, that when d is noisy, choosing 
the best k is another interesting, as well as, difficult 
problem because one needs to take into account the 
statistics of d (MacKay, 1991; Whaba, 1987 ), and it is 
outside of the scope of this paper. 

Now, a typical "stabilizer" Q(v) in eqn (2) is of the 
form 

dr / )  2 

where C~(~) ~_ 0 and D = [a, b] is the domain of the 
problem. If eqn (2) with eqn (3) can be written as 

G(v, d, ~) 

fD F(v(~),  D(I)(~) . . . . .  L~(P)(~). ~, d(~), h)d~, 

v(r) = d'v (4) 
d~ r 

where F is "well-behaved," then the variational prin- 
ciple gives the Euler equation 

e d r 0 
E ( - 1 ) r  _ _  F(V(6), D(I)(~),  
,=0 dU Ov ~r) . . . .  

v~e)((), (, d((), ~,) = 0 (5) 

with natural boundary conditions: 

d r 0 ( I )  r 
r:o d~r Ov(p-q r~ F(v(~),  vll)(~) . . . . .  

v(e)(~), ~, d(~), ?~) = 0, 

a t S - a ,  b f o r q = O ,  l . . . . .  P. (6) 

It should be observed that because of the particular 
form of eqn (3),  the Euler equation (5) necessarily 
contains terms of the form 

( d2rv \ 
d~57)(~), r = l . . . .  P. (7) 

Namely, if the stabilizer (3) contains the r-th order 
derivative, one needs to implement the 2r-th order 
derivative operation for solving the regularization 
problem. 

For the sake of simplicity, the independent variable 
has been one-dimensional. Two-dimensional prob- 

lems will be discussed in the next section. 
In the following, we will formulate the regularization 

problem as a minimization problem on a finite di- 
mensional space instead of approximating the Euler 
equation because 
1. In a chip implementation, the space variable ~ takes 

finite discrete values. 
2. The formulation naturally leads to our layered ar- 

chitecture (see Remark after the proof of Fact 1 ). 
3. Discrete approximation of the Euler equation (5) 

together with the natural boundary condition (6) 
in a consistent manner is not straightforward. 
Boundary conditions are important since inade- 
quate boundary conditions even lead to instability 
(Matsumoto et al., 1991, 1992). Our discrete for- 
mulation given below naturally incorporates eqns 
(5) and (6).  

4. Most of the vision chips fabricated/proposed so far, 
including the filter described in Section 4 of this 
paper, are on a hexagonal grid instead of a square 
grid (see Section 3 for reasons). A rigorous approx- 
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imation result on a hexagonal grid will be rather 
involved. 
Thus, let v = (Vl . . . . .  v~)rE ~qn. Then the deriv- 

atives in eqn (3) should be replaced by the differences, 
e.g., 

I)k 1)k I, 

[ ~ (~) d2v 
~ }  -* Vk_l+Vk+,--2Vk. (8) 

These operations are conveniently expressed by 

(dv)~ ,a~'l/d2v\ ( ' > "-'~ Dr, l~s+'~, I(") "+" Lv (9) 

where 

D = 

L = 

I 
---| 

0 

0 
0 

1 
0 

0 
0 

0 0 
1 0 

- 1  1 

0 0 
0 0 

1 0 
- 2  1 

1 - 2  

0 0 
0 0 

I 
-1 

0 -  
0 
0 

0 
1 

0- 
0 
0 

- 2  1 
1 - 2  

( lO)  

Note that although D is not symmetric,  D rD is sym- 
metric and 

DrD = - L  (11) 

where T denotes transpose of matrix. Therefore, the 
regularization problem for finite dimensional space case 
calls for minimizing 

G(v, d, X) = I/Av - dll 2 

(~ Cr(k)(Lr/2v) 2 r: even 

+ x E (12) 
r=l Cr(k)(DLr-I/2v) 2 r: odd 

k 

where d = (dl . . . .  ,dn)  r E Y~n, Cr(k) >- 0 and 
(L'/2v)k (respectively (DLr-l /2v)k) is the k-th com- 
ponent of  L '/2v (respectively DL r-l/2 v). 

This discrete formulation: 
1. automatically takes care of  the natural boundary 

conditions because the summation over k in (12) 
at the boundary reflects the boundary conditions (a 
similar argument is used in Terzopoulos (1984) and 
Grimson ( 1981 )), and 

2. explains our layered architecture in a transparent 
manner  (see Remark after Fact 1). 
In this paper, we have no intention of solving all the 

regularization problems. Rather, we will restrict our- 
selves to the class of  regularization problems where (a)  
A = 1, identity matrix; and (b)  G(k)  is independent 

of  the space variable k. Various generalizations are 
possible. Sparse data problem, for instance, gives rise 
to an A which is a projection operator of  Y~ n onto its 
proper subspace and it leads to a rather interesting ar- 
chitecture. This will be reported elsewhere. Note that 
(b)  is very mild. 

Minimization of eqn (12) will be called the P-th 
o r d e r  r e g u l a r i z a t i o n  p r o b l e m .  Since L is negative defi- 
nite, (hence - L  is positive definite), the minimization 
problem has a unique solution given by 

OG e 
- v - d +  ~ ( - 1 ) ' X , L r v = O ,  X~:= XC, (13) 

~V r= I 

where eqn ( 11 ) was used (compare with eqn (5)) .  
Note that if Xr 4: 0, then the solution (13) necessarily 

contains the Lrv term. This corresponds to the presence 
of the ( d 2 rv / d~ 2") (~) term in the infinite dimensional 
case. Most of the neuro chips fabricated so far are for 
P = 1 with one of the very few exceptions, to the best 
of  our knowledge, being the Gaussian-like convolver 
chip (Kobayashi et al., 1990, 1991 ) where P = 2, X2 4: 
0, ?,1 = 0. Another exception is reported in Harris 
( 1988 ). It has been known that regularizations with P 
= 2 often perform better than those with P = 1. In 
order to see the differences between P = 1 and P > 1, 
first note that eqn (13) with P = 1 reads 

v - d - ,~ILv = 0. (14) 

It is well known that this can be implemented by a 
parallel network where each node is connected with 
only its nearest neighbors via passive conductance. 
Next, consider P = 2, X2 4: 0, Xl = 0, which amounts  
to 

v - d + ~k2L2v = O. (15) 

Note that 

" - - 2  
1 
0 

L 2 =  

X 

0 0 - 2  1 
0 0 1 - 2  

- - 2  1 O" 
1 - 2  0 
0 1 0 

0 - 2  1 
0 1 - 2  

1 0 0 
-2  I 0 

1 - 2  1 

0 1 
0 0 

0 0 
1 0 

- 2  1 

0 0 1 
0 0 0 

• - 4  1 0 
- 4  6 - 4  1 

I - 4  6 - 4  

0 0 0 
0 0 0 

- 4  6 
I - 4  

0 -  
0 
0 

0"  
0 
0 

(16) 

- 4  
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where • = 5 due to the "boundary effect." One sees 
that the k-th component  of  eqn ( 15 ) in the "interior" 
reads 

Vk -- dk + X2[6Vk -- 4(Vk-, + Vk+,) 

+ Vk-2 + Vk+z] = O. (17) 

A direct implementation ofeqn ( 17 ) is given by Figure 
4 (Figure 1 is a two-dimensional version) where 

g0, g~>0, g2<0, g ,=4[g2 l  (18) 

because the Kirchhoff Current Law (KCL)  gives 

-(go + 2gl + 2gz)l)k + gl(vk-i  + 1)k+l) 

