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Abstract – This paper presents dynamics of Dickson
charge pump circuits for high voltage generation. Sev-
eral formulas regarding their output voltage, energy
and efficiency in the transient state and the steady
state are derived.
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I. Introduction

Charge pump circuits generate higher output voltages
than the regular supply voltage [1, 2, 3, 4, 5, 6, 7,
8, 9, 10, 11], and they have been used in non-volatile
memories - such as EEPROM and flash memories - for
their programming and erase operations through their
floating gates. They are also used for liquid crystal dis-
play (LCD) systems and low-supply-voltage switched-
capacitor systems that require high voltages to drive
analog devices. Recently we have developed charge
pump circuits for relatively large output current (sev-
eral mA) for CCD driver [2, 3, 4]. Most of MOS
charge pump circuits are based on Dickson [1], and
Fig.1 shows a four-stage Dickson charge pump circuit.
The drain-gate connected NMOS’s (MD1 - MD5) are
used as diodes there, so that the charges can be pushed
only in one direction. CLK and CLK are two out-of-
phase pumping clocks, whose amplitude is usually the
supply voltage Vdd, and C1 - C4 are coupling capaci-
tors with the same capacitance of C. The two clocks
push the charge (and hence the node voltage) upward
through the MOSFETs. When CLK goes from high
to low and CLK from low to high, the voltage at node
1 is settled to V1 + ∆V , and the voltage at node 2
is to V2, where V1 and V2 are defined as the steady-
state lower voltage at nodes 1 and 2 respectively. Both
MD1 and MD3 are reverse biased, and the charges are
pushed from node 1 to node 2 through MD2 and the
final voltage difference between nodes 1 and 2 is the
threshold voltage of MD2.

In this paper we describe the dynamics of Dick-

son charge pump circuits systematically. For transient
analysis, we assume that the circuit is ideal, and for
steady state analysis, circuit nonidealities such as volt-
age drop across each switch, parasitic capacitance at
each node and output current are incorporated. The
derived formulas would be useful for design and anal-
ysis of charge pump circuits.
II. Basic Study of Power Electronics
Before discussing the dynamics of charge pump cir-
cuits, we would like to call for the reader’s attention to
the following two examples to understand the energy
dissipation in a circuit which consists of capacitors and
switches:
Example 1: Let us consider to charge a capacitor C
in a RC circuit in Fig.2 where the voltage across the
capacitor is zero at time t = 0. Its differential equation
is given by

RC
d

dt
Vout(t) + Vout(t) = Vdd, Vout(0) = 0,

and Vout(t) is obtained as follows:

Vout(t) = Vdd(1− exp(− t

RC
)).

The energy ESupply supplied from Vdd for t = 0 to ∞
is given by

ESupply = CV 2
dd

because the charge CVdd flows from Vdd. The energy
stored in C at the steady state (t = ∞) is given by

EC =
1
2
CV 2

dd.

Also the energy ER dissipated through R from t = 0
to ∞ is obtained by

ER =
1
R

∫ ∞

0

(Vdd − Vout(t))2 =
1
2
CV 2

dd.



Then we have the following relationships:

ESupply = EC + ER, EC = ER. (1)

One half of the energy supplied from Vdd is stored in
C and the other half is dissipated through R.
Example 2: Let us consider a circuit in Fig.3 which
consists of a capacitors C1, C2 and a switch. When
the switch is off and the voltages across C1, C2 are V1,
V2 respectively, the charges Q1, Q2 and the energies
E1, E2 stored in C1, C2 are given by

Q1 = C1V1, Q2 = C2V2,

E1 =
1
2
C1V

2
1 , E2 =

1
2
C2V

2
2 .

Then the total energy E is given by

E = E1 + E2 =
1
2
C1V

2
1 +

1
2
C2V

2
2 . (2)

Next let the switch turn on, and the voltages across
C1 and C2 becomes the same (VM ) at the steady state.
Then we obtain the followings:

Q′
1 = C1VM , Q′

2 = C2VM (3)

Since the charges are conserved between the states in
Fig.3 (a) and Fig.3 (b), we have the following relation-
ships:

Q1 + Q2 = Q′
1 + Q′

2. (4)

Then it follows from eqs.(3) and (4) that

C1V1 + C2V2 = C1VM + C2VM

and

VM =
C1V1 + C2V2

C1 + C2
.

