複素バンドパス Gm-C フィルタの構成の検討

Design Consideration of Complex Analog Bandpass Gm-C Filters

神宮善敬	和田宏樹	稲葉晋也	小林春夫	高橋憲普	林海軍
Yoshitaka Jingu	Hiroki Wada	Shinya Inaba	Haruo Kobayashi	Noriyuki Takahashi	Kaigun Rin

群馬大学 工学部 電気電子工学科

Department of Electronic Engineering, Faculty of Engineering, Gunma University

1 はじめに

この論文では、携帯電話・無線 LAN のアナログ・フロントエンド部に使用するための高周波複素バンドパスGm-Cフィルタの構成の検討について記す。

2 1 次複素バンドパス Gm-C フィルタ

図 1(a) の1 次複素バンドパス Gm-C フィルタ回路で、複 素電圧出力と複素電流入力から伝達関数伝達関数 G₁(s) は次のように得られる。

$$G_1(s) := \frac{I_{out}(s) + jQ_{out}(s)}{I_{in}(s) + jQ_{in}(s)} = \frac{1}{C} \frac{1}{(s+j\omega_c) + \omega_0}$$

ここで $\omega_c := g_m/C, \ \omega_0 := g_o/C$ である。図 1(b) にそのゲイン特性を示す。位相特性、群遅延は各々

$$\angle G_1(j\omega) = -\arctan\left(\frac{\omega + \omega_c}{\omega_o}\right)$$
$$d\angle G_1(j\omega) _ \qquad \omega_o$$

となる。また Q 値は g_m/g_o となる。 $G_1(j\omega)$ を ω_c だけ 周波数シフトすると実ローパスフィルタになる。

 $(\omega + \omega_c)^2 + \omega_c^2$

$$G_1(j(\omega - \omega_c)) := \frac{1}{C} \frac{1}{j\omega + \omega_0} = \frac{1}{g_o} \frac{1}{1 + j(\omega/\omega_0)}$$

3 3次複素バンドパス Gm-C フィルタ

 $d\omega$

z

文献 [1] の 3 次複素バンドパス Gm-C フィルタに出力コ ンダクタンス g_oをつけたもの (図 2) の伝達関数を導出 した。これにより回路パラメータ値の設計が可能になる。

$$G_{3}(s) := \frac{(s-z_{1})(s-z_{2})}{C(s-p_{1})(s-p_{2})(s-p_{3})}.$$

$$\Box \Box \Box \Box \qquad \omega_{c} := \frac{g_{2}}{C}, \quad p_{1} := \frac{g_{o}}{C} - j\omega_{c},$$

$$p_{2}, p_{3} = -\frac{g_{o}}{2C} + j\left(\pm \frac{\sqrt{8g_{1}^{2} - g_{o}^{2}}}{2C} - \omega_{c}\right),$$

$$1, z_{2} := -\frac{g_{o}}{2C} + j\left(\frac{\pm\sqrt{8g_{1}^{2} + 8g_{2}^{2} - g_{o}^{2}}}{2C} - \omega_{c}\right).$$

同様に $G_3(j\omega)$ を ω_c だけ周波数シフトした $G_3(j(\omega-\omega_c))$ は実ローパスフィルタになる。

4 複素バンドパス Gm-C フィルタの高周波化の考察

(i) 中心周波数 $\omega_c := g_m/C$ を高くする $\rightarrow g_m$ 大 $\rightarrow W$ 大 \rightarrow 寄生 C 大 \rightarrow 中心周波数 ω_c 低。

(ii) g_m の帯域 ω_{BW} (文献 [2]) の影響を考える。 $g_m \rightarrow g_m/(1 + j(\omega/\omega_{BW}))$ で ω_c が高い場合、 ω_{BW} は ω_c の 数倍程度以上にしなければならない (Q が高いほど大)。 g_m 帯域制限により周波数伝達関数は中心周波数 ω_c で対称ではなくなる。

(iii) g_m, g_o, C 値の相対ばらつきがあると、出力信号は
 入力イメージ信号の影響を受けるようになる。

謝辞 この研究の STARC の支援に謝意を表します。

参考文献

- P. Andreani, B. Essink, "A CMOS gm-C Polyphase Filter with High Image Band Rejection," *Proc. of ESSCIRC*, vol.11, pp.374-378, 2000.
- [2] S. Dosho, T. Morie, H. Fujiyama, "A 200MHz Seventh-Order Equiripple Continuous-Time Filter by Design of Nonlienarity Suppression in 0.25µm CMOS Process," *IEEE JSSC*, vol.37, no.5, pp.559-565, May 2002.

図 1 (a) 1 次複素バンドパス Gm-C フィルタ回路. (b) ゲイン特性 |G₁(jω)|.

図 2 3 次複素バンドパス Gm-C フィルタ回路.