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Abstract – This paper derives explicit frequency
transfer functions for first-, second- and third-order
RC polyphase filters (which are important components
in analog front-end of wireless transceivers for I, Q sig-
nal generation and image rejection) using a concept of
complex signal and circulant matrix properties. The
results allow us to exploit their characteristics system-
atically.
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I. Introduction
RC polyphase filters are important components in ana-
log front-end of wireless transceivers; they are used for
In-Phase and Quadrature (I and Q) signal generation
and for image rejection [1, 2, 3, 4, 5]. However, to
the best of our knowledge, up to now their design has
been based on simulation [3]. In this paper we have
derived their frequency transfer functions analytically,
to allow their characteristics to be exploited system-
atically. We believe that the explicit derivation of the
frequency transfer functions of second and third-order
RC polyphase filters is new; those of higher-order fil-
ters could be obtained with the same approach.
II. First-Order RC Polyphase Filter
Let us consider the first-order RC polyphase filter in
Fig.1 (a) and define the following:

Iin(t) := Iin+(t) − Iin−(t),
Qin(t) := Qin+(t) −Qin−(t),

Iout(t) := Iout+(t) − Iout−(t),

Qout(t) := Qout+(t) −Qout−(t).

Now let us define complex signals Vin(t) and Vout(t)
as follows [7]:

Vin(t) := Iin(t) + jQin(t),
Vout(t) := Iout(t) + jQout(t).

Letting Vin(jω), Vout(jω), Iout(jω), Qout(jω), Iin(jω)
and Qin(jω) be the Fourier transform of Vin(t),

Vout(t), Iout(t), Qout(t), Iin(t) and Qin(t) respectively
and so on, we have vout =M1vin. Here

vin :=
(Iin+(jω), Qin+(jω), Iin−(jω), Qin−(jω))T ,

vout :=

(Iout+(jω), Qout+(jω), Iout−(jω), Qout−(jω))T ,

M1 := circl(F1(jω), 0, 0, H1(jω)), (1)

(circl() denotes a circulant matrix [6])

F1(jω) :=
1

1 + jωR1C1
, H1(jω) :=

−jωR1C1

1 + jωR1C1
.

Then we obtain
[
Iout(jω)
Qout(jω)

]
=

[
F1(jω) −H1(jω)
H1(jω) F1(jω)

] [
Iin(jω)
Qin(jω)

]
.

(2)
We define the frequency transfer function for complex
input and output signals Vin(jω) and Vout(jω) as fol-
lows:

G1(jω) :=
Vout(jω)
Vin(jω)

= F1(jω) + jH1(jω).

Then we obtain the followings:
Fact 1 (i)

G1(jω) =
1 + ωR1C1

1 + jωR1C1
. (3)

This frequency transfer function G1(jω) characterizes
a first-order RC polyphase filter for complex signals.
(ii) Gain and phase are given by

|G1(jω)| =
|1 + ωR1C1|√
1 + (ωR1C1)2

(4)

� G1(jω) = − arctan(ωR1C1). (5)



Figs.1 (b), (c) show |G1(jω)| and � G1(jω) for R1 =
1kΩ, C1 = 10pF respectively. Also Fig.1 (d) shows
Nyquist chart of G1(jω).
Remark (i) It follows from eq.(4) that

|G1(jω)| �= |G1(−jω)| in general, and

|G1(jω)|ω=0 = 1, lim
ω→±∞ |G1(jω)| = 1,

|G1(jω)|ω=− 1
R1C1

= 0, |G1(jω)|ω= 1
R1C1

=
√

2,

[
∂|G1(jω)|
∂ω

]
ω= 1

R1C1

= 0.

(ii) Noting that G1(jω) has a zero at ω = −1/(R1C1),
we have

� G1(jω) =
{ − � G1(−jω) (0 ≤ ω < 1

R1C1
)

� G1(−jω) − π ( 1
R1C1

< ω)

� G1(jω)|ω=0 = 0, � G1(jω)|ω= 1
R1C1

= −π
4
,

� G1(jω)|ω= −1
R1C1

+∆h,∆h→+0 =
π

4
,

� G1(jω)|ω= −1
R1C1

+∆h,∆h→−0 = −3
4
π,

� G1(jω)|ω→±∞ = −π
2
.

(ii) When
[
Iout(jω)
Qout(jω)

]
=

[
K(jω) L(jω)
M(jω) N(jω)

] [
Iin(jω)
Qin(jω)

]
,

the condition for it to have the given frequency transfer
function for complex signals (namely, the condition for
it to be an Hilbert filter [3]) is

K(jω) = N(jω), L(jω) = −M (jω)

and eq.(2) satisfies this, which is because the matrix
M1 defined in eq.(1) is circulant [6].

It is well-known that the frequency transfer function
is a Fourier transform of the impulse response when
input and output are real signals; here we consider
the case that they are complex signals.
Fact 2 (i) Suppose that for Iin(t) = δ(t), Qin(t) ≡ 0,

Iout(t) = gii(t), Qout(t) = gqi(t)

and for t < 0, gii(t) = gqi(t) ≡ 0. Then we have

G1(jω) =
∫ ∞

−∞
(gii(t) + jgqi(t))e−jωtdt

because eq.(2) holds and

H1(jω) =
∫ ∞

−∞
gii(t)e−jωtdt,

F1(jω) =
∫ ∞

−∞
gqi(t)e−jωtdt.

(ii) Suppose that for Iin(t) ≡ 0, Qin(t) = δ(t),

Iout(t) = giq(t) Qout(t) = gqq(t)

and for t < 0, giq(t) = gqq(t) ≡ 0. Then it follows
from eq.(2) that

gii(t) = gqq(t), giq(t) = −gqi(t).