+g2(Vk 2+ Vk+2)+ Uk=0. (19) 

Therefore, X2 = go/[ g2l, dk = X2Uk. This is what has 
been done in Kobayashi et al. (1990, 1991) and in 
Harris (1988). For a general r, the matrix L ~ is of the 
form 

L r = 

-ao al 
a~ ao 
a2 al 

a2 
a,  
0 a. 
0 0 

a2 a, 0 0 
aj a2 ar 0 
ao a, 
a~ ao 0 

ar 

o 
0 
0 
0 
0 
ar 

ao al a2 
al ao a~ a2 

0 a~ a2 a~ ao at 
0 0 ar a2 a, ao 

(20) 

where the boundary effects are not explicitly shown in 
order to save the space. Equation (20) shows that direct 
implementation requires connections between every 
pair of the k-th nearest nodes for all k < r with possibly 
negative conductance. As was remarked, r = 2 is already 
very difficult. The architecture given below solves the 
P-th order regularization problem with only wiring be- 
tween nearest nodes and without negative conductance. 
The following fact shows that the network given by Fig- 
ure 5 (in one-dimension) solves the P-th order regu- 

k g2 g 

V k - 2  Vk+2 

FIGURE 4. Implementation of the 4th order derivative. 

larization problem for all P, 1 < P _< N, simultaneously. 
Two-dimensional problems will be discussed in Sec- 
tion 3. 

Fact 1. Consider the network given by Figure 5 (a) (in 
one-dimension ) where the symbol given in Figure 5 (b)  
stands for a voltage controlled current source, and 
gin,, g,, > 0, i = 1 . . . . .  N. 
1. The network is temporally stable in the sense that 

for any symmetric positive definite ( not necessarily 
diagonal) parasitic capacitance matrix, the temporal 
dynamics converges to a unique stable equilibrium 
for any DC input. 

2. At an equilibrium, the voltage distribution of the 
P-th layer, 1 _< P _< N, simultaneously solves the P- 
th order regularization with 

h e -  g " " g ' ~  ( 2 1 )  
g i n , . .  • gme  

+ g,, • .g,~_~g,,,o ,,%, 
+ • • • + g , , , g , 2  • .g~p 

)'e i = (22) 
g,,,,. • .gmp 

g~," " 'g~t. 2g,ne ,gmp 

+ g , , . . . g , ,  3g,ne 2 g ' e  tg ' e  

+ • "- + g , m g m ~ g s s ' "  "g~e Xe 2 = (23) 
g,,,~.. • gme 

gmt'' ..gme ,g,p 
+ g i n , . . . g i n ,  2g'p ,Y,"P 

+ • " • + gs,gm2" " "gme X, = (24) 
gin,. • .g,,p 

T l . . . T ? - i  
dk - uk. (25) 

gin,. • .g,,,. 

3. The voltage distributions of all the layers are spatially 
stable in the sense of Matsumoto et al. ( 1991, 1992). 

P r o o f  (a) In order to prove the temporal stability, con- 
sider the temporal dynamics of the voltage distribution 
v l ( t )  @ y~n of the first layer: 

C I dvl(t) 
dt - (g,,L g,ml)v](t) + u(/) (26) 

where L is defined by eqn (10) and C l is the parasitic 
capacitance matrix (not necessarily diagonal). Simi- 
larly, the i-th layer (2 _< i < N) temporal dynamics is 
described by 

Ci dv'(t) 
dt = (g~.,L - g m ,  1)v ' ( t )  + T,_tvi - I ( l ) .  (27) 

Note that the first layer is "decoupled" from the rest 
of  the network because the voltage controlled current 
source T~vl(t)  is a unilateral element, i.e., there is no 
feedback from the second or other layers to the first 
layer. Since gs, > 0, it is easy to show that (gs, L - 

gin, 1 ) is negative definite because g,m > 0. Therefore, 
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" ~ J _ . _ - - - - ~ / / ~ . ~ " f  ~ /  gsl 

....................... / gs. 

gma 

(a) 

(b) 

FIGURE 5(a). The layered architecture; and (b) Voltage controlled current source. 

v l(t) converges to a stable equilibrium exponentially. 
Since the second layer has exactly the same structure 
as the first layer, except for the fact that u(t) is replaced 
with Tlv ' ( t ) ,  and since v~(t) is exponentially conver- 
gent, v2(l) also converges exponentially. Therefore, at 
these stable equilibria, the network satisfies 

(grai l  - g s ~ L ) v  I - u = 0 ( 2 8 )  

(gm, l - - g s ,  L ) v  i -  T i - i  v i - I  = 0 ,  2 < - i < - N .  ( 2 9 )  

Recall eqn ( 13 ), which is the solution for the regular- 
ization problem. For P = 1, it is clear that eqn (28) 
solves the first order regularization with ~] = gs,/gm, 
and d = (1/gmt)U. Let 2 < P _< N. Then a successive 
substitution ofeqn (29) into eqn (28) gives 

(gm, l - gs, L ) ( g m 2 1  - gs~L) .  • • 

( gm~l  - g s ~ L ) v  e - T j . . . T p - l u  = 0 (30) 

which amounts to 

( - 1 ) e g ~ . , . . . g s e L e v  p + ( - 1 ) v - ' ( g s , . . . g s e - , g m p  

+ gs,. • "gsp-2gseg . . . .  + - • ") L e  Jve  + • • • 

- (gml" " "gme-lgse + g in , . .  "gme 2g,,egse ~ + • • -) L y e  

+ g m , . . . g m p l  v p -  T l . . . T e - l u  = 0 .  ( 3 1 )  

Comparing this equation with eqn (13), one has eqns 
(21)-(25).  

(b) One can easily show that all the layers satisfy 
the spatial stability condition given in Matsumoto et 
a1.(1991, 1992). • 

REMARKS. (a) The idea behind our architecture is ex- 
tremely simple. The concatenation structure L r = 
L L . . . L  naturally maps into the layered network of 
Figure 5(a).  Consider the network given by Figure 6 
where KCL gives 
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m 

i m  

gm 

Uk () 
gm 

V k ~ + l  1 

m 

FIGURE 6. The 2nd order derivative. 

gm 1 
--2Vk + Vk-I + Vk+l -- - -  Vk = -- dk- (32) 

g~ g~ 

I f  gm/gs is small, then eqn (32)  roughly amounts  to 

Lv I ~ u (33) 

The second layer receives Tiv  ~ as input, and solves 

Lv 2 ~ Tiv I (34) 

and similarly 

which gives 

Lv ~ ~ Ti_lv ~-l (35) 

Liv i ~ T l . . .T i - lu .  (36) 

( b ) Observe that the weights Xp . . . . .  XI are explicitly 
given as functions o f  the conductance values. ( c ) In our 
discrete formulat ion (12) ,  conditions corresponding to 
the natural boundary conditions for  the Euler  equation 
are reflected in the boundary elements o f  the matrices 
D and L.  

Is the multilayered network completely equivalent 
to a single-layer network with negative conductance? 

