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Abstract--Light-adaptive algorithms~architectures are proposed for regularization vision chips. The adaptation 
mechanisms allow the regularization parameters to change in an adaptive manner in accordance with the light 
intensity of  given images. This is achieved by adaptively changing the conductance values associated with massively 
parallel resistive networks. The algorithms/architectures are inspired by the adaptation mechanisms of  the horizontal 
cells in the lower vertebrate reiina. 
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1. INTRODUCTION 

Vision chips generally refer to massively parallel arrays 
of simple analog circuits together with parallel array 
sensors. Due to their algorithms/architectures, those 
chips perform signal processing in an extremely fast 
manner with relatively low power dissipation compared 
with their digital counter parts (Ruetz & Brodersen, 
1987; Heatin, Blevins, & Davis, 1990; Maruyama et 
al., 1990). Many of the chip architectures/algorithms 
are motivated by visual information processing mech- 
anisms found in vertebrates, in particular, the retina 
(Mead & Mahowald, 1988; Mead, 1989; Boahen & 
Andreou, 1992; Matsumoto et al., 1992; Shimmi et al., 
1992; Kobayashi et al., 1993 ). Some of the chip algo- 
ri thms/architectures are derived from the Tikhonov 
regularization theory developed for solving ill-posed 
problems. 

This paper proposes regularization vision chip ar- 
chitectures that incorporate light adaptation. More 
precisely, the architecture enables one to change the 
filter width of a V2G-like filter in accordance with the 
input light intensity. Two adaptation architectures are 
proposed: global and local. In the former, global light 
intensity information controls a particular parameter 
in the information processing cells (pixels) altogether, 
whereas in the latter, local light intensity information 
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regulates a parameter in each individual pixel. CMOS 
circuits are also proposed to implement the adaptation 
mechanisms. 

The problem is formulated in terms of (a discrete 
version of)  the regularization theory, whereas the ad- 
aptation algorithm has been inspired by the adaptation 
mechanism of the horizontal cells in the lower verte- 
brate retina. 

2. PHYSIOLOGICAL BACKGROUND 

This section briefly describes a neural adaptation sys- 
tem found in the lower vertebrate retina together with 
our interpretations on previous physiological findings. 
Figure 1 shows a fundamental structure of the verte- 
brate retina. Although the retina is transparent, the 
figure is colored for an obvious reason. Light comes 
from the bottom side of the figure and passes through 
the transparent retina to reach the photoreceptors 
(gray). The electrical signal is transmitted to the second- 
order neurons, which are the horizontal cells (blue) 
and the bipolar cells (red). These three types of neurons 
interact via chemical synapses in the outerplexiform 
layer, which is a morphologically identifiable lamina 
seen in the cross section of the retina (indicated by 
arrow 1 in Figure lb).  It is well known that neighboring 
horizontal cells are coupled by electrical synapses and 
possess a large receptive field that sometimes covers 
almost the entire retina (Naka & Rushton, 1967; Yagi, 
1986). Neighboring photoreceptors are also coupled 
electrically, but the size of receptive field is much 
smaller than that of horizontal cells (Baylor, Fuortes, 
& O'Bryan, 1971; Schwartz, 1973). In the present 
study, the network ofphotoreceptor and horizontal cell 
is described by an equivalent electrical circuit, as shown 
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FIGURE 1. Schematic illustration of the vertebrate retina. (a) Overview of the retina. The retina is a very thin tissue (200 ~ 
300/~m) that consists of six major types of cells. These major cell types are distinguished by different colors in the figure. 
Gray, photoreceptors; red, bipolar cells; blue, horizontal cells; white, amacrine cells; orange, ganglion cells; light gray, IP cells. 
The light comes from the bottom side of the figure. The photoreceptors, horizontal cells, and bipolar cells are located in the 
distal part of the retina. The amacrine cells and ganglion cells are located in the proximal part of the retina. The ganglion cells 
are the output neurons of the retina. The IP cell (light green) locates the cell body in the proximal part of the retina to send a 
long fiber (axon) to the horizontal cell. See text for details. (b) Cross section of the retina. Different types of cells are arranged 
in separate layers. The locations of the outer and the inner plexiform layers are indicated by arrows Nos. 1 and 2, respectively. 
Reprinted with permission from Matsumoto, T., Kobayashi, H., and Yagi, T. (1993), Vision chip [1 ] - -analog image-processing 
neuro chips. Proceedings of IEICE, 76 (7),  783-791. 

