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Abstract 

This paper describes a linear phase digital filter with 

novel linear phase condition. A conventional linear 

phase digital filter is an FIR filter with coefficients of 

odd- or even –symmetry and whose group delay  NTs/2 

where N is the number of the FIR filter taps and Ts is 

the sampling period; its group delay time resolution is 

Ts/2. We have generalized the linear phase condition, 

and with our novel linear phase condition, the group 

delay time resolution can be arbitrary small, and the 

coefficients are not necessarily odd-  or even-symmetric. 

However, ideally the number of the filter taps is infinite, 

and hence we have to truncate it using a window 

function for practical use. We present the theory of the 

new linear phase condition and effects of the truncation. 

We also compare our digital filter with the fractional 

delay digital filter. 

 

Keywords: Digital Filter, Linear Phase, Window, Sinc 

Function, Fractional Delay Digital Filter 
 

1. Introduction 

In this paper we propose a digital filter with novel 

linear phase condition and show that its delay time 

resolution is arbitrary fine (i.e., its group delay can be 

set with arbitrary small time resolution).  We will 

provide its intuitive explanation as well as rigorous 

proof.  

Ideally, our proposed linear phase digital filter has 

infinite number of taps which cannot be realized. Hence 

we approximate it with the finite number of taps, and 

we will describe its truncation effects; we observe Gibbs 

oscillations [1-3] for phase as well as gain 

characteristics when we approximate it directly without 

applying a window function. However using proper 

window functions can eliminate these oscillations and 

their gain and phase characteristics are close to the ones 

with the ideal digital filter.  

 We also compare our linear phase digital filter with the 

fractional delay filter [4-7]. 

 Our linear phase filter can be used for fine timing skew 

adjustment in circuits and systems since the group delay 

time of our linear phase digital filter is arbitrary small; 

we have discussed its applications in [8]. 

2.        Conventional Linear Phase Condition 

Linear phase characteristics are important for the 

digital filter to preserve the signal waveform in time 

domain. It is well-known in [1] that the FIR digital 

filter with odd or  even symmetry coefficients has linear 

phase characteristics and it is unconditionally stable. 

The IIR digital filter with  odd or even symmetry of 

both its denominator and nominator has also linear 

characteristics but it is unstable. Hence in almost all 

cases, the FIR digital filter with odd or even  symmetry 

coefficients is used where the linear phase is required, 

and in such cases its group delay is (N/2)Ts where N  is 

the number of the FIR filter taps and 
sT  is the sampling 

period; in other words the time resolution of the  group 

delay is 2sT , and this cannot be used for fine timing 

skew adjustment in ATE systems. 

3. Novel Linear Phase Condition 

In this section, we show the extended linear phase 

characteristics conditions for the digital filter which has 

not necessarily odd or even symmetry coefficients, and 

its time resolution of the group delay is arbitrary small. 

First we discuss without consideration of causality, for 

simplicity. Let us consider the following analog filter 

(Fig.1): 

 



 


otherwise.0

T casein s0  sin

out

Ttva
v          (1) 

Then its impulse response  h(t) is given as follows: 

   .sinc0 ss TtTath                  (2) 

We consider the case that the input  tvin
 is band-

limited to 
sT   sT . We sample the above 

impulse response with a period Ts, and use the 

following transformation to obtain the digital filter 

which corresponds to the analog filter in (1): 
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Then we have the following digital filter: 

   nxany 0                           (4) 

This is because 
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Fig. 1. An ideal analog low pass filter. Gain, phase 

characteristics, and impulse response. 
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Fig. 2. Sampling timing shift can maintain the linear 

phase characteristics. Impulse response, and gain, phase 

characteristics. 

 

This digital filter has obviously linear phase 

characteristics (or rigorously speaking zero phase 

characteristics). Now let us consider to sample  th  at 

 snTt  (Fig.2), where 
sT0 , and use (3). Then 

we have the following digital filter which corresponds 

to the analog filter in (1): 

   .knxany
k

k  




                 (6) 

Here 

  .sinc sk Tka                    (7) 

In general 
ka  is not necessarily zero and 

ka  is not 

necessarily equal to 
ka
  or 

ka
 . 

Proposition 1 :  The digital filter given by (6), (7) has 

the linear filter characteristics, and its group delay is τ. 

Proof :  The inverse Fourier transform of (6) is given by 

     . jXjHjY                (8) 

It follows from (7) that in case of 0 , 

  .00
ajH 


                            (9) 

Then we have the following for a given   sT0 : 

  .0

 jeajH                           

(10) 

Thus the digital filter given by (6), (7) has the linear 

filter characteristics, and its group delay is   (Fig.2).  

(Q. E. D.) 