F = 

The answer is no. In order to see this, recall Fact 1 and 
let 

: ( g  . . . . . . .  gme, gs . . . . . .  gs~) ~ (XI . . . . .  he) (37) 

be the map:  ~ 2 P  ._~ R e  defined by eqns ( 2 1 ) - ( 2 5 ) .  
I f  ff is a surjection, then the multilayered network can 
solve every problem solved by a single-layer network 
with negative conductances,  A = 1. Even though there 
are twice as many  parameters (grn~ . . . .  , g m e ,  gs,, • • •, 
gs~) in the layered network as in a single-layer network, 
~b is not  surjective. It is easy to show that the layered 
network cannot  solve the pure P-th order regularization 
problem, i.e., Xe v t 0, and X, = 0 for all other r 4: P.  
Whether  this is harmful  for the layered network is an- 
other issue, however. Let us look at the P -- 2 problem. 
Figure 7 (a)  shows the impulse response of  the single 
layer network of  Figure 4 where 1/go = 200 kf~, 1/gl  
= 5 kft, 1/g2 = - 2 0  k~2 so that g~ :g2 = 4 : -  1 and hence, 
X m -- 0. Figure 7 (b)  shows the impule response of  the 
layered network with P = 2, and 1 ~gin, = 800 kf~, 
1 ~gin2 = 500 k~2, 1/g.~, = 80 kf/, 1/gs2 -- 450 k[2, T~ 
= 2 #Siemens .  Since X~ = g~,/g,,, + g J g m 2  (see eqn 
(24)) ,  it cannot  be zero. The problem with X] -- 0 is 
called the thin plate while the problem with X~ 4 : 0  is 
called the thin plate under tension (Terzopoulos, 1984). 
Observe the slight negative response in Figure 7 (a )  
while there is no negative response in Figure 7 (b) .  The 
latter is a consequence of  the fact that no  negative con- 
ductances are involved. Because of  the negative re- 
sponse, the thin plate does not  really correspond to 
Gaussian convolution although they are close. There 
is an interesting distinction between the X~ = 0 case 
and the X~ 4 : 0  case when data is sparse. This will be 
reported elsewhere. 

Let us characterize the responses of  Figure 7 (a)  and 
Figure 7 (b)  analytically. Observe that one can recast 
eqn (19)  as 

Xk+l = FXk + Yk (38) 

where 

0 
0 F =  0 

-1  

l 0 !] 
0 1 
0 0 

-g l /g2  (go + 2gl + 2gz)/gz - g l / g z  

(39) 

Xk = (Vk-2, Vk-I, Vk, Vk+l) T (40) 

Yk = (0, O, O, - -u jgz )  T. (41) 

On the other hand, for the layered network, one can 
show that  the second layer voltage distribution is de- 
scribed by eqn (38)  where F is now replaced by 

0 1 0 0 ] 
0 0 1 0 
0 0 0 1 " 

-1  4 + g,,,/gs, + gr~2/gs~ - 6  - 2gm,/gs~ -- 2gmJgs2 4 + gm, /gs ,  -F g,,~/gs2 

(42) 
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FIGURE 7. Impulse response In) eqn 39; and (b) eqn 42. 

Equation (38) with eqn (39) is the "spatial" dynamics 
of the network of Figure 4 representing how the node 
voltage v~ is distributed in response to Uk. Similarly, 
eqn (38) with eqn (42) is the spatial dynamics of v 2 
of the layered network. Since eqn (38) is a discrete 
linear dynamical system, its behavior is completely 
characterized by the eigenvalues of F. 

Fact 2. (a) The eigenvalues of F defined by eqn (39) 
are two sets o f  complex-conjugate pairs offthe unit circle 
in the complex plane such that re  ±~, r -~ e +-j°, r > O, 0 
4: 0, r (Figure 8(a)).  (b) The eigenvalues o f f  defined 
by eqn (42) are f our  reals off the unit circle in the 
complex plane such that rl, r2, r f  ~ , r~ -~, r~, r2 q~ 0, r~ 
4:r2 (Figure 8(b)).  

Proof. The proof utilizes our general result on matrices 
of the form 

F = 

0 1 0 0 
0 0 1 0 
0 0 0 1 

0 0 0 
- -  1 - - a p _  1 - - a p _  2 -ao 

0 

0 

0 I 
- -  a p  _ i 

(43) 

which describes the behavior of a general class of net- 
works including P-th order regularization network 
(Matsumoto et al., 1991 ). 

For P = 2, matrix F is 4 × 4 and the four eigenvalues 
are given by 
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FIGURE 8. Eigenvalue configuration of F. (a) eqn 39; and (b) 
eqn 42. 

½(w, +_ ~ -  4), ½(0.3 2 ~--- ~ - -  4) (44) 

where wj and w2 are the zeros of 

O(o~)  := 09 2 + a~w + ao - 2. (45) 

One can easily show that if 

ao> 2 + -~a 2 (46) 

then statement (a) of Fact 2 holds. On the other hand, 
if 

- ½ a o -  l < a l < - 4  and a o < 2 +  ~al2 (47) 

then statement (b)  of Fact 2 is valid. For the F-matrix 
of eqn (39) (recall eqn (18)) 

a ~ = - 4 ,  a o = 6 +  go (48) 
Ig2 [ 

so that 

6 +  go > 2 +  1 
[g2i  4(4)2 (49) 

and hence, eqn (46) holds. For the F-matrix defined 
by eqn (42), 

at=-(4+g"---~'+g"2], a o :  6 + 2  g"'  + 2 g"---~ {50} 
g.~, gs2 / ga gs~ 

One can easily show that eqn (47) is satisfied. • 

3. TWO-DIMENSIONAL PROBLEMS 

Although the basic idea of our layered architecture de- 
rived in the previous section is naturally carried over 
to two-dimensional problems, there are three issues 
which call for explanations. First, when there are two 
independent space variables, say ~ and tl, there is more 
than one choice of the stabilizer (3).  With P = 2, for 
instance, the stabilizer can be 

o r  

xff(v.+v..)2da. (51) 

P P  
x d j  (4+ + 2"~. + v2..)d(+/ (52) 

or other forms, where 

O2v 02v OZv 
"~ - -  0 f  2 , D~n -- 0(On' V,, -- 0n 2 . (53) 

Second, natural boundary conditions get more in- 
volved. For instance, i f P  = 2 and Xi = 0, then the first 
variation of 

a(v, d, x) 

fro F(v(& ,),  v~+, v~., G,,( ,  ~.d((, , ) ,  X)d(d~/ (54) 

on the boundary OD gives rise to 

1 OF rr+to,, 
2 

oL "to,,.. 2~o o, ~ 2 ~  d+(55) 

where v(~, n) is perturbed to v(~, 0) + ~b(~, rt). When 
one performs integration by parts on OD, one obtains, 
for instance, for eqn (52) 

- (G .  + v~) + ( v ~  2, + 2v~.Gn~ + G.~/2) = 0 56) 

0 0 

+ v.,o.n+) = 0 57) 

on OD where G,  n. and G, nT are the direction cosines 
of the outward normal and the tangent vectors, re- 
spectively. Approximation consistent with eqns (56) 
and (57) together with Euler equation 

OF 02 OF 02 OF 02 OF 
0T + ~ ~ + o~0~ 0". + 0n2 o'.. = o (58) 

will not be easy to justify rigorously. 
Third, many of the vision chips implemented or 

proposed so far including the one described in Section 
4 of  this paper are on a hexagonal grid because 
1. A network on a hexagonal grid has much better cir- 

cular symmetry than on a square grid (Kobayashi 
et al., 1991; Mead, 1989). 
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2. A hexagonal grid affords the greatest spatial sam- 
piing efficiency in the sense that the least number  
of  nodes will attain a desired coverage of  the image 
(Dudgeon & Mersereau, 1984). 
We will handle the problem as a minimization 

problem on a finite dimensional space as was in eqn 
( 12 ). It should be noted that in our arguments below, 
everything is rigorous in so far as the minimization is 
concerned. 

