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Abstract — This paper derives explicit frequency
transfer functions for first-, second- and third-order
RC polyphase filters (which are important components
in analog front-end of wireless transceivers for I, Q sig-
nal generation and image rejection) using a concept of
complex signal and circulant matrix properties. The
results allow us to exploit their characteristics system-
atically.
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I. Introduction

RC polyphase filters are important components in ana-
log front-end of wireless transceivers; they are used for
In-Phase and Quadrature (I and Q) signal generation
and for image rejection [1, 2, 3, 4, 5]. However, to
the best of our knowledge, up to now their design has
been based on simulation [3]. In this paper we have
derived their frequency transfer functions analytically,
to allow their characteristics to be exploited system-
atically. We believe that the explicit derivation of the
frequency transfer functions of second and third-order
RC polyphase filters is new; those of higher-order fil-
ters could be obtained with the same approach.

I1. First-Order RC Polyphase Filter

Let us consider the first-order RC polyphase filter in
Fig.1 (a) and define the following:

I; (t) = Lin+ (t) —ILin— (t),
Qin(t) = Qint(t) — Qin—(t)

Iout (t) = lout+ (t) - Ioutf (t)a
Qout (t) = QOUt+ (t) - Qoutf (t)

Now let us define complex signals V;,(¢) and V4 (t)
as follows [7]:

V;n(t) = Iy (t) + jQin(t)v
‘/out (t) = dout (t) + onut (t)

Letting Vip, (jw)a Vout (jw), Tout (jw), Qout(jw), Iin (]w)
and Q;n(jw) be the Fourier transform of V;,(¢),
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Vout (1), Lout (t), Qout(t), Iin(t) and Q4 (t) respectively
and so on, we have vout = MiVin. Here

Vin =

(Iin+ (jw)a Qin+ (jw)a Iin— (jw)a Qin— (jw))Tv
Vout =

(Iout+ (jw)a Qout+(jw), Lout— (j(U), Qout— (jw))T7

M = circl(Fy(jw),0,0, Hi(jw)), (1)
(circl() denotes a circulant matrix [6])

1 . —jwRC
Hy(jw) : S

Fi(jw) : =
1<Jw) 1+ jwRCy

= 1+ jwR1Cy ’
Then we obtain

[ i) 1] 1ta) i) 1 It ]
Qout(jw) Hl (]W) Fl (]W) an(]w)

(2)
We define the frequency transfer function for complex
input and output signals V;, (jw) and V¢ (jw) as fol-
lows:

Vout (jw)
Vin(jw)

Then we obtain the followings:
Fact 1 (i)

G1(jw) = = F1(jw) + jH1(jw).

1+wR1Cy

Gl(]w) - 1 +ij1C1.

(3)
This frequency transfer function G4 (jw) characterizes
a first-order RC polyphase filter for complex signals.
(ii) Gain and phase are given by

. 1+wRkC

Gy (ju)] = oG] @)
1+ (wR101)2

LG (jw) = — arctan(wR1CY). (5)



Figs.1 (b), (c) show |Gy (jw)| and /G1(jw) for Ry =
1kQ,Cy = 10pF respectively. Also Fig.1 (d) shows
Nyquist chart of G1(jw).

Remark (i) It follows from eq.(4) that

|G1(jw)| # |G1(—jw)| in general, and

|G1(jw)|w=0 =1, lim [Gi(jw)| =1,
w—too

(G100 =0 G2 (G0 = V2.

R1Cy

R

— 1
Y=oy

(ii) Noting that G (jw) has a zero at w = —1/(R1Ch),
we have

oy —LG(=gw) 0<w< 7%)
ZGl(]w) - { ZGl(—jw) — T (ﬁ < w)
; . T
ZGl (]W)L'J:O = 0’ AGl (jw)‘w: R1101 - _Za

. ™
ZGl(]w)‘wz =+ AR, AR— 40 = 1
. 3
LG (jw)l = e+ AR AR——0 — ~ 4T
) 7r
LG1(jw)|w—too = 9

(ii) When

G = [ W K ][ e ]

the condition for it to have the given frequency transfer
function for complex signals (namely, the condition for
it to be an Hilbert filter [3]) is

K(jw) = N(jw),  L{jw) = —M(jw)

and eq.(2) satisfies this, which is because the matrix
M; defined in eq.(1) is circulant [6].

It is well-known that the frequency transfer function
is a Fourier transform of the impulse response when
input and output are real signals; here we consider
the case that they are complex signals.

Fact 2 (i) Suppose that for I;, (t) = 6(t), Qin(t)

Iout (t) = Gii (t)a Qout (t) = 9qi (t)

0,

and for ¢ < 0, g4 (t) = g4i(t) = 0. Then we have

Gitje) = [ (gult) + dan()e
because eq.(2) holds and

H1(jw)=/ gii(t)e ¥ dt,

— 00

Fi(jw) = / gqi(t)e*j“’tdt.