Next we discuss in case of Fig.3, and consider the 

following analog filter: 

   


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










 otherwise.0

 casein 

10

TT

Ttvatva

v s

sinin

out      (11) 

Note that its impulse response is given as follows: 

      .1sincsinc 10  ssss TtTaTtTath     (12) 

We assume that the input  tvin
 is band-limited to 

ss TT   . Similarly we sample this filter with 

snTt  , and we have the following digital filter using 

(3): 

     .110  nxanxany                

(13) 

Next we sample (12) with   snTt , and we have the 

following digital filter: 

   .





k

k knxany                      

(14) 

Here 
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      .1sincsinc 10 ssk TkaTkaa   (15) 

Proposition 2 :  The digital filter given by (14), (15) 

with 
10 aa   or 

10 aa   has the linear phase 

characteristics and its group delay is 2sT . Also the 

digital filter of (14) has the same gain characteristics as 

(13). 

Proof :  We consider the case of 
10 aa  . The inverse 

Fourier transform of (14) is given by 

     . jXjHjY                 (16) 

It follows from (15) that in case of 0 , 

    2

00
cos2 sTj

s eTajH



 


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Then we have the following for a given   sT0 : 

     
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2
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 sTj

s eTajH      (18) 

Thus the digital filter given by (14), (15) has the linear 

filter characteristics, and its group delay is  2sT . 

Also it follows from (17), (18) that 
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Fig. 3.  2-tap FIR filter without and with sampling 

timing shift. (a) Impulse response. (b) Gain and phase 

responses. 

 

Then the digital filter of (14) has the same gain 

characteristics as (13). 

Similar argument is valid in case of 
10 aa  .   (Q. E. 

D.) 

 

The same argument holds for the 3-tap FIR filter case 

(Fig.4), and also in general for an N-tap FIR filter as 

Propositions 1, 2. 

Proposition 3 :  Let us consider an N-tap FIR digital 

filter 

with coefficients 
ka  of odd or even symmetry. 
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Then the following digital filter has the linear 

characteristics with group delay    sTN 2 . 
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Fig. 4.  3-tap FIR filter without and with sampling 

timing shift. (a) Without sampling time shift. (b) Gain, 

phase and impulse responses with sampling timing shift. 

 

Proposition 3 can be proved similarly in Proposition 1, 

2 cases. 
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We have performed MATLAB simulation and checked  

that the above digital filter with time shift   have linear  

phase characteristics and have the same gain 

characteristics as the one without time shift for N=1, 2, 

and 3. 

Table 1 shows the frequency characteristics of digital 

filters with the conventional linear phase conditions, 

and Table 2 shows the ones with our proposed linear 

phase  condition derived from the corresponding 

conventional  linear phase digital filter. 

 

 

 

 

 

 

 

TABLE I 

FREQUENCY CHARACTERISTICS WITH CONVENTIONAL LINEAR 

PHASE 

CONDITIONS 

 

 

TABLE II 

FREQUENCY CHARACTERISTICS WITH PROPOSED LINEAR PHASE 

CONDITIONS 

 

 

Now we will provide the proof for our proposed linear 

phase digital filter in general case: 

Let us consider an N-tap FIR filter with conventional 

linear phase condition, and we have the impulse 

response  th
~  with continuous time and its Fourier 

transform  fH
~ : 

     .
~ 1

0
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


N

n

ss nTtnThth                  (23) 

    .)(
1~

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
k sT

k
f

T
fHfH ★          

(24) 

Here ⋆ indicates convolution,    denotes a delta 

function, and 

    ).
2
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2
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T
efHfH
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

 
    (25) 

When we add a delay   to the impulse response  th  

and we have its frequency characteristics as follows: 

    .22

1
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

fj
T

N
fj

eefHfH
s 




      (26) 

We see that the phase characteristics of  fH   is linear 

with respect to f .  fH   can be interpreted as the 

convolution between  fH  and  fS , where  fS  is the 

ideal filter with a delay  : 

  ).
2

1

2

1
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1
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N
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T
f

T
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    (27) 

Thus the ideal filter  fS
~  for (24) is given by 

    .)()(
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
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
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k sk s T

k
fS

T

k
ffSfS ★   (28) 

Next we will consider the effect of the delay   to the 

impulse response. The inverse Fourier transform of 

 fS
~  is given as follows: 
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(29) 

We see from (29) that  ts~  is asymmetric with respect 

to 0t , and we have the following impulse response: 
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★

Thus the impulse response of time delay   with 

continuous time has finite values for t  due to the 

sinc function effects. 

4. Realization Consideration  

Here we sample the input signal with the sampling 

period Ts and then we consider the band-limited case to 

ss TT   , in order to avoid the aliasing effects. 

In such case  th  does not converge to zero as t  

becomes plus/minus infinity. So the digital filter with 

our novel linear phase condition has to have the infinite 

number of taps and this cannot be realized. (Note that 

in case of 0 ,  snTh  can be zero as n  becomes large 

which corresponds to the conventional linear phase FIR 

digital filter case.) So we consider to truncate the terms 

for large number of k  in (22) applying a window 
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function and we approximate the digital filter of (21), 

(22) with the finite number of taps. 