Hence the energies E′
1, E′

2 stored in C1, C2 in Fig.3
(b) are given by

E′
1 =

1
2
C1V

2
M =

C1(C1V1 + C2V2)2

2(C1 + C2)2
,

E′
2 =

1
2
C2V

2
M =

C2(C1V1 + C2V2)2

2(C1 + C2)2
.

Thus the total energy E′ in Fig.3 (b) yields to

E′ = E′
1 + E′

2 =
(C1V1 + C2V2)2

2(C1 + C2)
. (5)

It follows from eqs.(2),(5) that the energy difference
∆E between the states in Figs.3 (a) and (b) is given
by

∆E := E − E′ =
C1C2(V1 − V2)2

2(C1 + C2)
(6)

Note that when V1 �= V2, then ∆E > 0 and the energy
∆E was dissipated through the switch. On the other
hand, when V1 = V2, ∆E is equal to zero and this is
called Zero-Volt Switching (ZVS).
III. Transient Analysis of Dickson Charge
Pump Circuit
This section derives a formula for the node voltage
in the transient state of an ideal three-stage charge
pump circuit and also shows that one half of the energy
ESupply supplied from Vdd and clock drivers for t = 0
to ∞ are stored in the capacitors C at t = ∞ and
the other half is dissipated through the switches from
t = 0 to ∞.
Proposition 1: In an ideal three-stage charge pump
circuit in Fig.4, the output voltage node Vo(n) and
the internal node voltage V1(n) at n-th clock cycle are
given by

Vo(n) =
1
2
(λn

1 + λn
2 )Vo(0) +

1√
2
(λn

1 − λn
2 )V1(0)+

[−(2 +
3√
2
)λn

1 − (−2 +
3√
2
)λn

2 + 4]Vdd, (7)

V1(n) =
1√
2
(λn

1 − λn
2 )Vo(0) +

1
2
(λn

1 + λn
2 )V1(0)+

[−(2 +
3√
2
)λn

1 − (2− 3√
2
)λn

2 + 3]Vdd, (8)

where

λ1 =
2 +

√
2

4
, λ2 =

2−√
2

4
.

Proof : See Appendix 1.
Remark (i) Since |λ1| < 1 and |λ2| < 1,

as n → ∞, λn
1 → 0, λn

2 → 0,
Vo(n) → 4Vdd, V1(n) → 3Vdd.

(ii) The proof of Proposition 1 in Appendix 1 uses so-
called a state-space approach. With this approach we
can derive output node and internal node voltages at
n-th cycle in an N -stage charge pump circuit for any
positive integer N .
Proposition 2: When the charges in all the capaci-
tors are zero at t = 0 in Fig.4, we have the following:

ESupply = EC + ER, EC = ER. (9)



Here ESupply is the energy supplied from Vdd and clock
drivers for t = 0 to ∞, EC is the energy stored in all
the capacitors C at the steady state (t = ∞) and ER

is the dissipated power through the switches for t = 0
to ∞.
Proof : See Appendix 2.
Remark Propositin 2 is a general case of Example 1.
IV. Steady State Analysis of Dickson Charge
Pump Circuit

Next we will consider the charge pump circuit at the
steady state which includes circuit nonidealities.

4.1 Effects of Voltage Drop Across Switch

Let us consider the case that the switch is realized
with a diode or a diode-connected MOSFET and it
has some voltage drop Vd when it is ON (Fig.5).
Proposition 3: (i) For 3-stage charge pump circuit,
the output voltage at the steady state is given by

Vo(∞) = 4(Vdd − Vd). (10)

(ii) The energy dissipation Ploss(∞) during one clock
cycle T in the circuit at the steady state is given by

Ploss(∞) = 0.

