

ナノCMOS時代のアナログ回路 私論 マルチバンドパス AD変調器 連続時間バンドパス AD変調器 - RF サンプリングを目指して 複素バンドパス AD変調器 まとめ

逾群馬大学

Kobayashi Laboratory

高速 連続時間バンドパス AD変調器アーキテクチャ ーRF DAC によるサブサンプリングの実 現ー

逾郡馬大学

群馬大学工学部電気電子工学科 通信処理システム工学第二研究室 01305006 上森 将文

指導教官 小林 春夫 教授

Kobayashi Laboratory

発表内容

 1.研究目的
 2.バンドパス AD変調器の検討
 3.RF DACの原理と動作
 4.クロックジッタの バンドパス AD変調器精度への影響
 5.まとめと今後の課題

創群馬大学

Kobayashi Laboratory

Gunma Universit₃

研究目的

Robayashi Laboratory

バンドパス AD変調器 の検討

Kobayashi Laboratory

Gunma Universit₈

内部ADC・DACの速度fsにより制限 (fin=fs/4) Gum

25% RTZ DAC使用のバンドパス AD変調器 出力パワースペクトラム

RF DACの原理と動作 (Radio Frequency DAC)

DAC単体は2004年M.I.Tより提案 2005年群大 バンドパス AD変調器への応用

Kobayashi Laboratory

Gunma Universiza

金星動列をCOS(2 (215)()の交流デール電流源 ・比較的簡単な回路構成で実現可能 現在、修士課程1年の市川が動作確認中 Gunma Universi25

RF DAC 使用のバンドパス AD 変調器 出力パワースペクトラム -10 -20 -30 -40 -50 -60 Power[dB] -70 -80 -90 -100 -110 -120 1 0 1 デジタル入力 0 -130 **RF DAC** -140 -150 -160 $\frac{3}{4}f_s$ $1.5 \frac{1}{2} f_s$ $\mathbf{1}f_s$ 0.6 0.7 0.8 0.9 Gunma Universiza Kobayashi Laboratory Frequency[Fs]

RF DAC使用のバンドパス AD変調器 出力パワースペクトラム(拡大)

Power[dB]

クロックジッタの バンドパス AD変調器 精度への影響

ジッタ(時間雑音):クロックタイミングの揺らぎ

劉帮馬大学 シミュレーション条件 ◆連続時間バンドパス AD変調器の 内部DACのCLKにジッタ 内部DACが パルス幅25%のRTZ DAC RF DAC ◆CLK周期1/fsの±1%で一様分布 **←** -1~+1% 0~1%

Robayashi Laborator

Gunma Universiza

まとめと今後の課題

Kobayashi Laboratory

まとめ

◆ 高周波狭帯域信号を高精度・低消費電力で AD変換するアーキテクチャを提案 ■ 連続時間バンドパス AD変調器

劉群馬大学

RF DACによるサブサンプリングの実現

◆MATLABにより提案アーキテクチャの効果を確認

Gunma University

今後の課題 ◆ マルチビット ◆ 2chインターリーブ ◆ トランジスタ回路レベルの設計

Kobayashi Laboratory