Production Test Consideration for Mixed-Signal IC with Background Calibration

T. Yagi, H. Kobayashi, H. Miyajima, S. Ito, S. Uemori, N. Takai, T. J. Yamaguchi

Gunma University

F2-3

- Research purpose
- Proposed algorithm for calibration time reduction during the test
- Case study of digitally-assisted pipelined ADC
- Simulation results
- Conclusion

- Research purpose
- Proposed algorithm for calibration time reduction during the test
- Case study of digitally-assisted pipelined ADC
- Simulation results
- Conclusion

Digitally-Assisted Analog Circuit in Nano CMOS Era

- •Digital: Benefit from nano CMOS
- Analog: Accuracy constraints
- •Digitally-assisted analog:
 - → Relax analog circuit performance

Digitally-Assisted Analog Circuit Test

5

- •Total testing time = Background calibration time + Functional testing time
- Long testing time → increase testing cost

Research purpose

- Background calibration time reduction during the test
 - Algorithm Proposal: Load the converged calibration data of chip1

to chip2, chip3, ...as their initial data

- ✓ Consideration of correlation among chips within the same wafer
- Small additional read/write circuits for on-chip memory
- ✓ Cooperation with ATE

(ATE: Automatic Test Equipment) 6

- Research purpose
- Proposed algorithm for calibration time reduction during the test
- Case study of digitally-assisted pipelined ADC
- Simulation results
- Conclusion

Correlation among Chips within the Same Wafer

 Strong correlation among die-to-die nonidealities can be used
Converged calibration parameter values would be close among chips within the same wafer

Proposed Algorithm for Calibration Time Reduction during Test

- ATE reads converged calibration data in memory of chip1
- Load them to memory of chip2, chip3 ... as initial data
- Calibration of chip2, chip3 ... converges quickly

- Research purpose
- Proposed algorithm for calibration time reduction during the test
- Case study of digitally-assisted pipelined ADC
- Simulation results
- Conclusion

Digitally-Assisted Pipelined ADC

•Use open-loop amplifier in frontend ADC

- ✓ High speed + low power
- ✓ Amplifier Nonlinearity
 - ightarrow Digital background calibration

11

Digital Calibration of Amp Nonlinearity

•p₁, p₂ and p₃: 1st, offset and 3rd order correction parameters
✓ Estimated by "Distance Estimation"

✓ Background calibration using LMS loop

(LMS: Least Mean Square)

Digital Calibration of Amp Nonlinearity

Distance Estimation (1)

- •Two-residue pipeline stage added by random number, 0 or 1 •Measure h_1 , h_2 and force difference (h_1 - h_2) to 0
 - ✓ Statistics-based measurement (using histogram) 14

Distance Estimation (2)

•Use hitstogram to measure h₁, h₂
✓ 30,000 samples are collected for histogram evaluation

Distance Estimation (3)

•Use hitstogram to measure h₁, h₂
✓ 30,000 samples are collected for histogram evaluation

LMS Loop

- •Accumulator forces (h₁-h₂) to zero
- •Need many samples (about 5*107) to converge LMS loop

- ATE reads converged parameters p1, p2 and p3 of chip1
- Load them to registers of chip2 as their initial data

Apply Proposed Algorithm to Digitally-Assisted Pipelined ADC

- ATE reads converged parameters p1, p2 and p3 of chip1
- Load them to registers of chip2 as their initial data

Apply Proposed Algorithm to Digitally-Assisted Pipelined ADC

- ATE reads converged parameters p1, p2 and p3 of chip1
- Load them to registers of chip2 as their initial data

- Research purpose
- Proposed algorithm for calibration time reduction during the test
- Case study of digitally-assisted pipelined ADC
- Simulation results
- Conclusion

Matlab simulation

12bit Pipelined ADC

✓ 4bit / stage + 2bit / stage + 7*1.5 / stage + 3bit flash ADC

Residue Amplifier Nonlinearity

[Ref: Murmann04]

$$\mathbf{g}_{\mathbf{x}}(\mathbf{V}_{\mathbf{x}}) = \mathbf{g}_{\mathbf{m}} \mathbf{R} \left[\left(\frac{\mathbf{V}_{\mathbf{x}}}{\mathbf{V}_{ref}} \right) + \frac{1}{4} \frac{\Delta \beta}{\beta} \left(\frac{\mathbf{V}_{ref}}{\mathbf{V}_{ov}} \right) \left(\frac{\mathbf{V}_{\mathbf{x}}}{\mathbf{V}_{ref}} \right)^2 - \frac{1}{8} \left(\frac{\mathbf{V}_{ref}}{\mathbf{V}_{ov}} \right)^2 \left(\frac{\mathbf{V}_{\mathbf{x}}}{\mathbf{V}_{ref}} \right)^3 \right]$$

Vref	:	Converter reference voltage	1 V
$g_m R$:	Linear amplifier gain term	7.6 ± 0.5%(σ)
Vov	•	Differential pair gate overdrive	0.25 V
Δβ/β	-	Transistor mismatch	+5% ± 0.5%(σ)

- Consider 16 chips per test
 - ✓ Total number of tested chips is 1024

Parameter Convergence

ENOB Convergence

- Conventional test converged at ~ 5*10⁷ iterations
- Proposed test converged at ~ 2.5*10⁷ iterations

Comparison of Convergence Time

- Conventional test : ~ $5*10^7$ iterations
- Proposed test : ~ 2.5*10⁷ iterations (Worst case)
 - \checkmark Reduced convergence time by 1/2 during the test 25

- Research purpose
- Proposed algorithm for calibration time reduction during the test
- Case study of digitally-assisted pipelined ADC
- Simulation results
- Conclusion

Conclusion

- Propose testing method for digitally-assisted analog circuit
 ✓ Die-to-die correlation reduces calibration time combing on-chip calibration logic with external low-cost ATE
- Calibration time reduction during the test
 - Consideration of correlation among chips within the same wafer
 - ✓ Case study of

digitally-assisted pipelined ADC

[Ref: Murmann04]

Reduced convergence time by 1/2 during the test