Proof See Appendix 3.

4.2 Effects of Parasitic Capacitance

Let us consider the case that each node has parasitic
capacitance Cp (Fig.6).
Proposition 4: (i) For a 3-stage charge pump circuit,
the output voltage at the steady state is given by

Vo(∞) = (4− 3Cp

C + Cp
)Vdd. (11)

(ii) The energy dissipation Ploss(∞) during one clock
cycle T in the circuit at the steady state is given by

Ploss(∞) =
3CCp

C + Cp
V 2

dd. (12)

Remark Example 2 helps us understand intuitively
why the parasitic capacitance causes the energy loss
given by eq.(12).

4.3 Effects of Output Current

Let us consider the case that the output node provides
load current Iout (Fig.7).
Proposition 5: (i) For a 3-stage charge pump circuit,
the output voltage at the steady state is given by

Vo(∞) = (4− 7T Iout

C
)Vdd. (13)

(ii) The energy dissipation Ploss(∞) during one clock
cycle T in the circuit at the steady state is given by

Ploss(∞) = 8T IoutVdd. (14)

Remark Examples 1 and 2 help us understand intu-
itively why the parasitic capacitance causes the energy
loss given by eq.(14).
Proposition 6 : Efficiency η for a 3-stage charge
pump circuit at the steady state is given by

η =
Output Power from Vo

Supplied Power from Vdd and Clock Drivers

= 1− 3
2

TIout

CVdd
. (15)

4.4 Effects of Switch Voltage Drop, Parasitic
Capacitance and Output Current Altogether
Let us consider the case that the charge pump circuit
has the switch voltage drop Vd, parasitic capacitances
Cp and output load current Iout (Fig.8).
Proposition 7: For a 3-stage charge pump circuit,
the output voltage at the steady state is given by

Vo(∞) = (1 + 3
C

C + Cp
)Vdd − 4Vd − 7T Iout

C
. (16)

Proof See Appendix 7.
Proposition 8 : Efficiency η for an N -stage charge
pump circuit at the steady state is given by

η = 1−
NCCpV

2
dd + 2(N + 1)(C + Cp)VdTIout + 4NT 2I2

out

NCCpV 2
dd + 2(N + 1)CVddTIout + 2CpVddTIout

.

(17)
Proof See Appendix 6.
Note that Eq.(17) yields to the following:

η = 1− Nα + 2(N + 1)(1 + α)βx + 4Nx2

Nα + 2γx
(18)

where x, α, β and γ are dimensionless, and defined by

x :=
TIout

CVdd
, α :=

Cp

C
, β :=

Vd

Vdd
, γ := N + 1 + α.

Proposition 9 : Effeciency η given by eq.(18) has a
peak value when x has the following value:

x =
−Nα +

√
N2α2 + [(1− β)γ − Nαβ]γα

2γ
. (19)

Proof By calculating ∂η/∂x = 0 and x > 0, we
obtain eq.(19).



We conclude this paper by remarking that Proposi-
tion 9 can theoretically explain our measurement re-
sult that the efficiency of our charge pump circuit [3]
has a peak for a certain value of the output current
Iout and also for a certain value of the clock period T
when the other conditions are fixed.

We would like to thank K. Wilkinson for valuable
discussions.
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Appendix 1 (Proof of Proposition 1)
Using the charge conservation law, we have the follow-
ing state equation in Fig.4:

v(n + 1) = Av(n) + bVdd

where

v(n) :=
[

V1(n)
Vo(n)

]

A :=
[

1
4

1
2

1
2

1
2

]
, b :=

[
1
2
1
2

]

Then

v(n) = Anv(0) +
n−1∑
k=0

AkbVdd

and eqs.(7), (8) are obtained.
Appendix 2 (Proof of Proposition 2)

Using the charge conservation law for each cycle,
the energy loss Eloss(n) and the energy stored in all
capacitors Ec(n) at n-th cycle are given by

Eloss(n) =
C

16
[10V1(n)2 + 5Vo(n)2 + 74V 2

dd

−8V1(n)Vo(n)− 16Vo(n)Vdd − 28V1(n)Vdd],

and

Ec(n) =
C

2
[2V1(n)2 + 2Vdd(n)2 − 2V1(n)Vdd + Vo)n)2].