in Figure 2. Each photoreceptor is represented by a 
conductance g,n i and each horizontal cell by g,,,2. The 
conductance g~l represents the electrical coupling be- 
tween photoreceptors. The conductance g~,.2 represents 
the electrical coupling between horizontal cells. The 
significance of electrical coupling is thought to be rel- 
evant to the reduction of noise occurring in the retinal 
neural circuit. When cells are electrically coupled, the 
current generated in a single cell spreads into neigh- 
boring cells. Because the intrinsic noise in each cell is 
not correlated, the signal-to-noise ratio can be improved 
when the image has an appropriate size (Lamb  & Si- 
mon, 1976; Tessier-Lavigne & Attwell, 1988). However, 
the electrical coupling blurs the image in return. Thus, 
the coupling strength between neighboring cells is a 
critical parameter  to be determined by the trade-off 
between these conflicting two factors. 

The bipolar cell is the first neuron that exhibits a 
V2G-like receptive field in the vertebrate visual system. 

In the bipolar cell, the response to a stimulus placed 
in the center region antagonizes the one placed in the 
surround region. Concerning this receptive field, it is 
widely believed that the center response is mediated by 
the direct input from the photoreceptor and the antag- 
onistic surround response is mediated by the horizontal 
cell. As was demonstrated by Marr and Hildreth 
(1980), the V2G-like receptive field is able to perform 
a smoothing and a contrast enhancement of the input 
image simultaneously. It is possible, under certain con- 
ditions, to identify edges of an object with the zero- 
crossings of a V2G-like filter. It is important to notice 
that the size of receptive field should be different de- 
pending on the signal-to-noise ratio of the input image. 
The receptive field of the bipolar cell is controlled in 
the retinal neural circuit as described below. 

The interplexiform cell (IP cell) is a unique neuron 
(colored light green in Figure 1 ) and is believed to be 
a centrifugal neuron innervating to the horizontal cell. 
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Its cell body is located near the inner plexiform layer 
(arrow 2 in Figure lb)  with ascending axons to hori- 
zontal cells (Dowling & Ehinger, 1978). Teranishi, 
Negishi, and Kato ( 1983 ) found that a physiologically 
active substance, dopamine, is released from the IP cell 
and reduces a receptive field size of the horizontal cell 
by decreasing the conductance of electrical synapses 
connecting neighboring cells. More recently, it was 
demonstrated that the effect of dopamine on the hor- 
izontal cell is mimicked by exposing the retina in the 
light-adapted state (Shigematsu & Yamada, 1988). 
These observations indicate that the receptive field size 
of the horizontal cell is reduced in the light-adapted 
state and consequently the receptive field of the bipolar 
cell becomes smaller. Based on these previous physio- 
logical findings, we hypothesize that the IP cell adap- 
tively controls the receptive field size of  the horizontal 
cell according to the signal-to-noise ratio of the image. 
If we assume that the intrinsic noise is constant re- 
gardless of the adaptation level of the retina, the relative 
magnitude of noise-to-signal is small in the daytime 
because the light intensity of signal image is high. In 
that situation, the size of the bipolar cell receptive field 
is to be reduced to gain the spatial resolution. This 
adaptation is likely to be carried out by the IP cell in 
the retinal neural circuit. 

The adaptive architectures of the vision chip pro- 
posed in this paper have been inspired by the above 
physiological background. Namely, the coupling con- 
ductance between horizontal cells (g.~2 of Figure 2) is 
set to be variable. The function and the mechanism of 
the proposed adaptive vision chip are described in the 
following sections. 