On a hexagonal grid there are two labeling conven- 
tions; standard grid (Figure 9 (a))  and alternate grid 
(9 (b) ) .  We will use the standard grid. Let 

Y : :  ( U I I ,  1}12, - • • , / ) In ,  /)21, 1)22, - - • , l)2n, 

v . l ,  v . z  . . . . .  v..) ~ ~n×. (59) 

and let d be similarly defined. 
1. P = 1. The most reasonable function to minimize 

is 

G(v, d, ~,,) = I[v - dl[ 2 

+ ~,,(][D,v[[ 2 + IIO2v/I 2 + IIDsvll 2) (60) 

where the (i, j ) - th  component  of  DI v, D2 v and D3 v 
are, respectively, given by 

(Dlv) 0 = v o -- Vi-j , j  (61) 

(DE v) 0 = vii - vi, j -  1 (62) 

(D3v)0 = 1)ij -- t~i_l.j+l. (63) 

Appropriate modifications must be made on the 
boundary. Differentiation of eqn (60) with respect 
to v gives 

v - d - ~,,Lv = 0 (64) 

where 

L := -(DrD, + DrD2 + DJ'D3). (65) 

Equation (64) is of  exactly the same form as in eqn 
(14), where L is now replaced by eqn (65). The (i, 
j ) - th  component  of  Lv in the interior reads 

. 

l)i_l, j "~ 1)i+l, j ~- l)i,j_ 1 "~ 1)i,j+ 1 

+ vi-t,~+t + v i+t,j-t - 6v~,j, (66) 

which is a reasonable approximation of the Lapla- 
cian on a hexagonal grid. One can easily show that 
eqn (64) corresponds to the KCL of the network 
shown in Figure 5 with P = 1. 
P = 2. As was remarked earlier, there are more than 
one reasonable choices of G. 
2(a). 

G(v, d, ~,,, X2) = [Iv - dll 2 + ~l([[DlvI[ 2 

+ llD2vll 2 + llDsvl/2) + X211Lvl/2 (67) 

where L is defined by eqn (65).  The solution to this 
problem is given by 

v - d - XiLv + XxL2v --- 0 (68) 

which, again, is of  the form (12). The (i, j ) - th  com- 
ponent of  L2v in the interior reads 

1)i_2, j "~- 1)i+2, j At- l)i,j_ 2 AI- Z)i,j+ 2 "-[- l ) i_2, j+ 2 "-[- l ) i+2, j_  2 

+ 2 ( l ) i - - l , j - -  1 + I ) i+ l , j+  1 "-[- l ) i_ l , j+  2 

-~- l ) i+ l , j _  2 -~- 1)i_2,j+ 1 "~ l ) i + 2 , j _ l )  

- -  1 0 ( 1 ) i _ l ,  j + l)i+l, j "~- 1)i,)_ 1 ~- l)i,j+ 1 

+ vi-~.j+] + v i + t j - l )  + 42vij, (69) 

which is a reasonable approximation of the bihar- 
monic operator on a hexagonal grid. Note that the 
third term XzllLvll z in eqn (68) corresponds to a 
solution with eqn (51 ) which is called the square 
Laplacian (Grimson, 1981 ). The question as to what 
would be a good approximation of the quadratic 
variation (52) (Grimson, 1981 ) on a hexagonal grid 
may not be easy to answer. We will not pursue this 
subject since it is not our purpose in this paper. 
Gr imson ( 1981 ) observed a difference between so- 
lutions to a particular visual reconstruction problem 
(not regularization problem) with constraints (51 ) 
and (52). We have, so far, observed no strange be- 
havior to the solution to eqn (67) on a hexagonal 
grid. 

1 2. 3 4 

I I I 1 

1 

1 
2 

3 

4 ,  

1 2 3 4 

; 1 ; i > 

(a) (b) 

FIGURE g. Labeling conventions for hexagonal grid. (a)  Standard; and (b) Alternative. 
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2(b) .  Another  choice of  G for P = 2 is 

G(v,  d, ? ` l ,  ? `2 )  : 1[ V - -  dll 2 + ?`1(liD,vii z + IID2vll 2 

+ HD3vI[ z) + ?`2(IlL,vii z + IlLzv{I z + [[t3v[I z) (70) 

where 

L I : = - D ( D I ,  L 2 : = - D ~ D 2 ,  L 3 : = - D r D 3 .  (71) 

The solution is given by 

v - d - ?`lLV + ?`2(LIrL~ + L~L2 + L ~ L 3 ) v  = 0. (72) 

Note that the last term L~rL~ + L2rL2 + L~L3)v  in 
eqn (72)  is not  Lv and it reads (compare  with eqn 
(69))  

1)i 2,J ~- I)i+2,3 -~ l)i,j 2 -~ I)i,j-2 -~ Ui-2,j+2 ~- I)i+2,j 2 

- -  4 ( / ) i - 1 , )  1 ~- 1)i+l,.i + Di,j+l di- ~)i,j+l 

+ vi ~.j+l + vi+Lj-.i) + 18vi.j (73) 

which is a rather crude approximat ion of  L2v. The 
network given in Figure 1 and hence in Figure 3 
minimizes eqn (70) with X~ = 0, X2 > 0. 

3. P = 3. A possible choice of  G will be 

a ( v ,  d, ?`,, ?`2, ?,3) = IIv - d[I 2 + ?`,(llDlVl[ z 

+ IID2vll 2 + IID3vll 2) + MIILvII z 

+ ?`~(liD,tvll 2 + IlD2tvll = + IID3tvll=). (74) 

Note  that the third term corresponds to one o f  the 
penalty terms considered in Poggio et al. ( 1985 ) for 
the continuous two-dimensional problem. The so- 
lution is given by 

v - d - ? ` l L V  + ? ` 2 L 2 v  - ? ` 3 L 3 v  = 0 .  (75) 

We will stop here and formalize the argument  in the  
following: 

Fact  3. Consider the minimizat ion problem on a hex- 
agonal array: 

G(v, d, X, . . . . .  ?`e) = Itv - dll 2 

{ ?`~[[L,/Zvll 2 r: even 

+ ~ ?`r([lDlt~-'/2vll 2 + IlO2L~-'/2v[[ 2 (76) 
r= l  

+ lID3 L~ '/2v112) r: odd 

where L,  D~, D2 and D3 are defined by eqns (65) ,  
(61 ), (62)  and (63) ,  respectively. Then the statements 
of  Fact 1 are valid. 

4.  A P P L I C A T I O N :  T H E  S C E  F I L T E R  

Specializing Fact 1 to P = 2, one has a rather interesting 
application. 

Fact  4. Consider the double-layer network given in Fig- 
ure 10. 
1. The first layer solves the first order regularization 

with  X~ = g,t/gm,, dg =- (l/gmt)Uk, while the sec- 
ond layer solves the second order regularization 
with X2 = (gs,gs2)/(gm,gm2), X~ = (gm,g,2 + 

gmEgs~)/(gmtgm2), dk = ( Tl/(gmtgmE))Uk, simulta- 
neously. 

2. Let 

Xk = V~ -- V~. (77) 

Then xk enhances  contras t s  after s m o o t h i n g  ( w i t h  
appropriate parameters) .  

