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Abstract – RC polyphase filters are important
components in analog front-ends of wireless
transceivers. This paper derives explicit fre-
quency transfer functions for first-, second- and
third-order RC polyphase filters, allowing sys-
tematic exploitation of their characteristics.
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I. Introduction

RC polyphase filters are important components in ana-
log front-ends of wireless transceivers; they are used
for In-Phase and Quadrature (I and Q) signal genera-
tion and for image rejection [1, 2, 3, 4, 5]. However, to
the best of our knowledge, up to now their design has
been based on simulation [3]. In this paper we have
derived their frequency transfer functions analytically,
to allow their characteristics to be exploited system-
atically. We believe that the explicit derivation of the
frequency transfer functions of second and third-order
RC polyphase filters is new.

Since the RC polyphase filter is a circulant struc-
ture, circulant matrices are extensively used for its
analysis [6, 7], and in this paper we denote a 4x4 cir-
culant matrix as follows:

circl(a, b, c, d) :=




a b c d
d a b c
c d a b
b c d a


 .

II. Roles of RC Polyphase Filters

This section reviews the usage of RC polyphase filters
in analog front-ends of wireless transceiver systems.
Example 1:
In Fig.1(a), let Iin(t) = cos(ωLOt), and Qin(t) ≡ 0.
Then we have

Iout(t) = AI cos(ωLOt + θ),
Qout(t) = AQ sin(ωLOt + θ),

and Fig.1(c) shows their SPICE simulation waveforms.
(Here AI , AQ and θ are appropriate constants.) Thus
the RC polyphase filter can be used for generating
cosine and sine signals from a single sinusoidal signal
(Fig.1(b)), and the cosine and sine signals are supplied
to mixers used for up conversion or down conversion.
Example 2:
However, the RC polyphase filter in Fig.1(a) has com-
ponent sensitivity problems. If ωLO = 1/(R1C1) is
satisfied then the amplitudes of Iout(t) and Qout(t) are
exactly the same (AI = AQ), but if ωLO �= 1/(R1C1),
then AI and AQ can be very different. Cascading
two RC polyphase filters as shown in Fig.2(a) alle-
viates of this problem. Fig.1(d) shows waveforms of
Iout(t), Qout(t) in Fig.1(a) while Fig.2(b) shows those
in Fig.2(a) for ωLO = 2/(R1C1). We see that the am-
plitudes of Qout(t), Iout(t) in Fig.1(a) are very different
but those in Fig.2(a) are quite similar even though in
both cases the phase difference between Qout(t) and
Iout(t) are exactly π/2 [rad]. We note that cascad-
ing three RC polyphase filters can further reduce the
amplitude difference.
Example 3:
Consider the case of two signal generators which pro-
duce cosine and sine signals respectively but with
third-order harmonics. The RC polyphase filter can be
used to cancel the third-order harmonics and generate
pure cosine and sine signals (Fig.3(a)). In Fig.1(a),
letting

Iin(t) = cos(ωLOt) + a cos3(ωLOt)

= (1 +
3a
4

) cos(ωLOt) +
a

4
cos(3ωLOt),

Qin(t) = sin(ωLOt) + a sin3(ωLOt)

= (1 +
3a
4

) sin(ωLOt) − a

4
sin(3ωLOt).

In other words,

Iin(t) + jQin(t) = (1 +
3a
4

)ejωLOt +
a

4
e−j3ωLOt



where a is a constant. If 3ωLO = 1/(R1C1), then we
have the following:

Iout(t) = A cos(ωLOt + θ),
Qout(t) = A sin(ωLOt + θ).