3. EARLY VISION PROBLEMS VIA 
TIKHONOV REGULARIZATION 

When a solution to an operator equation (not neces- 
sarily linear), 

A v = d ,  v ~ X ,  d ~  Y, (1) 

loses existence or uniqueness or continuity in d, eqn 
( 1 ) is called ill-posed. Ill-posedness typically arises when 
"data" d is noisy, whereas the solution v sought should 
be reasonably smooth. It can also result from the nature 
ofA. The Tikhonov regularization (Tikhonov, 1963a,b, 
1965) converts eqn ( 1 ) into a family of minimization 
problems: 

G(v, d, X) - liAr - dll 2 ÷ ?,~(v) (2) 

where ]] • ]1 denotes a norm (on Y), [2 : X --~ R is con- 
tinuous and strictly convex, X > 0. I fAv* = d*, then 
under reasonable conditions, eqn (2) regularizes eqn 
( 1 ) in the sense that for any e-neighborhood N~( v* ) of 
v* (with respect to an appropriate topology), there is 
a &neighborhood Na(d*) of d*, such that if d ~ 
Na(d*),  and if h(6) > 0 is appropriate, then there is a 
unique v (d ,M6) )  ~ N~(v*) that minimizes eqn (2).  
It should be noted, however, that when d is noisy, 
choosing the best h is another interesting, as well as 
difficult, problem because one needs to take into ac- 
count the statistics of d (MacKay, 1991; Whaba, 1987), 
and it is outside of the scope of this paper. It is argued 
in Poggio, Torte, and Koch (1985) and P o l i o ,  Voor- 
bees, and Yuille (1985) that many of the early vision 
problems (edge detection, stereo, optical flow, etc.) can 
be formulated as Tikhonov regularization problems. 

Now a typical "stabilizer" ~(v) in eqn (2) is of the 
form 

£ c{ Z ~v r 2 
fl( v) r=lX r~ &r ] & (3) 

where Cr ~ 0 and D = [a, b] is the domain of the 
problem. If eqn (2) with eqn (3) can be written as 

G(v, d, ~) 

= f~ F(v(x), v(~(x), v(~(x) . . . . .  v(~)(x), x, d(x), X)dx, 

v ~) = d~ (4) 
dx ~ 
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where F is "well-behaved," then the variational prin- 
ciple gives Euler's equation 

~" d r O 
E (-1)'~x~Ovm 

r=O 

X F(v (x ) ,  v (~(x)  . . . . .  v(e~(x), x, d(x), X) = 0 (5) 

with natural boundary conditions: 

e d r O 
E ( - l Y  d x  r Ov(P-q r) r-O 

X F(v ( x ) ,  v ~ ( x )  . . . . .  v~*')(x), x ,  d(x) ,  X) = 0, 

at x = a , b  for q = 0 ,  1 . . . . .  P. 

Most of the vision chips implemented/proposed to date 
consist of massively par~lel (analog) resistive networks 
(Mead & Mahowald, 1988; Mead, 1989; Boahen & 
Andreou, 1992; Harris, 1986, 1988; Harris et al., 1989; 
Hutchinson et al., 1988; Liu & Harris, 1989; Mathur, 
Lin, & Wang, 1985; Matsumoto et al., 1992; Shimmi 
et al., 1992; Kobayashi et al., 1993; Kobayashi, White, 
& Abidi, 1990, 1991 ). Thus, in a chip the space variable 
x takes finite di~rete values. Implementations of Euler's 
equation or the natural boundary conditions separately 
by parallel resistive networks are easy. It is rather dif- 
ficult, however, to implement  a resistive network that 
simultaneously fulfills eqns (4) and (5) when P ~ 2. 
To see the difficulty, first observe that because of the 
particular form of eqn (3),  Euler's equation (4) nec- 
essarily contains terms of the form 

( d  ='v ~ 
~ ) { x ) ,  r = 1, 2 . . . . .  e .  

Namely, if the stabilizer (3) contains the rth order de- 
rivative, one needs to implement  the 2rth order deriv- 
ative operation for solving the regularization problem. 
On the other hand, eqn (5) contains other orders of  
derivatives of  v ( x ) .  There are two more factors that 
make the problem even more difficult. First, eqns (4) 
and (5) are for a single space variable x, whereas in a 
vision chip there are two space variables x and y, which 
significantly complicates eqn (5) (see Courant & Hil- 
bert, 1953; Kobayashi et al., 1993). Second, in most 
vision chips, resistive networks have a "hexagonal ge- 
ometry"  instead of a square geometry. It is rather in- 
volved to implement  the two-dimensional versions of  
Euler's equation together with its natural boundary 
conditions on a hexagonal grid. 