3. Consider the uni form input  uk ~- u for all k. I f  

g,~2 = T~ (78) 

then 

REMARKS. 

. 

xk---0 for allk. (79) 

1. Figure 11 shows the one-dimensional responses of  
v~, V 2 and xk to the inpul 

{ 50/~A 2 9 _ < k < 3 1  
uk = (80) 

elsewhere 

with 

l/gm, = l/g,, 2 = 500 k~2, l/g~, = 120 k~2, 

l/g~ 2 = 20 k~2, T~ = 2 X 10 -6 Siemens. (81) 

Observe that the second layer response v 2 alone 
already accomplishes the second order regularization 
without negative conductance. Note also that since 
the input (80) is a narrow "slit" located at the center, 
the response xk ( a) smooths the input and then ( b ) 
enhances contrasts because of  the antagonistic sur- 
round. In order to see these capabilities more clearly, 
let us consider the input given by Figure 12(a) which 
is a rectangular "image" given by 

4tzA 24_<k_<38 
Uk = (82) 

0 elsewhere. 

Figure 1 2 ( b ) s h o w s  the filter response xk. Figure 
12(c) is the input uk corrupted by a Gaussian noise 
nk with 3~ = 1 uA, i.e., 

u~, = uk + nk. (83) 

Figures 12 ( d) and ( e ) give the filter responses. Figure 
1 2 ( f )  gives the response xk to the noisy input (83)  
when all the circuit parameters are perturbed ac- 
cording to the Gaussian distribution around the 
nominal values with 3a = 20%. When the network 
is implemented by an analog CMOS VLSI, the re- 
sistance values naturally deviate from the nominal 
values. These data suggest that the filter is capable 
of  achieving Smoothing-Contrast Enhancing ( SCE) 
with reasonable robustness against parameter vari- 
ations. 
In engineering terms, this network can be regarded 
as a noncausaP infinite impulse response (IIR) im- 

Non-causal is referred to the fact that the voltage at a particular 
node depends on the node voltages "to the right" as well as on those 
"to the left." 



Regularization Filters 339 

/ 

/ 
f 

/ 
gsl' 

gs2 

TlVli 

J 
X ij 

gm: 

FIGURE 10. A double-layer network. 

plementation of  a ~72G-like filter. Speaking roughly, 
our filter output x is (L  -l - L -Z)u  where L is as 
defined by eqn (5) (see Remark after Fact 1 ). We 
are avoiding the term "'edge detection "' simply be- 
cause a zero crossing of  ~72G is not necessarily an 
edge (Clark, 1989). Note, however, that in the par- 
ticular situation given in Figure 12(f), our SCE 
filter correctly identifies the two edges against noise 
and parameter variations, i f  one checks the zero 
crossings. 

3. In order to prove statement 3 of  Fact 4, note that 
the input being uniform implies that no current can 
flow through gs,, and hence, v~ =- u/g,,~. Similarly, 
v~ =- ( T]/gm~gm2)u which yields v~ - v z = u/g,,j 
- (T]/gm~gm2)u =- O. Thus, eqn (78) implies eqn 
(79). This means that i f  eqn (78) holds, then xk does 
not respond to the "DC component, "" namely, xk re- 
sponds only to intensity differences and is insensitive 
to absolute values. This is important from the infor- 
mation processing viewpoint. 

4. That the voltage controlled current source T~ v i is a 
unilateral element is important. Namely, while the 

first layer voltage v ~ does affect the second layer via 
T 1 v l, the second layer voltage v 2 has no effect on the 

first layer. Thus, i f  TI v ~ were replaced with a passive 

resistor (a bilateral element), then v~ > v~ always 
and hence eqn (79) couM never be satisfied. It is 
also clear that there would be no antagonistic sur- 
round 

5. The simplicity o f  the architecture naturally implies 
the simplicity o f  the circuitry. Figure 13 shows a pos- 
sible circuit block diagram realizing a unit "cell. "" 
An image is directly shined onto an array of  pho- 
totransistors through a lens. The light which hits the 
base of  the phototransistor induces a current which 
is converted into a voltage so that the input circuit 
is a Thevenin equivalent o f  the input circuit o f  Figure 
5. A similar circuit is used for the second layer input. 
The two triangles together with switches are for the 
input and output data readout. Although details on 
the chip implementation will be reported elsewhere, 
Table 1 shows several quantitative comparisons be- 
tween the Gaussian chip reported in Kobayashi et 
al. ( 1990, 1991) and the SCE chip proposed here. 

6. After this work was completed, K. Uchimura of  N T T  
VLSI  Laboratory brought our attention to Yasuda 
et al. (1971), where architecture consisting of  two 
layers of  resistive network was proposed and imple- 
mented by discrete components 20 years ago. An 
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FIGURE 11. Responses of the double-layer network to a "narrow slit" located at the center; 
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(a) v: and v~ (b) xk. u, = elsewhere. 

input circuit was implemented by an array (703) of 
silicon solar cells and the current induced by an im- 
age was fed into the two resistive networks. There is 
a crucial difference between the architecture consid- 
ered in Yasuda et al. (1971) and the architecture 
proposed in this paper. In the former, the two layers 
receive exactly the same input current and there is 
no voltage controlled current source. This is done by 
simply sharing the input wire. Therefore, both layers 
perform the first order regularization. The network 

outputs the difference between the first and the second 
layer voltages. In order for the output to have a 
meaningful contrast enhancement effect, the second 
layer resistance value must be significantly smaller 
than that of the first layer. In fact, in Yasuda et al. 
( 1971), the ratio is 68 kfi: 1 kfl. The latter dissipates 
a great amount of power and yet antagonistic sur- 
round of a measured response is barely discernible. 
Recall that in our architecture, the ratio is 120 kfi: 
20 kft (see eqn (81)) and yet Xk has a significant 
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(b) Responses to (a); (c) Input is corrupted by a white Gauseian noise with 3a = 1 0~A; (d)  Response v: and v,:; (e)  Response x,; 
and ( f )  Response x, when all the circuit parameters are perturbed by Gaussian around the nominal values with 3~ = 20%. 

contrast enhancement effect. This is due to the volt- 
age controlled current source T, v~ which enables 
the second layer to perform the second order regu- 
larization rather than the first order regularization. 
We would like to point out that our network can 

perform contrast enhancement even with g,, = gs2. 
Figure 14 gives the response Xk to 

{2 p A  2 9 < k < 3 1  

uk = elsewhere 
( 8 4 )  
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FIGURE 13. A schematic block diagram for a unit cell of the SCE tilter. 

where 1/g~ = 1/gs2 = 120 k~2 and other parameters 
are as in eqn (81). I f  one interprets the first order 
regularization as a single convolution, then the sec- 
ond layer voltage is a result of taking two successive 
convolutions thus obtaining a radical broadening of 
the impulse response. 

7. The network reported in (Mead, 1989; Mead & Ma- 
howald, 1988) is single-layered, and computes, in 
our notation, uk - v~. Namely, the network outputs 
the difference between the input and its "first order 
regularized" signal. 

As was remarked in Section 2, the spatial dynamics 
of the double-layer network in Figure 10 cannot have 
complex eigenvalues. We will show that for the network 
given in Figure 15, which is a slight modification of 
Figure 10, the F-matrix (see eqn (39)) admits complex 

eigenvalues. As will be described in Section 4, the net- 
work of Figure 15 is the model proposed by one of the 
authors for lower vertebrate retina. 