III. Second-Order RC Polyphase Filter
Fig.2 (a) shows a second-order RC polyphase filter,
and we have derived its frequency transfer function
G2(jω) explicitly using Mathematica.
Fact 3 (i)

G2(jω) =

(1 + ωR1C1)(1 + ωR2C2)
1 − ω2R1C1R2C2 + jω(C1R1 + C2R2 + 2R1C2)

.

(6)
(ii) Gain and phase are respectively given as follows:

|G2(jω)| =

|1 + ωR1C1||1 + ωR2C2|√
(1 − ω2R1C1R2C2)2 + ω2(C1R1 + C2R2 + 2R1C2)2

,

(7)

� G2(jω) = arctan
(
ω(C1R1 + C2R2 + 2R1C2)

ω2R1C1R2C2 − 1

)
.

(8)
Fig.2 (b) shows |G2(jω)| with respect to ω, and we
see that G2(jω) has zeros at the angular frequencies
ω = −1/(R1C1) and −1/(R2C2).
(iii) When R := R1 = R2 and C := C1 = C2, gain and
phase are given as follows:

|G2(jω)| =
|1 + ωRC|2√

1 + 14ω2R2C2 + ω4R4C4
. (9)

� G2(jω) = arctan
(

4ωCR
ω2R2C2 − 1

)
. (10)



Remark (i) It follows from eq.(7) that

|G2(jω)| �= |G2(−jω)| in general, and

|G2(jω)|ω=0 = 1, lim
ω→±∞ |G2(jω)| = 1.

(ii) It follows from eqs.(9) and (10) that when R :=
R1 = R2 and C := C1 = C2,

|G2(jω)|ω=− 1
RC

= 0, |G2(jω)|ω= 1
RC

= 1,

� G2(jω)|ω= 1
RC

= −π
2
,

[
∂|G2(jω)|
∂ω

]
ω= 1

RC

= 0.

(iii) It follows from eqs.(3) and (6) that

G2(jω) �= G1(jω)2

even if R := R1 = R2 and C := C1 = C2.
IV. Third-Order RC Polyphase Filter
Fig.3 (a) shows a third-order RC polyphase filter, and
again we have derived the frequency transfer function
G3(jω) explicitly using Mathematica.
Fact 4 (i)

G3(jω) :=
N3(jω)
D3(jω)

. (11)

Here

N3(jω) := (1 + ωR1C1)(1 + ωR2C2)(1 + ωR3C3),

D3(jω) := D3R(ω) + jD3I(ω),

D3R(ω) := 1 − ω2[R1C1R2C2 +R2C2R3C3

+R1C1R3C3 + 2R1C3(R2C2 +R2C1 +R3C2)],

D3I(ω) := ω[R1C1 +R2C2 +R3C3

+2(R1C2 +R2C3 +R1C3)] − ω3R1C1R2C2R3C3.

(ii) Gain and phase are respectively given as follows:

|G3(jω)| =
|N3(jω)|√

D3R(jω)2 +D3I(jω)2
(12)

� G3(jω) = − arctan
(
D3I(jω)
D3R(jω)

)
. (13)

Fig.3 (b) shows |G3(jω)| with respect to ω, and we
see that G3(jω) has zeros at the angular frequencies
ω = −1/(R1C1), −1/(R2C2) and −1/(R3C3).

(iii) When R := R1 = R2 = R3 and C := C1 = C2 =
C3, gain and phase are given as follows:

|G3(jω)| =
|1 + ωRC|3√

1 + 63ω2R2C2 + 63ω4R4C4 + ω6R6C6
.

(14)

� G3(jω) = arctan
(
ω3R3C3 − 9ωRC

1 − 9ω2R2C2

)
. (15)

Remark (i) It follows from eq.(12) that

|G3(jω)| �= |G3(−jω)| in general, and

|G3(jω)|ω=0 = 1, lim
ω→±∞ |G3(jω)| = 1.

(ii) It follows from eqs.(14) and (15) that when R :=
R1 = R2 = R3 and C := C1 = C2 = C3,

|G3(jω)|ω=− 1
RC

= 0, |G3(jω)|ω= 1
RC

=
1√
2
,

� G3(jω)|ω= 1
RC

= −3
4
π,

[
∂|G3(jω)|
∂ω

]
ω= 1

RC

= 0.

(iii) It follows from eqs.(3),(6) and (11) that

G3(jω) �= G1(jω)3, G3(jω) �= G1(jω)G2(jω)

even if R := R1 = R2 = R3 and C := C1 = C2 = C3.

We would like to thank K. Wilkinson for valuable
discussions.
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Fig.1 (a) : The first-order RC polyphase filter.
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Fig.1 (b) : Gain characteristics of Fig.1 (a).
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Fig.1 (c) : Phase characteristics of Fig.1 (a).
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Fig.1 (d) : Nyquist chart of the first-order polyphase
filter transfer function G1(jω) := X(ω) + jY (ω).
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Fig.2 (a) : The second-order RC polyphase filter.
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Fig.2 (b) : Gain characteristics of the second-order
RC polyphase filter when R1 = 1kΩ, C1 = 10pF, R2 =
2kΩ and C2 = 1pF .
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Fig.3 (a) : The third-order RC polyphase filter.
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Fig.3 (b): Gain characteristics of the third-order RC
polyphase filter when R1 = 1kΩ, C1 = 10pF , R2 =
3kΩ, C2 = 1pF , R3 = 5kΩ and C3 = 0.2pF .