This naturally leads us to a finite dimensional dis- 
crete formulation of the regularization problems. 
Namely, let 

v := (v~, v2 . . . . .  v,) ~ R" 

and replace the derivative operations by the difference 
operations, for example, 

( ~ )  , ~ ' ~ ,  - + 

which can be put in a vector form as 

o v ,  
ax/ 

r e s p e c t i v e l y ,  w h e r e  

1 0 0 
- 1  1 0 

0 - 1  1 
D = 

0 0 0 
0 0 0 

L = 

" - 2  
1 
0 

d2v \ 

0 
o 
o 

1 0 
- 1  1 

l 0 
- 2  1 

1 - 2  

0 o o 
o 0 0 

O" 

0 
o 

- 2  1 
1 - 2  

D r D  = - L  

was used. Note that if ~k r =/= 0 ,  then the solution (7) 
necessarily contains the Lrv term. This corresponds to 
the presence of the ( d 2 r v / d x 2 r ) ( x )  t e r m  in the infinite 
dimensional case. In this paper as well as in Matsumoto 
et al. (1992), Shimmi et al. (1992), and Kobayashi et 
al. ( 1990, 1991 ) A = 1, the identity map. Other forms 
of A are possible. When the data d is sparse, for instance, 
A is a projection operator onto a lower dimensional 
subspace, which gives rise to a rather interesting ar- 
chitecture that will be reported elsewhere. 

Let us explain how eqn (7) can be naturally mapped 
into parallel resistive networks. To this end, consider 
the simplest case P = 1. Then eqn (7) reads 

where 

Therefore, the stabilizer corresponding to eqn (3) is 
given by 

t" f CrULr/2vU 2 r :  e v e n  
~(v )  = Z 

,=1 GIIDLr-'/2vll 2 r:odd 

so that the regularization problem on R n corresponding 
to eqn ( 2 )  calls for the minimization of 

G(v, d) 

P f~r[[Lr/2¥1l 2 r: e v e n  

= ]lAy - d[[ = + ~ ~ (6) 
r=, [XrlIDLr-'/Zvll 2 r: odd 

where A is now a map between finite dimensional 
spaces and 

Xr: = XG 

are called the regularization parameters. Differentiating 
eqn (6) with respect to v and setting it to zero, one has 

1 aG P 
- - -  = A ~ ( A v - d )  + ~ ( - 1 ) ' X , L r v  = 0 ( 7 )  
2 0v r=l 
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1)k - -  d k  - -  ~,l(l)k-I + Vk+l -- 2Ok) = 0. ( 8 )  

Equation (8) is naturally mapped into a parallel resis- 
tive network where each node k is induced by a current 
source ug, and connected with go to ground, and nodes 
k + 1 and k - 1 with g~ with the identification 

: - -  /'/k 
~t g~ dk = - - .  

go '  go 

This structure is extremely popular in the anMog vision 
chips (Mead & Mahowald, 1988; Mead, 1989). Now 
note that regularization parameter Xt specifies how 
much weight should be put on the first-order derivative 
penalty. Similarly, each A~ in eqn (6) determines the 
weight on the rth derivative penalty. 

4. LIGHT-ADAPTIVE ARCHITECTURE 

In all the vision chip architectures implemented/pro-  
posed to date that we know of, the regularization pa- 
rameters ~r  a r e  fixed. Our architecture proposed below 
makes ~ variable so that adaptation can be incorpo- 
rated. Most generally, 3,~ can depend on v, d, and k. 
The dependency of ~,~ on v makes eqn (6) nonquadratic, 
and general analytical form corresponding to eqn (7) 
can be nonlinear, which we do not pursue, at least in 
the present paper. Although the dependency of 3,~ on k 
does not alter the quadratic nature of the problem, the 
generalization in this direction does not, so far, find 
interesting enough applications. Therefore, we will 
consider the minimization of eqn (6) where ~,~ is now 
~kr(d ) .  Although this requires only a straightforward 
modification in eqn ( 7 ), that is, ~,~ should be replaced 
with ~ ( d ) ,  it leads to rather interesting adaptation net- 
works. Among many possible adaptive networks, the 
SCE (smoothing-contrast enhancement) filter network 
(Matsumoto et al., 1992; Shimmi et al., 1992; Koba- 
yashi et al., 1993; Boahen & Andreou, 1992) has prob- 
ably one of the most interesting structures suited for 
this adaptation. To explain what SCE filter network 
does, let us first state the following fact proved in Ko- 
bayashi et al. (1993). 