Fact 5. Consider the network of Figure 16 where gmi, 
gin2, gs~, gs2 > 0, and 

TiT2 < 0. (85) 
Then 
1. The network is temporally stable in the sense of  

Fact 1. 
2. At an equilibrium, the second layer solves the second 

order regularization with 

X2 - gs~gs2 X] = gm~g~ + g,~gs, 
g,n,gm2- TtT2'  gm,gm2- TIT2'  

T] 
dk - uk. (86) 

gin,gin2 - T~ T2 
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TABLE 1 
Comparison Between Gaussian Chip and SCE Chip 

Gaussian Chip SCE Chip 

unit cell size 200 pm × 170 pm 160 pm × 138 pm 
transistor count 50/unit cell 50/unit cell 
power dissipation 1.1 mW/unit cell 0.1 mW/unit cell 
quality of smoothing ® © 

3. The first layer solves the first order regularization 
with 

X, : gs---a-~ dk = 1_~ (Uk + T2v~), (87) 
g,,, ' gm, 

where v~ is the solution for (2).  
4. The network is spatially stable in the sense of Mat- 

sumoto et al. ( 1991, 1992). 
5. If 

gin, gm2]Z+4 T tT2<o  (88) 
gs, gs2 / gs, g~ 

then the eigenvalues of the F-matrix are two sets of 
complex conjugate pairs off the unit circle. 

REMARKS. (a) The only difference between Figure 15 
and Figure 10 is the presence o f  the feedback Tzv ~from 
the second layer to the first layer. (b)  It follows from 
eqn (86) that ~2 can be controlled by TITz without 
changing the ratio ~1/~2. 

Proof (a) We will prove the one-dimensional case. Be- 
cause of  the feedback T2v 2, the first layer is not inde- 
pendent of the second layer. Letting C ] (resp. C 2) be 
the parasitic capacitance matrix of  the first (resp. sec- 
ond) layer, one has the dynamics of the network 

C 1 d vl --~ = (g~,L - gm, l )v I + T2v2 q- u (89) 

C 2 dr2 
G = (gs2L - gm21)v2 + T'vl (90) 

where 1 is the identity matrix. Since T~ T2 < 0 (see eqn 
(85)),  assume, without loss of  generality, that 

T l > 0 ,  T2 = -IT21. (91) 

Multiply eqn (90) by ]T2]/T1 to obtain 

IT2[ C2 dv 2 IT2I 
T] dt - TI (gs2L-g"21)v2 + lT2lvl (92) 

SO that eqns (89) and (92) can be recast as 

C dv = (A + B)v + D,  (93) 
dt 

where v = (v ', v 2) r, and 

o l A = IT21 (94) 
0 T---~(gs~L-gm21) 

f:o 1 C = IT21 ' 
-T~-m c2 

[o [;] 
B =  I T z l l  0 , D = . ( 9 5 )  

0.588008 V 

LGOSOe V 

• 16 31 '~ Cl 

FIGURE 14. Second order regularization enables contrast enhancement even with 1/g,,  = 1 / g , =  = 120 kfl where other parameters 
are the same as in eqn (81) .  
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FIGURE 15. A double-layer network with feedback. 

Since B is not symmetric, this network is not reciprocal 
(Matsumoto, 1976) and hence, the cocontent (Mat- 
sumoto et al., 1992; Poggio et al., 1985) is undefined, 
i.e., the dynamics is not the gradient of a scalar function. 
The stability, however, is almost trivial because L being 
positive definite implies the negative definiteness of A 
and 

d ( 2 v r C v ) = v r ( A + B ) v = v r A v < O  (96)  

where v rBv = 0 was used. Since C is positive definite, 
A + B is stable. (b) and (c) can be proven in a manner 

similar to the proof of Fact 1. (d) Because of the feed- 
back T2v2, spatial stability is nontrivial. Note that at 
an equilibrium, v~ satisfies 

-(g,,,,g,.,~ - TtT2 + 6gs,gs2 + 2gm~gs2 + 2g,.,~gs2)V~ 

+ (4gs,gs~ + gm~g~ + gm~gs~)(v~-, + V2k+l) 

-- gs~g~2(V2-2 + V~+2) + TtUk = 0. (97)  

Putting 

go : =  g m l g m z  - -  TIT2, 

g, := 4g~,g~2 + g.,,gs~ + g,.,g~,, g2 := -g~,g~2, (98)  

2.50v 

0.50v 

I 
0 20 

i 

40 

FIGURE 18. Unstable spatial responses. 
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60 node 
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one sees that eqn (97) reads 

-(go + 2g, + 292)v 2 + gt(v2_, + v2+,) 

+ g2(v~,-2 + v2+2) + TlUk = 0. (99) 

This difference equation can be recast as Xk+, = FXk + 
Yk where 

0 
0 

F =  
0 

-1 

1 0 
0 1 
0 0 

-gl/gz (go + 2gl + 2g2)/g2 

0 
0 
1 

- g l / g 2  

(100) 

It is shown in Matsumoto et al. (1992) that dynamics 
is stable i fF  is hyperbolic, i.e., it has no eigenvalues on 
the unit circle. It follows from Proposition 3.4 of Mat- 
sumoto et al. ( 1991, 1992) that eqn (100) is stable iff 
a+(go, gl, g2) < 0 

where 

a+(go, gl, g2)  

- g o -  2gt + 2lg~l 

= when g 2 > 0 o r g 2 < 0 a n d  Igl/g2[ >4 

-go - 2g, - 492 - g2/(4gz) 

when gz < 0 and I g~/g21 < 4. 
(101) 

It follows from eqn (98) that g2 < O, g~ > 0 and I g~/ 
g21 > 4 so that a+(go, g], g2) = -go  = -(gm,gm2 - 
Ti T2). Therefore, the network is spatially stable if 

gin,gin2 -- T~T2 > 0. (102) 

Our assumption that T~ T2 < 0 implies spatial stability. 
(e) It follows from eqn (46) that if eqn (88) is satisfied, 
then the eigenvalues are complex as stated. • 

REMARKS. (a) Figure 16 shows typical impulse re- 
sponses of v~ and v~ when eqn (102) is violated, which 
is highly undesirable. Note that in the present network, 
eqn (102) is equivalent to the fact that Xi, ~2 > O. (b) 
Of  course,/fT2 = 0, then eqn (102) is trivially satisfied 
and hence, the network of Figure 10 is spatially stable. 

becomes serious when one wants to solve regularization 
problems in two dimensions, and yet the network is 
only a crude approximation to the biharmonic operator 
(see eqn (72)). If one wants to implement eqn (68), 
the wiring gets even more serious. Let us look at, for 
instance, Figure 17 which implements eqn (68) (go 
and input are not shown) provided that 

X, 
g~:g2:g2 = 10 + ~ :-2:-1 (103) 

because the KCL reads 

-(go + 6g, + 692 + 6~2)vij + g~(vi-~j + vi+~.j 

+ Vi,j_ 1 -I- i)i,j+ 1 -I- Vi_l, j+ 1 -I- 1)i+l , j_ l )  

"q- g2(1)i_2, j "}- 1)i+2, j "~- 1)i,j_ 2 "~ 1)i,j+ 2 "~ l)i_2,j+ 2 "~- I)i+2,j_2) 

"~ g2( l ) i_ l , j_ l  ~- l) i+l, j+ 1 -~- Vi_I,j+ 2 "4- l) i+l , j_ 2 

.~ Vi_2,j+I ~_ l ) i+ l , j_ l )  ~1_ Ui,j = 0 (104) 

where u 0 is the input current source. Thus, the network 
of Figure 1 corresponds to g2 = 0 in Figure 18. Since 
Fact 2 claims that the layered network of Figure 5 with 
only immediate neighbor connections, there must be 
a significant reduction of wiring complexity. This sec- 
tion tries to quantify the wiring complexity. 