4.1         Approximation with Finite Number of 

Taps 

The ideal digital filter with our proposed linear phase 

condition needs infinite number of taps. However it is 

cannot be realized, and hence we have to approximate it 

as the filter with finite number of taps. We consider 

here the effects of the truncation to the finite number of 

taps. We observe from our simulation results so-called 

Gibbs oscillation at the edges of pass-band of the gain 

characteristics and also phase characteristics (Fig.5) [1], 

[2]; Gibbs oscillation for phase characteristics is not 

observed in many cases, and we have found that this 

Gibbs oscillation for phase characteristics is due to the 

asymmetry of the impulse response  nh  with respect to 

0n . 
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Fig. 5.  Gain and phase characteristics of the proposed 

digital filter (with time shift   of 0.3Ts) after 

truncation to finite number (N=61) of filter taps with 

and without applying Hann window. 

 

4.2           Applying Window Function 

Next we investigate to use window functions when we 

approximate the ideal filter using the one with the finite 

number of taps. When we use a window function, the 

Gibbs oscillations for gain and phase are suppressed. 

Fig.5 shows our simulation result with time-shift   of 

0.3Ts and applying Hann window.  We have also found 

that this Gibbs oscillation for phase can be further 

suppressed if we use a window function with the time-

shift  , as shown in Fig.6 where we choose the time 

shift   of 0.5Ts (which affects phase characteristics 

significantly) and we use a Hann window. 
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Fig. 6.  Phase characteristics of the proposed digital 

filter (with time shift   of 
sT5.0 ) after truncation to 

finite number (N = 61) of filter taps. (a) With applying 

Hann window of no time-shift. (b) With applying Hann 

window time-shifted by 
sT5.0  

 

5.    Comparison with Fractional Delay 

Filter  

We would like to call the reader’s attention that another 

digital filter with fine time resolution, so-called a 

fractional delay digital filter has been proposed [5-7], 

which mainly focuses on the waveform interpolation 

and reconstruction. However our proposed technique 

can incorporate filtering characteristics (such as a 

cosine roll-off filter) as well as fine timing skew 

adjustment  with  the clear design method as described 

above; this is  very useful in some electronic 

manufacturing  equipment applications [8]. 

Furthermore, since our proposed filter is easy to design, 

we can obtain their coefficient values with small 

amount of calculation which is desirable for some 

applications where real-time timing calibration is 

required. 

 We have performed Matlab simulation and found that 

our proposed filter can apply for the signal upto  the 

frequency close to the Nyquist rate (in other words, the 

bandwidth of our proposed filter is close to the Nyquist 

rate while that of the fractional  delay filter is not); this 

is another advantage of our proposed filter (Fig.7). 

 

6.           Conclusion 

We have proposed the digital filter with novel linear 

phase characteristics and the time resolution of its 

group delay is arbitrary small. We have shown its 
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theory. We have also investigate the truncation effects 

to the finite number of its filter taps. We believe that 

our proposed digital filter will open a new research area 

for digital filters with linear phase and fine resolution of 

group delay, as well as its applications.  
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Fig.7:  SSB signal power spectrum Matlab simulation 

results. (a) Without compensation. (b) With 

compensation using a 301-tap fractional delay filter and 

a (symmetric) blackman window. (c) With 

compensation using our proposed 301-tap digital filter 

and the same blackman window. 

 

 

 

 

 

 

 

 

 

 

 

 

 

REFERENCES 

 

[1] R. W. Hamming, Digital Filters, Prentice Hall 

(1989). 

[2] H. P. Hsu, Fourier Analysis, Simon and Schuster: 

New York (1970). 

[3] A. V. Oppenheim, R. W. Schafer, Digital Signal 

Processing,  Prentice Hall (1975). 

 [4] H. Johansson, P. Lowenborg, “Reconstruction of 

Nonuniformly Sampled Bandlimited Signals by 

Means of Digital Fractional Delay Filters”, IEEE 

Transactions on Signal Processing, Vol. 50, 

pp.2757-2767 (Nov. 2002). 

[5] V. Viilimiilci, M. Karjalainen, T. I. Laakso, 

“Fractional Delay Digital Filters”, IEEE 

International Symposium on  Circuits  and  

Systems, pp.355-358 (May 1993). 

[6] V. Vaiimaki, M. Karjalainen, “Implementation of  

Fractional Delay Waveguide Models Using 

Allpass Filters”, IEEE ICASSP pp.1527-1524 

(1995). 

[7] V. Vaiimaki, T.  I.  Laakso, “Fractional Delay 

Filters - Design and Applications”, Chapter 20, 

pp.835-885, edited by F. Marvasti, Nonuniform 

Sampling - Theory and Practice, Kluwer 

Academic/Plenum Publishers (2001). 

[8]  K. Asami, H. Miyajima, T. Kurosawa, T. Tateiwa,  

H. Kobayashi, “Timing Skew Compensation 

Technique Using Digital Filter with Novel Linear 

Phase Condition,” IEEE International Test 

Conference, Paper 11.3, Austin, TX (Nov. 2010). 

 

- 331 -