Fact 1. Consider the double-layer network given in Fig- 
ure 2. 

(i) The second layer voltage distribution v~ 2 solves the 
second-order regularization problem with 

~,~ g~ + g~ ~ g~g~2 d~ T~ = ~  ~ = ~  ~ ~ k .  

g m ~  g m 2  ' g m ~ g m 2  ' g m ~ g m 2  

(ii) The first layer voltage distribution v~ solves the 
first-order regularization problem with 

X;= g ~ ,  d ~ -  uk 
g~  g~  

(iii) The difference 

x~ := vZ - v~ 

enhances contrast of u~ after smoothing. 

R E M A R K S .  

(i) Figure 3 shows the responses x~ to a narrow "slit" 
located at the center with two different gs2S: 

1/g~z = 5M~2 and 500kf~, (9) 

respectively, whereas other parameters are fixed at 

l /gst = 30MQ, 1/gmt = 1/g,,2 = IGf~, 

T~ = 10 -9 siemens. (10) 

The parameter values given in eqns (9) and (10) 
are taken from the physiological studies on carp 
retina (Yagi & Kaneko, 1987; Ohshima, Yagi, & 
Funahashi, in press) so that parameter rescaling 
is necessary when one designs transistor circuits. 
Two facts are clear. First, the network response 
naturally approximates the well-known V2G filter. 
Second, with different gs2-values, one can have dif- 
ferent "filter width," which roughly corresponds 
to changing "sigma" of the ~72G filter. There is one 
feature associated with our network that is not as- 
sociated with the V2G filter. Namely, a larger gs2 
results in a higher filter gain. This is very natural 
if gs2 increases when the environment is darker, 
which is exactly what happens in vertebrate retina 
(see Section 2). 

(ii) This network is obviously temporally as well as 
spatially stable in the sense of Matsumoto, Ko- 
bayashi, and Togawa (1992). 

The following fact is a straightforward consequence 
of Fact 1 and the argument preceding it. 

Fact 2. Consider the double-layer network given in Fig- 
ure 2, where the second layer horizontal conductance 
g,2 has an adaptation mechanism described by 

1 
gs2(u) . G >  0, (11) 

G Zku~' 

where G is a constant and uk is a photocurrent induced 
at node k. Then (i) the second layer voltage distribution 
v~ solves the second-order regularization problem with 

gs2(u) g,~gs2(u) ~kl ( l l  ) = gs~l + - - ,  ~2(u) 
g,~ g,~2 gmlgm2 

SO that the weight ratio is given by 

~ 2 ( u )  _ 1 T~ 
dk - -  uk. (12) 

~,~(u) g,,,~/gs~ + g,,,~G( X,~ u~) ' g,,,~g,,,~ 

Statements (ii) and (iii) of Fact 1 are still valid. 

R E M A R K S .  

(i) When the total input current ~k u~ gets larger, 
which amounts to the facts that the environment 
is light, the second-layer horizontal conductance 
gs~ decreases. Although the decrease ofg~ changes 
both )~(u) and )~z(u), the ratio )~2(u)/)~(u) de- 
creases [eqn (12)] .  This means that when ~ ue 
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FIGURE 3. Responses of the double-layer network for a "slit" input. (a) A slit input with 3-pixel width. (b) Responses with 1/g,= = 

5M~ and 1/g,~ = 500k~, respectively. 

is large, the emphasis of the network on the sec- 
ond-order derivative decreases. This adaptation 
mechanism has rather interesting implications. 
Suppose that Uk = uO~ + ~k, where u~ is the noise- 
less image whereas ~k stands for noise. Suppose 
also that the mean of the noise has been absorbed 
into u~ so that ~k has zero mean. If  ~mi, --< ~k ~< 
~max where ~min and ~ma× are independent of u~, 
then E~ u, large means that effect of noise is less 

significant than when Ek Uk is smaller. Thus, when 
Ek Uk is smaller, noise is more significant and the 
network puts more emphasis on the second-order 
derivative penalty. Figure 4 shows the effect of the 
adaptation mechanism. Figure 4a is a (one-di- 
mensional) rectangular " image" 

u~ {I#A 61 <k<_ 141 

L 0 otherwise 
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FIGURE 4. One-dimensional input image. (a) A rectangular image with 80-pixel width and noise with m = 300pA, 3~r = 600pA. (b) 
Sum of the rectangular image and the noise. 