Let us first note that there are basically three cate- 
gories in vision chip wiring: 
Class 1: Conductance interconnections between unit 
cells. 
Class 2: Power supply lines and bias voltage lines. 
Class 3: Data lines and address lines for data readout. 

5. WIRING COMPLEXITY 

The term "wiring complexity" is not our invention. It 
is repeatedly emphasized in (Mead, 1989, p. 7, p. 116, 
pp. 276-277) as the single most important issue. It is 
indeed critical for implementing vision chips because 
although each computing unit has relatively simple cir- 
cuitry, there are thousands of computing units placed 
regularly so that the routing can be extremely difficult 
when the network architecture demands complicated 
interconnections among computing units. 

As was shown in Figure 3, complexity of the wiring 
FIGURE 17. A network implementing L 2. go and input are not 
shown. 
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FIGURE 18. Wiring complexity of the layered network with P = 

2 amounts to 6. A hexagon stands for a unit cell. 

Even though these are not completely independent of 
each other, we will pay particular attention to Class 1 
because it is the dominant one and critically dependent 
on the architecture of the signal processing part. Class 
2 depends much more heavily on circuit design than 
the architecture. Class 3 essentially depends on the data 
readout mechanism. 

Since a precise technical definition of wiring com- 
plexity is not given in Mead (1989), we will try to give 
a reasonable one here. Naturally we do not claim this 
is the best, nor only definition. In order to quantify 
wiring complexity, several simplifications are necessary. 
As far as wiring complexity is concerned, the following 
assumption will be made. 

ASSUMPTION. The lateral conductances are regarded 
as pure wires, while the vertical conductances as well 
as the input circuit are regarded as a "unit cell." 

REMARK. Conductances g~ and gz in Figure 1 will be 
regarded as pure wires whereas go and the input circuit 
are regarded as a unit cell. Similarly, gs, and g~2 in 
Figure 10 are regarded as pure wires whereas g,,,, 
gin2 and the input circuit constitute a unit cell. 

A natural question arises. Doesn't the unit cell of a 
multilayered network need more chip area than that 
of a single layered network? Not necessarily. Let us 
compare, for instance, Figure 4 and Figure 10. First 
note that in actual implementations, ½ of each lateral 
resistor 1/gr or 1/gsr is realized in each unit cell area. 
Second, since g2 in Figure 4 is negative, it demands 
more transistors. In Kobayashi et al. ( 1990, 1991 ), g2 
necessitates a transconductance amplifier and six tran- 
sistors per node. In Figure 14, the voltage controlled 
current source is realized by a differential amplifier t o -  

gether with g,,2 and hence six transistors are enough 
per node. Thus the unit cell area of a layered network 
would not be any larger. Hence the wiring complexity 
of a chip is the complexity of wiring among unit cells. 
We assume, therefore, that the unit cell area is nor- 
malized to 1 × 1. 

DEFINITION. The wiring complexity of  a vision chip is 
defined as the number of  wires which cross a unit cell. 

REMARKS. (a) The unit cell defined above corresponds 
to a pixel. ( b ) For the wiring complexity, one has to 
count not only the wires connecting a particular unit 
with another unit but also those which pass through a 
unit cell for the purpose of  connecting other cells together. 
( c) I f  the unit cell is normalized to 1 x 1, our definition 
of  wiring complexity means the wire length. Observe 
that for a chip implementation, a wire which comes into 
a unit cell area contributes to the same complexity 
whether or not there is an electrical contact at the unit 
cell because one simply places a "'via'" (hole) i f  there 
is an electrical contact. 

Fact 5. Consider the layered network of  Figure 5 on a 
hexagonal grid. I f  the number of  layers is P, then 

wiring complexity = 3P. (105) 

Proof Since each layer has only immediate neighbor 
connections, three wires cross each unit cell represented 
by a hexagon. • 

Figure 18 shows the case with P = 2. As for a single- 
layer network with general P on a hexagonal grid, the 
wiring complexity formula itself gets complicated. We 
will give formulas up to P = 3 which is enough for the 
present purpose. 

Fact 6. (a) For the single-layer network which imple- 
ments eqn (64) (P  = 1 ), 

wiring complexity = 3. (106) 

(b) For the single-layer network of Figure 17 which 
implements eqn (68) (P  = 2), 

wiring complexity = 15. ( 107 ) 

(c) For the single-layer network of Figure 17 with g2 
= 0, which implements eqn (72) (P  = 2), 

wiring complexity = 9. (108) 

(d) For the single-layer network of Figure 19 which 
implements eqn (75) (P  = 3), 

wiring complexity = 33. (109) 

Proof. For P = 1, the single-layer network and the 
"multilayer network" coincide. Consider the network 
of Figure 17 which implements eqn (68). There are 
three classes of wires which cross a unit cell represented 
by a hexagon: 
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V V V V 

- ~ / ~ am-'' 

" ' 1--  " " 1 2  g 3 -  

--/~ A A /"g~ 
FIGURE 19. A network solving the problem with P = 3. 

1. The grconnect ions which give rise to three wires 
crossing a unit cell ( Figure 20). The g2-connections 
demand six wires not three because, in addition to 
the three wires which connect each unit cell with 
its second neighbors, there is another set of three 
wires connecting between the neighboring nodes. 

2. In order to see the complexity of the g2-connections, 
let us look at Figure 21. In order to avoid an obvious 
technical difficulty in drawing the figure, four dif- 
ferent textures are used for wires. Where a circle is 
placed with a particular texture, there is an electrical 
contact by a wire with that particular texture. 

3. The ~2-connections also demand six wires. In order 
to demonstrate this, let us look at Figure 3. First, 
note that the wires drawn in this figure are not pres- 
ent in Figure 21. For instance, there are no "hori- 
zontal" connections in Figure 22, while "vertical" 

FIGURE 20. Wiring complexity of the gl-connections contrib- 
utes 3. 

FIGURE 21. Wiring complexity of the g2-connections is 6. Three 
wires connect a cell with its second nearest neighbor while 
another three wires pass through each cell. 

connections are present which are not present in 
Figure 21. Thus, in addition to the three wires which 
cross a unit cell "in the middle," there are six other 
wires passing through the "boundary"  of  a unit cell 
represented by a hexagon. Since a wire must pass 
through somewhere, by an appropriate "splitting," 
one sees that the complexity contribution from these 
wires is three. 
Therefore, 3 + 6 + 6 = 15 wires contribute to the 

complexity which is eqn (107). If~2 = 0, then one has 
nine wires which is eqn (108). Using a similar argu- 
ment, one can show that the g3-connections and the g3 
connections of Figure 21 demand 18 wires which 
must be added to 15 and hence, the complexity 
is 33. • 

FIGURE 22. The #2-connections contribute another 6. 
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Reduction of the wiring complexity by the layered 
architecture is significant. Let us call the ratio between 
the wiring complexity of a layered network and the 
wiring complexity of a single-layer network, the com- 
plexity ratio. 