—0o0

(ii) Suppose that for I, (t) = 0, Qin(t) = §(¢),

Lout(t) = giq(t)  Qout(t) = gqq(t)

and for t < 0, giq(t) = gqq(t) = 0. Then it follows
from eq.(2) that

gii(t) = gqq(t)v giq(t) = _gqi(t)~

I11. Second-Order RC Polyphase Filter

Fig.2 (a) shows a second-order RC polyphase filter,
and we have derived its frequency transfer function
G2 (jw) explicitly using Mathematica.

Fact 3 (i)

Ga(jw) =

(1 + leCl)(l + wRQCQ)
1— w2R1C1RQCQ +jw(C1R1 + C3Ry + 2R1C2).
(6)

(ii) Gain and phase are respectively given as follows:

|Ga(jw)| =

|]. + WR1C1||]. + WR2C2|
\/(1 — w2R101R202)2 + WQ(ClRl + CoRsy + 2R102)2
(7)
CiR1 + C2Ry + 2R CY)
(UQRlclRQCQ -1 ’
(8)

Fig.2 (b) shows |G2(jw)| with respect to w, and we
see that Go(jw) has zeros at the angular frequencies
w = —1/(R101) and —1/(R202).

(iii) When R := R; = Ry and C := C; = (3, gain and
phase are given as follows:

)

LGy (jw) = arctan <w(

_ |1+ wRC|?
G = . 9
0= e romer ¥

. 4wCR
/Gs(jw) = arctan (m> . (10)



Remark (i) It follows from eq.(7) that

|G2(jw)| # |G2(—jw)| in general, and

G2(jw)lo=o =1, lim [Gs(jw)| = 1.

(ii) Tt follows from eqs.(9) and (10) that when R :=
R1 = RQ and C = Cl = CQ,

G2 (), =0, Ga(jeo)]e

(@]

:]_’

1
RC

LG (j)l ey = —

T [8Ga(w)]
RC 2’

=0.
ow ]wz%
(iii) It follows from eqs.(3) and (6) that

G2 (jw) # G1(jw)?

even if R:= Ry = Ry and C := Cy = Cs.
IV. Third-Order RC Polyphase Filter

Fig.3 (a) shows a third-order RC polyphase filter, and
again we have derived the frequency transfer function
G3(jw) explicitly using Mathematica.

Fact 4 (i)

G3(jw) == M (11)
Here

N3(jw) := (1 + wR1C1)(1 + wR2Co)(1 + wR3Cs),
Dg(]w) = DgR(W) +jD31(w),

DgR(w) =1- w2[R101R2C2 + RyCyR3C3
+R1C1 R3Cs + 2R, C5(R2Cs + R2C1 + R3Ca)],

Dsj(w) :==w[R1Cy + RyCs + R3Cs
+2(R102 + RoC5 + R1C3)} — w3R101R2C2R303.

(ii) Gain and phase are respectively given as follows:

[N (jw)

Gs(je) = et s (1)
LG3(jw) = — arctan (%) . (13)

Fig.3 (b) shows |G3(jw)| with respect to w, and we
see that G3(jw) has zeros at the angular frequencies

w = —1/(R101), —1/(R2C2) and —1/(R3C3)

(iii) When R := R1 = RQ = R3 and C := Cl = CQ =
Cs3, gain and phase are given as follows:

Ga(jw)] = 1+ wROP |
V1+ 63w2R2C? + 63wiR1CH + wGRG(CG)
14
, WR3C? — 9wRC
/G3(jw) = arctan < 0t RECE > (15)

Remark (i) It follows from eq.(12) that

|G3(jw)| # |G3(—jw)| in general, and

G3(jw)lo=o =1, lim_|Gs(jw)| = 1.

(ii) It follows from eqs.(14) and (15) that when R :=
R1:R2:R3 andC::C1:CQZC3,

(G lj)lo—gy =0, 1Gs(j0)lu—gs = 5
- _ 3 GG _
£Gs U Nom g = =3 [ T P

(iii) It follows from eqs.(3),(6) and (11) that
Gs(jw) # G1(jw)’,  G3(jw) # G1(jw)Ga(jw)

even if R:= Ry = Ry = Rz and C :=Cy = Cy = (3.

We would like to thank K. Wilkinson for valuable
discussions.
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Fig.1 (a) : The first-order RC polyphase filter.
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Fig.1 (b) : Gain characteristics of Fig.1 (a).
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Fig.1 (c¢) : Phase characteristics of Fig.1 (a).
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Fig.1 (d) : Nyquist chart of the first-order polyphase
filter transfer function G1(jw) = X (w) + jY (w).
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Fig.2 (b) : Gain characteristics of the second-order
RC polyphase filter when R; = 1k, C; = 10pF, Ry =
2kQ and Cy = 1pF.
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Fig.3 (a) : The third-order RC polyphase filter.
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Fig.3 (b): Gain characteristics of the third-order RC
polyphase filter when Ry = 1kQ,C; = 10pF, Ry =
3kQ,Cy = 1pF, Ry = 5k and C3 = 0.2pF.