and the Gaussian white noise with mean 300pA, 
3a = 600pA whereas Figure 4b shows the sum of  
them. Figure 5a shows the network response xk, 
where 

1/g~.2 = 5M~2, 1/gsl = 30MS2, 

1/gml = l/gm2 = IGf~, Tl = 10 9siemens. (13) 

A dramat ic  effect is discernible when the g=2 ad- 
aptation ( 11 ) is incorporated where 

G = 1.0 × 1013 

It is known that ~72G filter identifies edges of  an 
object by its zero crossings even though not  every 
zero crossing corresponds to an edge (Clark, 
1989). Observe that al though Figure 5a gives no 
information about  the edges of  the original object, 
Figure 5b, which is the network response with the 
gs2 adaptat ion given by eqn ( 11 ), correctly iden- 
tifies the edge o f  the original image by its zero 
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FIGURE 5. Responses of the network in Figure 2 for the input image in Figure 4a. (a )  Adaptation is not incorporated ( 1/g,2 = 5M~)). 
(b)  Adaptation of eqn (11 )  is incorporated with G = 1.0 × 10 TM, 

crossings. Figure 6 gives the responses of  the net- 
works with eqn ( 13 ) and G -- 2.0 × 1015 for a slit 
input. 

(ii) In Matsumoto et al. (1992) and Shimmi et al. 
(1992), the g=2 values are changed manually. 

(iii) Because the photocurrent  uk is always positive, 
one does not have to square it or one does not 
have to take the absolute value. In fact, v], and 

v~ are also positive. The output xk = v~ - v~, 
however, can be negative. 

We remark that Boahen and Andreou (1992) pro- 
posed and implemented a vision chip for which the 
architecture was inspired by a physiological model of 
vertebrate retina (Yagi et al., 1989) whereas another 
one of our earlier vision chips reported in Kobayashi 
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FIGURE 6. Responses of the networks in Figure 2 with 1/g,2 = 5M~ (no adaptation) and G = 2.0 × 1015 (adaptation) for a slit input 
in Figure 3a. 

et al. (1990, 1991 ) implements a Gaussian-like con- 
volver. In these chips, some of the network parameters 
are changed manually, and it would be interesting to 
implement adaptation networks that modify the pa- 
rameters automatically. 

5. ANALOG CMOS CIRCUITS FOR L I G H T  
ADAPTATION 

An analog CMOS implementation of the network given 
in Figure 2 without adaptation has been reported 
(Matsumoto et al., 1992; Shimmi et al., 1992 ). Figure 
7 shows one of the 53 × 52 cells arranged on a hexagonal 
array. The input photosensor is realized as a photo- 
transistor in CMOS process (Mead, 1989) and the 
photo current is converted by a logarithmic law to a 
voltage using a diode-connected MOS FET in its sub- 
threshold region (Vittoz, 1985) to obtain wide input 
dynamic range. The input voltage is fed into the first- 
layer network through a buffer and the node voltage of 
the first-layer network is then applied via a buffer to 
the corresponding node of the second-layer network. 
This implements the Th6venin equivalent of the current 
sources in Figure 2. The buffer is realized by a tran- 
sconductance amplifier with unity gain feedback. The 
first- and second-layer networks consist of horizontal 
conductances gsl and gs2, respectively, and vertical 
conductances g,~z and gin2, respectively, gs~, g,,,~, and 
g,~2 can be implemented with MOS conductance, po- 
lysilicon or diffusion conductance. The node voltage of  
the first-layer network is subtracted from the corre- 
sponding node voltage of the second-layer network using 
a differential pair subtracter, and it is read out through. 
analog switches. 

Analog CMOS circuits are suitable to implement 
the adaptation mechanism. A conductance can be re- 
alized with MOS FETs in triode region, and there are 
several ways to realize the MOS conductance (Mead, 
1989; Banu & Tsividis, 1982). Because its value is 
changed by adjusting the bias voltage, the adaptation 
mechanism can be realized by incorporating circuits 
that vary the bias voltage of the MOS conductance ac- 
cording to input images. 