Fact 7. (a) For the network of Figure 17 (P = 2) 

Complexity Ratio = 2. (110) 

(b) For the network of Figure 19 (P = 3 ) 

Complexity Ratio = ~. ( 111 ) 

6. PHYSIOLOGICAL FACTS 

This section describes how the lower vertebrate retina 
naturally solves an early vision problem utilizing ar- 
chitecture similar to those proposed in the previous 
sections. In particular, the SCE filter described in Sec- 
tion 4 has been inspired by several physiological facts 
described below. In the retina, especially that of lower 
vertebrates, neurons of a homogeneous type are occa- 
sionally coupled by electrical synapses to constitute a 
laminal structure, syncytium. Accordingly, several dif- 
ferent syncytia form a multilayered structure and in- 
teract through local electrical or chemical synapses 
(Yagi, 1986; Yagi, Funahashi, & Ariki, 1989). Figure 
23 shows a double-layered neural network consisting 
of a photoreceptor (PH) syncytium and a horizontal 
cell (HC) syncytium. Previous physiological studies 
have shown that in several animal species, PHs are 
coupled together by electrical synapses as well as HCs. 
The conductance of electrical synapses is symbolically 
represented by gs, and gs~ for PH and HC, respectively. 

A B C 

FIGURE 23. Schematic drawing of neural network consisting 
of photoreceptor and hodzontal cell syncytia in the lower ver- 
tebrate retina. It is half morphological while half symbolic. 

I1 

I m V  

1 0 0  m s e c  

FIGURE 24. Measured horizontal cell response to a slit of light. 

Therefore, this picture is half morphological and half 
symbolic. A piece of evidence demonstrating electrical 
coupling between HCs was obtained by intraceUular 
recordings. As shown in Figure 24, the HC was pene- 
trated by a microelectrode (indicated by the thin tri- 
angle) which is connected to the operational amplifier. 
The light-evoked response was obtained from a carp 
retina. Figure 24 shows superimposed responses to a 
flash of slit which was displaced by a 0.2 millimeter 
step from the recording site as illustrated by A, B and 
C in Figure 23. The response amplitude decreased as 
the distance between the slit and the recording site was 
increased, indicating that HCs are coupled through the 
electrical synapse. Similar observations have been made 
for PHs (Lamb & Simon, 1976; Schwartz, 1976). 

Figure 15, discussed earlier, is in fact a model pro- 
posed by one of the authors based upon various mea- 
surements and considerations (Yagi, 1986; Yagi et al., 
1989). Thus, one may think that the first layer of Figure 
15 represents a PH syncytium and the second represents 
an HC syncytium. From previous physiological exper- 
iments made on lower vertebrate retina, 1/gm~ (the 
membrane resistance of PH) and 1/g,,,2 (the membrane 
resistance of HC) were estimated to be 1 GfL 1/g~, 
( the electrical synaptic resistance of PH) and 1 / gs2 ( the 
electrical synaptic resistance of HC) were 30 Mfi and 
5 Mf~, respectively. Ti corresponds to the coefficient of 
chemical synaptic input from PH to HC and was es- 
timated to be 1 nS. The only difference between Figure 
15 and Figure 10 is the presence of T2 in Figure 15, 
which is the feedback from the second layer to the first 
layer. This is known as a feedback synapse from HC 
to PH (Baylor, Fuortes, & O'Bryan, 1971 ). T2 was es- 
timated to be - 1 nS (Ariki, Yagi, & Funahashi, 1990). 
Also T2 is known to be negative while Tt is known to 
be positive. It follows from Fact 3 that this network is 
spatially stable (see eqn (85)). 

The following fact tries to interpret the information 
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processing mechanism of the lower vertebrate retina in 
the framework of the regularization theory. Even though 
a lower vertebrate retina is far from being as crisp as 
Figure 15, one can see the role of PH and HC in visual 
information processing in an interesting way: 

Fact 8. In early vision of lower vertebrate retina, the 
following interpretation is possible: 
1. Given the Uk, horizontal cells perform the second 

order regularization with 

~k 2 ..~ gs, gs~ = _4 × 104, 
gr~,gm~ -- TIT2 3 

hi  = g,  mgs2 + gm2gs, = 1_.44 X 10 2, (112) 
gm, gm~- TIT2 3 

dk T l  U k = 0 .5  × 109Uk (113) 
g, , ,gm2 - T I  7"2 

and hence, 

X._2~ = 14 × 10_ 2 = 0.035. (114) 
X2 4 

2. Photoreceptors perform the first order regularization 
with 

~z = gs..__~, = 1000 = 33.3, 
gr~, 30 

dk = I'-~-(Uk + TzV~) = 109 × (Uk - -  10-gV~) (115) 
gm, 

simultaneously. 
Figure 25 shows the response Xk, which corresponds 

to the bipolar cell in the retina based on the physio- 
logical data where 

{~00pA 99-<k~101 
Uk = (116) 

otherwise. 
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FIGURE 25. Simulated response with the physiological data. 

Since Ta < 0, one sees that dk = (Uk -- I T2lv~) /gm, ,  
which means that the first layer performs the first order 
regularization given the original data Uk minus  the "lo- 
cal average" I T2lv~ which is quite reasonable to reduce 
the dynamic range. The multilayered architecture given 
in Figure 5 (a) is a natural generalization (except for 
the feedback synapse) of the network consisting of PH 
and HC syncytia. In fact, the retina is known to have 
multilaminal structure consisting of several neural 
syncytia. 

7. CONCLUSIONS 

Layered architecture was proposed for solving a class 
of regularization problems in image processing. One 
motivation came from one of the authors' experiences 
with the chip implementation of a second order regu- 
larization filter, where the architecture demands neg- 
ative conductance and wiring between every pair of 
second nearest nodes in addition to the immediate 
neighbor wiring. The negative conductance gives rise 
to stability problems whereas the wiring complexity 
makes it difficult to layout the mask pattern of the chip. 
The layered architecture proposed in this paper is free 
from these stability problems because there is no neg- 
ative conductance. The only active elements are voltage 
controlled current sources which are simple and pop- 
ular in any circuit design. The architecture proposed 
in this paper demands only wiring between nearest 
nodes. It was shown that our discrete formulation is 
suited for the two-dimensional problems on a hexagonal 
array. 

An attempt was made to quantify the wiring com- 
plexity of a network. It was shown that the layered ar- 
chitecture proposed significantly reduces the wiring 
complexity compared with single-layer architecture. 

By specializing the number of layers to be two, the 
SCE filter was proposed. The filter enhances contrasts 
of input image as well as smoothing out noise. It was 
pointed out that voltage controlled current sources play 
several significant roles in accomplishing the filtering 
operation. 

Since the processing (computation) is done by the 
dynamics induced by the parasitic capacitors of MOS 
transistors and since the processed image is given as 
the node voltage distribution at the stable limit point, 
the filter is extremely fast, with orders of magnitude 
faster than a digital signal processor. This naturally in- 
dicates applicability to smart sensing, i.e., to the si- 
multaneous accomplishment of sensing and processing. 
This chip implementation has been completed and the 
chip is fully functional. The experimental results will 
be reported elsewhere. 

It was explained how the layered architecture was 
inspired by the physiological findings on lower verte- 
brate retina obtained by one of the authors. 
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Possible future projects to pursue include: 
1. Incorporation of  other interesting physiological 

findings into image processing filters, e.g., an ad- 
aptation mechanism. 

2. Studies of N >_ 3 regularization filters. A third order 
regularization is briefly discussed in Liu and Harris 
(1989).  
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