In other words,

Iout(t) + jQout(t) = Aej(ωLOt+θ)

where A and θ are appropriate constants. We see
that, for complex input signals, the RC polyphase fil-
ter passes the frequency component ωLO but it rejects
−3ωLO. Fig.3(b) shows SPICE simulation waveforms
of Iin(t) and Qin(t) while Fig.3 (c) shows those of
Iout(t) and Qout(t).
Example 4:
Letting ωin = 1/(R1C1) and applying Iin(t) =
cos(ωint) and Qin(t) = sin(ωint) to the circuit in
Fig.1(a), and we have Iin(t) = (

√
2/2) cos(ωint− π/4)

and Qin(t) = (
√

2/2) sin(ωint − π/4). On the other
hand, if we apply Iin(t) = cos(−ωint) = cos(ωint),
Qin(t) = sin(−ωint) = − sin(ωint) to the circuit in
Fig.1(a), we have Iout(t) = Qout(t) ≡ 0. Hence the
RC polyphase filter passes the frequency component
ωin but it rejects −ωin, and so it works as an image
rejection filter.
III. First Order RC Polyphase Filter
Let us consider the first-order RC polyphase filter in
Fig.1 (a) and define the following:

Iin(t) := Iin+(t) − Iin−(t),
Qin(t) := Qin+(t) −Qin−(t),

Iout(t) := Iout+(t) − Iout−(t),

Qout(t) := Qout+(t) −Qout−(t).

Now let us define complex signals Vin(t) and Vout(t)
as follows [8]:

Vin(t) := Iin(t) + jQin(t),
Vout(t) := Iout(t) + jQout(t).

Letting Vin(jω) be the Fourier transform of Vin(t) and
so on, we have the following relationships:

vout = M1vin.

Here

vin :=
(Iin+(jω), Qin+(jω), Iin−(jω), Qin−(jω))T ,

vout :=

(Iout+(jω), Qout+(jω), Iout−(jω), Qout−(jω))T ,

M1 := circl(F1(jω), 0, 0, H1(jω)), (1)

F1(jω) :=
1

1 + jωR1C1
, H1(jω) :=

−jωR1C1

1 + jωR1C1
.

Then we obtain[
Iout(jω)
Qout(jω)

]
=

[
F1(jω) −H1(jω)
H1(jω) F1(jω)

] [
Iin(jω)
Qin(jω)

]
.

(2)
We define the frequency transfer function for complex
input and output signals Vin(jω) and Vout(jω) as fol-
lows:

G1(jω) :=
Vout(jω)
Vin(jω)

.

Then we obtain

G1(jω) = F1(jω) + jH1(jω) =
1 + ωR1C1

1 + jωR1C1
. (3)

Note that |G1(jω)| �= |G1(−jω)| in general (see Fig.4
(a)), and gain and phase are given by

|G1(jω)| =
|1 + ωR1C1|√
1 + (ωR1C1)2

tan � G1(jω) = −ωR1C1.

This frequency transfer function G1(jω) characterizes
a first-order RC polyphase filter for complex signals.
Remark (i) Noting that G(jω) has a zero at ω =
−1/(R1C1), we have

� G1(jω) =
{ − � G1(−jω) (0 ≤ ω < 1

R1C1
)

� G1(−jω) − π ( 1
R1C1

< ω).

See Fig.4 (b) and Fig.5.
(ii) The frequency transfer function G1 in eq.(3) can
explain Example 1. Letting

Vin(t) = cos(ωLOt) =
1
2

[ejωLOt + e−jωLOt],

and ωLO = 1/(R1C1), then

Vout(t) =
1
2

[|G1(jωLO)|ej(ωLOt+� G1(jωLO))

+|G1(−jωLO)|ej(ωLOt+� G1(−jωLO))]

=
√

2
2

ej(ωLOt−π/4)



because

|G1(jω)|ω=− 1
R1C1

= 0, |G1(jω)|ω= 1
R1C1

=
√

2,

tan � G1(jω)|ω= 1
R1C1

= −1.