Now let us describe a circuit that realizes eqn ( 11 ). 
Figure 8 shows a possible configuration, and note that 
the input circuit in Figure 7 is the Th6venin equivalent 
of the current source in Figure 2. Let us denote this 
equivalent voltage by 

v~ := g,~Uk. 

In Figure 8, this voltage v~ ° is first converted into current 
Ik by the F - I  converter so that Ik is proportional to 
v~. The summation of all these currents can be obtained 
for free by simply connecting the wires together because 
of the KirchhoffCurrent Law, and the summed current 
I is given by 

~:= X Ik~o E v~. 
k k 

The current I is fed into the bias voltage generator that 
produces a bias voltage vc so that the gsa value is in- 
versely proportional to I. Figure 9 shows circuit design 
example of the F - I  converter, gsz, and the bias gen- 
erator. The P'- I converter is designed with a differential 
pair and gsz is implemented with two parallel MOS 
FETs (Banu & Tsividis, 1982) for which the value be- 
comes larger as Vc increases. In the bias generator, the 
summed current I is subtracted from a bias current lb 
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FIGURE 7. Unit cell circuit diagram of a double-layered network (Matsumoto et al., 1992; Shimmi et al., 1992). 

and the resul tant  cur ren t  I~, - I flows into a resistor  R 
and  a d iode-connec ted  N M O S ,  which generate a bias 
voltage v~.. Thus,  as I becomes  smaller,  v~, ( and  then 
g,2) increases. Figure  10 shows SPICE s imula t ion  re- 
sults of  g,2 character is t ics  at several different values of  
Y~ v~ and we see that  as ~ ,  v~ becomes  larger, g,2 
decreases.  It should be noted  that  perfect l inear i ty  is 
not  necessary at all. 

6. O T H E R  A D A P T A T I O N S  

6.1. Local  Adapta t ion  

The  adap ta t ion  (11)  is global  in that  the g,2 value 
changes according to the global in format ion  Zk uk. If  

~s2(k,k~l)- L(v~. + V~,,) " L > O, (14) 

~ I,~, × ~:~ ',~ ~ ~ ,~+, ~L, 

~ ~,o~ ~ 
a ~:~ z ~ a ~:2~ 

- ' ~  -~ .... 

~ ~ o ~ ~ ~  ~ ~ ~  ~o~ ~ 
~ ~ ~ ~ 

t ! ! l 
r e =  f ( | l  + 1 2  + . . . . +  I n )  

FIGURE 8. Block diagram of the light-adaptive network. 



Adaptive Vision Chips 97 

. . . . .  

W e vL v: k~l 

Ik'l i ~ i  ~ ~ V .  ~ 

~ ~inverter V'Inverter ~ CoInverter 

I 

i~-~ 

i~ii~i~ii~i~iii~i~iii~i~ii~iii~i~i~iii~i~iiii~i~iiii~ii i~ii~i~i~i~ii~i~ii~i~iii~i~ii~i~i~i~i~ii~iii~ii ii~i~i~i~ii~ii~i~iii~i~ii~i~i~i i -~ 

Jf iI'  2- 
k . ,  

IE 
gs2 gs2 g~2 Vc~ 

~ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  ~ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  ~ . . . . . . . . . . . . . . . . . . . . .  ~ 

FIGURE 9. Circuit design of V-I converters, bias generators, and variable conductances g,2 in Figure 8. 

where L is a constant, then the second-layer horizontal 
conductance value gs2~k,k+l) between node k and node 
k + 1 is inversely proportional to the sum of  the first- 
layer voltages v~ and V~+l. Figure 1 la is a simple rec- 
tangular input whereas Figure 1 lb compares the re- 
sponse incorporating the local adaptation (14) ,  where 
L = 2 × 107 with those responses without adaptations 

and where 1/gs2 = 5M~2 and 1/gs2 = 500kfl, respec- 
tively. Even though the effect of the local adaptation is 
not as dramatic as in Figure 5, where the global ad- 
aptation is incorporated, one can see that where the 
input intensity is high, the response with eqn (14)  is 
closer to that with 1/gs2 = 5M~2. On the other hand, 
where the intensity is low, the adapted response behaves 
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50.00 
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..o,o--'"'"'° / 