Then considering an initial condition Eloss0,

ER :=
∞∑

n=0

Eloss(n) + Eloss0 = 15CV 2
dd,

Ec := lim
n→∞ Ec(n) = 15CV 2

dd,

and eq.(9) is obtained.
Appendix 3 (Proof of Proposition 3)
We have the following state equation in Fig.5.

v(n + 1) = Av(n) + Bvm



where

B :=
[

1
2 0
1
2 −1

]
, vm :=

[
Vdd

Vd

]
.

When n → ∞, we have

v(∞) = Av(∞) + Bvm

and eq.(10) is obtained.
Appendix 4 (Proof of Proposition 4)
We have the following state equation in Fig.6:

v(n + 1) = Av(n) + cVdd

c :=

[
C

2(C+Cp)
2C+Cp

4(C+Cp)

]
.

When n → ∞, we have

v(∞) = Av(∞) + cVdd

and eq.(11) is obtained.
Appendix 5 (Proof of Proposition 5)
We have the following state equation in Fig.7.[

V1(n + 1)
Vo(n + 1)

]
=

[
1
4

1
2

1
2

1
2

] [
V1(n)
Vo(n)

]
+

[
1
2 − 3

2
1
2 − 1

4

] [
Vdd

TIout

C

]

When n → ∞, we have[
V1(∞)
Vo(∞)

]
=

[
1
4

1
2

1
2

1
2

] [
V1(∞)
Vo(∞)

]

+
[

1
2 − 3

2
1
2 − 1

4

] [
Vdd

TIout

C

]

and eq.(13) is obtained.
Appendix 6 (Proof of Propositions 6 and 8)
Consider the steady state in Fig.8. Then the energy
Eload supplied from the output node during one clock
cycle T is given by

Eload = [2Vdd − 8Vd + 6
C

C + Cp
Vdd − 12

TIout

C + Cp
]TIout.

Also the energy Es(∞) supplied from Vdd and clock
drivers during one clock cycle T is given by

Es(∞) = 3CV 2
dd − 3

C2

C + Cp
V 2

dd

+6
CVddTIout

C + Cp
+ 2VddTIout.

Then

η =
Eload

Es(∞)

and eqs.(15),(17) have been obtained.
Appendix 7 (Proof of Proposition 7)
In Fig.8 we have the following state equations:

V ′
1(n) =

1
2
V1(n) +

1
2
Vdd − Vd,

V ′
o(n) =

1
2
V1(n) +

1
2
Vo(n)− Vd +

CVdd − TIout

2(C + Cp)
,

V1(n + 1) =
1
2
V ′

1(n) +
1
2
V ′

o + Vd,

Vo(n + 1) =
1
2
V ′

o(n)−
TIout

C + Cp
.

Then eq.(16) has been obtained.

Figure Captions

Fig.1: A four-stage Dickson charge pump.

Fig.2: A RC circuit.

Fig.3: Two capacitors and switch. (a) In case that
switch is OFF, the voltages across C1 and C2 are V1

and V2 respectively.
(a) In case that switch is ON. The charges in C1 and C2

moves so that the voltages across C1 and C2 becomes
the same (VM ) and some energy is dissipated through
the switch.

Fig.4: An ideal three-stage Dickson charge pump cir-
cuit.

Fig.5: A non-ideal three-stage Dickson charge pump
circuit where voltage drop Vd across each switch is
considered.

Fig.6: A non-ideal three-stage Dickson charge pump
circuit where parasitic capacitance Cp at each node is
considered.

Fig.7: A non-ideal three-stage Dickson charge pump
circuit where output load current Iout is considered.

Fig.8: A non-ideal three-stage Dickson charge pump
circuit where voltage drop Vd across each switch, par-
asitic capacitance Cp at each node, and output load
current Iout are considered.
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