Similarly Examples 3 and 4 can be explained using
G1(jω).
(iii) When
[

Iout(jω)
Qout(jω)

]
=

[
K(jω) L(jω)
M(jω) N(jω)

] [
Iin(jω)
Qin(jω)

]
,

the condition for it to have the given frequency transfer
function for complex signals (namely, the condition for
it to be an Hilbert filter [3]) is

K(jω) = N(jω), L(jω) = −M (jω)

and eq.(2 satisfies this, which is because the matrix
M1 defined in eq.(1) is circulant [6, 7].
(iv) It is well-known that the frequency transfer func-
tion is a Fourier transform of the impulse response
when input and output are real signals; here we con-
sider the case that they are complex signals. Suppose
that for Iin(t) = δ(t), Qin(t) ≡ 0,

Iout(t) = gii(t), Qout(t) = gqi(t)

and for t < 0, gii(t) = gqi(t) ≡ 0. Then we have

G1(jω) =
∫ ∞

−∞
(gii(t) + jgqi(t))e−jωtdt

because

H1(jω) =
∫ ∞

−∞
gii(t)e−jωtdt,

F1(jω) =
∫ ∞

−∞
gqi(t)e−jωtdt

and eq.(2) holds.
(v) Suppose that for Iin(t) ≡ 0, Qin(t) = δ(t),

Iout(t) = giq(t) Qout(t) = gqq(t)

and for t < 0, giq(t) = gqq(t) ≡ 0. Then it follows
from eq.(2) that

gii(t) = gqq(t), giq(t) = −gqi(t).

IV. Second-Order RC Polyphase Filter

Fig.2 (a) shows a second-order RC polyphase filter,
and we have derived its frequency transfer function
G2(jω) explicitly using Mathematica:

G2(jω) =
(1 + ωR1C1)(1 + ωR2C2)

1 − ω2R1C1R2C2 + jω(C1R1 + C2R2 + 2R1C2)
.

(4)
See Appendix A for basic equations used to derive
G2(jω). Fig.6 shows |G2(jω)| with respect to ω, and
we see that G2(jω) has zeros at the angular frequen-
cies ω = −1/(R1C1) and −1/(R2C2). Also the same
arguments as the first-order RC polyphase filter case
hold.
V. Third-Order RC Polyphase Filter
Fig.7 shows a third-order RC polyphase filter, and
again we have derived the frequency transfer function
G3(jω) explicitly using Mathematica:

G3(jω) :=
N3(jω)
D3(jω)

. (5)

Here

N3(jω) := (1 + ωR1C1)(1 + ωR2C2)(1 + ωR3C3),

D3(jω) := D3R(ω) + jD3I(ω),

D3R(ω) := 1 − ω2[R1C1R2C2 + R2C2R3C3

+R1C1R3C3 + 2R1C3(R2C2 + R2C1 + R3C2)],

D3I(ω) := ω[R1C1 + R2C2 + R3C3

+2(R1C2 + R2C3 + R1C3)] − ω3R1C1R2C2R3C3.

See Appendix B for basic equations used to derive
G3(jω). Fig.8 shows |G3(jω)| with respect to ω, and
we see that G3(jω) has zeros at the angular frequen-
cies ω = −1/(R1C1), −1/(R2C2) and −1/(R3C3).
VI. Conclusions
We have derived explicit frequency transfer functions
for first-, second- and third-order RC polyphase filters;
those of higher-order filters could be obtained with
the same approach. Also we have characterized RC
polyphase filters using frequency transfer functions.

We would like to thank K. Wilkinson for valuable
discussions.
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Appendix A
This appendix gives basic equations used to derive
G2(jω) in eq.(4). According to Kirchhoff’s Current
Law in Fig.2 (a), we have

A1vin + B1vout = y1vm

(1/R2 + jωC2)vout = A2vm.