/ 

l e v e l  1 
l e v e l  2 
l e v e l  3 
[e~,e] 3-" 

v(v) 2.00 2.50 3.00 3.50 4.00 
FIGURE 10. Simulation results of Figures 8 and 9. V-I  characteristics of g,= are shown at several different values of ~ ,  Vk °. The 
higher the level, the greater the value of ~ ,  v~ °. 
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/ 
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191 ~do 
FIGURE 11. Response of the locally adaptive network. (a) A rectangular input image with 81-pixel width. (b) Responses of the 
networks with 1/g,2 = 5M~2 (no adaptation), 1/g,~ = 500k~2 (no adaptation), and 1/g,2(k~,+l) = 2 × 10r (v :  + v~÷l) (local adaptation). 

in a manner  similar to the one with 1/g~.2 = 500k~2. 
Therefore, with eqn (14),  contrast is even more en- 
hanced where interesting difference exists. 

Figure 12 shows a possible circuit block diagram for 
the local adaptation and Figure 13 shows a circuit de- 
sign of locally adaptive conductances gs2 and bias gen- 

erators in Figure 12. The bias voltage generator at node 
k outputs v~, inversely proportional to the first-layer 
node voltage v ]~, and gs2 (k,k +1) is implemented with two 
parallel MOS FETs for which the value is roughly pro- 
portional to v~, + V~+l, and then this approximates eqn 
(14). Figure 14 shows SPICE simulation results of  
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gn~ << 

gs2 gs2 gs2 
FIGURE 12. Block diagram of the locally adaptive network. 

gs2(k,~+]) characteristics at several different values of 
v], + v~÷~. One sees that as v~ + v~÷~ becomes larger, 
g~(~,k+ ])  decreases. 

6.2. Maximum Value Adaptation 

Consider 

* U k  

Uk :=Mmaxi(ui) '  M > 0 ,  (15) 

which is implemented by the network in Figure 15, 
where it senses the maximum input voltage and changes 
the gain of PGAs (programmable gain amplifiers) uni- 
formly to as high a value as possible without overloading 
the network. Because there are all kinds of noises in a 
chip, one obtains a better signal-to-noise ratio if the 

input signal is amplified as much as possible without 
overloading the network. A similar method is widely 
used in A / D  converters, where one can obtain a good 
signal-to-noise ratio if the converter is preceded by a 
PGA that amplifies small input signals so that the input 
signal stays within the full input range of the A / D  con- 
verter. 

REMARKS. 
(i) When looked as a regularization filter, the local 

adaptation mechanism (14) changes k~ and k2 ac- 
cording to v~ and its local values so that they are 
described as ~,~(v ~ , k) and ~,2(v ~ , k), which are 
nonlinear. 

(ii) Equation ( 15 ) corresponds to a different, still linear 
though, regularization problem. Namely, the 
function minimized is of the form 

1 1 
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FIGURE~ 13. Circuit design of locally adaptive conductances g,~ and bias generators in Figure 12. 
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FIGURE 14. Simulation results of Figures 12 and 13. V-I  characteristics of gs2(k~+l) are shown at several different values of v~ + 
V~÷l. The higher the level the greater the value of v, 1 + V~÷l. 

G ( v ,  d * ( d ) )  = [Iv - d * ( d ) l l  2 + ~,llDvll ~ + ~ l lLv i l  ~, 

where d*(d)  indicates eqn ( 15 ). 

7. C O N C L U S I O N  

Light-adaptive architectures are proposed for regulari- 
zation vision chips. Specifically, the architectures enable 

controlling the filter width of a V2G-like filter in an 
adaptive manner in accordance with the input image. 
Explanations are given of  how this can be viewed as a 
regularization problem where the regularization pa- 
rameter adapts to the intensity of  input images. CMOS 
circuits are proposed to implement  the adaptation 
mechanisms. The adaptation algorithm has been in- 

M a x i m u m  Voltage  Detect ion Circui t  

V 0 

g 
gsl  

gs2 g gs2 g gs2 g g ~  

- - -~ /V~  ~ ~ V V '  - ~ ~A/V' - ~ ~ 
PGA (Programmable Gain Amp.) : Gain is controlled by Vc 

FIGURE 15.  M a x i m u m  v a l u e  a d a p t a t i o n  n e t w o r k .  
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sp i red  by the  a d a p t a t i o n  m e c h a n i s m  o f  t he  h o r i z o n t a l  

cel ls  in the  lower  v e r t e b r a t e  re t ina .  
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