Here

vin := (Iin+, Qin+, Iin−, Qin−)T ,
vout := (Iout+, Qout+, Iout−, Qout−)T ,

vm := (va, vb, vc, vd)T ,

A1 := circl(1/R1, 0, 0, jωC1),

B1 := circl(1/R1, jωC1, 0, 0),

A2 := circl(1/R2, 0, 0, jωC2),

y1 := 1/R1 + 1/R2 + jω(C1 + C2).

Then we obtain vout = M2vin. Here M2 :=
circl(a2, b2, c2, d2) and a2, b2, c2, d2 are defined appro-
priately. Then after manipulation of the above expres-
sions, we have
[

Iout(jω)
Qout(jω)

]
=

[
F2(jω) −H2(jω)
H2(jω) F2(jω)

] [
Iin(jω)
Qin(jω)

]

F2(jω) = a2 − c2, H2(jω) = b2 − d2,

G2(jω) = F2(jω) + jH2(jω)

which yields to the final form of G2(jω) in eq.(4).

Appendix B

This appendix gives basic equations used to derive
G3(jω) in eq.(5). According to Kirchhoff’s Current
Law in Fig.7, we have

A1vin + B2vm2 = y1vm1

A2vm1 + B3vout = y2vm2

(1/R3 + jωC3)vout = A3vm2.

Here

vin := (Iin+, Qin+, Iin−, Qin−)T

vout := (Iout+, Qout+, Iout−, Qout−)T

vm1 := (va, vb, vc, vd)T

vm2 := (ve, vf , vg, vh)T

A1 := circl(1/R1, 0, 0, jωC1)

A2 := circl(1/R2, 0, 0, jωC2)

A3 := circl(1/R3, 0, 0, jωC3)

B2 := circl(1/R2, jωC2, 0, 0)

B3 := circl(1/R3, jωC3, 0, 0)

y1 := 1/R1 + 1/R2 + jω(C1 + C2)

y2 := 1/R2 + 1/R3 + jω(C2 + C3).

Then we obtain vout = M3vin. Here M3 :=
circl(a3, b3, c3, d3) and a3, b3, c3, d3 are defined appro-
priately. Then after manipulation of the above expres-
sions, we have

[
Iout(jω)
Qout(jω)

]
=

[
F3(jω) −H3(jω)
H3(jω) F3(jω)

] [
Iin(jω)
Qin(jω)

]

F3(jω) = a3 − c3, H3(jω) = b3 − d3,

G3(jω) = F3(jω) + jH3(jω),

which yields to the final form of G3(jω) in eq.(5).



Iin+

Qin+

Iin-

Qin-

Iout+

Qout+

Iout-

Qout-

R1

R1

R1

R1

C1

C1

C1

C1

Fig.1 (a): The first-order RC polyphase filter.

  

     

Fig.1 (b): Cosine and sine signal generation from a
single sinusoidal signal.
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Fig.1 (c): SPICE simulation waveforms of Iout(t)
and Qout(t) when R = 0.1592kΩ, C = 5pF and
ωLO/(2π) = 1/(2πR1C1) = 200MHz.
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Fig.1 (d): SPICE simulation waveforms of Iout(t)
and Qout(t) when R = 0.1592kΩ, C = 10pF and
ωLO/(2π) = 2/(2πR1C1) = 200MHz.
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Fig.2 (a): The second-order RC polyphase filter.
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Fig.2 (b): SPICE simulation waveforms of Iout(t) and
Qout(t) when R1 = R2 = 0.1592kΩ, C1 = C2 = 10pF
and ωLO/(2π) = 2/(2πR1C1) = 200MHz.

 

 

 

 

Fig.3 (a): Cosine and sine signal generation from two
signals which include third-order harmonics.
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ωLO/(2π) = 1/(2πR1C1) = 300MHz.
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Fig.4 : Gain and phase characteristics of the first-order
RC polyphase filter of Fig.1 (a) when R1 = 1kΩ, C1 =
10pF .
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Fig.6 : Gain characteristics of the second-order RC
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Fig.7 : The third-order RC polyphase filter.
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