2010年4月20日

冗長アルゴリズムSAR ADC の テスト容易化技術

小川智彦 小林春夫 〇伊藤聡志, 上森聡史 丹陽平 高井伸和 山口隆弘

群馬大学 電気電子工学専攻

- 研究背景
- SAR ADC
- ・非2進アルゴリズム
- ・提案テスト方法
- ・まとめ

- 研究背景
- SAR ADC
- ・非2進アルゴリズム
- ・提案テスト方法
- ・ 再構成可能な非2進SAR ADC
- まとめ

研究背景

アナログ・デジタル混載SOCのコスト削減
 > アナログ部のテスト容易化が重要

アナログテスト容易化技術

- アナログ回路ごと、性能仕様項目ごとに 個別対応しなければならない。
- 冗長性をもつ and/or 自己校正を行う

アナログ回路はテストがより複雑になる。

研究目的

●非2進冗長アルゴリズムSAR ADCのテスト技術を検討

内部のDAC出力の整定時間の推定手法の提案 → 回路スピード余裕の値を知る

- 低速ATEからの遅いクロックでSAR ADCが
 実クロックスピードでの動作可能かどうかを推定可
- 電源電圧、温度変動に対するテスト工数削減 (低電源電圧、高温度ではスピード低下するが、 そのテストが省略でき得る)
- ・ 再構成可能な SAR ADC で歩留まり向上・低消費電力化
 ※ ATE: Automatic Test Equipment LSI試験装置

- 研究背景
- SAR ADC
- ・非2進アルゴリズム
- ・提案テスト方法
- ・ 再構成可能な非2進SAR ADC
- まとめ

SAR ADCの構成

デジタル回路中心,オペアンプ不要.

→ 微細CMOSでの実現に適している.

※SAR: Successive Approximation Register 逐次比較近似

SAR ADCの動作 2進探索アルゴリズム

2進探索アルゴリズムの問題点

- 研究背景
- SAR ADC
- ・非2進アルゴリズム
- ・提案テスト方法
- ・ 再構成可能な非2進SAR ADC
- まとめ

- 研究背景
- SAR ADC
- ・非2進アルゴリズム
- ・提案テスト方法
- ・ 再構成可能な非2進SAR ADC
- まとめ

非2進冗長SAR ADC テストの構成

DAC整定値の推定方法(5ビット6ステップ)

ステップ

DAC整定値の推定方法(5ビット6ステップ)

ステップ

2ステップ目の整定テスト(5ビット6ステップ)

ステップ

2ステップ目の整定テスト(5ビット6ステップ)

電源電圧・温度変動に対するテスト

シミュレーションによる確認 非2進アルゴリズム 10ビット12ステップの例

step	p(DACの重み)	q(誤差許容範囲)
1	512	20
2	246	40
3	113	23
4	65	14
5	37	9
6	21	4
7	13	3
8	7	2
9	4	2
10	2	0
11	2	0
12	1	0

2ステップ目の整定値(1ステップ目の判定1)														
07=	時定数typicalの時													
2ステッノ日 CDACIよ 安公時間あれげ				$t t = 2.3 \tau_{TP}$										
元 5 1 2 + 2 4 6 = 7 5 8 に 収 束 す る 、 、 、 、 、 、 、 、 、 、 、 、 、			;	$512+246(1-e^{-\tau})$ τ_{TP} : typical の時定数										
	ステッ	ップ		512	2 + 2	246(1 タの判	1-e	$ au_{TP}$) = 7	733.	3LS		DA	C整定值
		\rightarrow	0									4.0		l
	1	2	3	4	5	6	7	8	9	10	11	12	出力	
	1	1	0	0	0	0	0	•			U	0	734	
	1	1	0	0	0	0		コンハ	レー	タ出フ] –	0	734	
	1	1	0	0	0	0	0	1	1	1	0	0	734	
	1	1	0	0	0	0	0	1	1	1	0	0	734	
	1	1	0	0	0	0	0	1	1	0	1	1	733	
	1	1	0	0	0	0	0	1	1	0	1	1	733	
	1	0	1	1	0	1	0	1	0	0	1	1	733	
	1	0	1	1	0	1	0	1	0	0	1	1	733	
	1	0	1	1	0	1	0	1	0	0	1	0	732	
	1	0	1	1	0	1	0	0	1	1	1	0	732	
	1	0	1	1	0	1	0	0	1	1	1	0	732	
	1	0	1	1	0	1	0	0	1	1	1	0	732	
	1	0	1	1	0	1	0	0	1	1	0	1	731	
	1	0	1	1	0	1	0	0	1	1	0	1	731	26

2ステップ目の整定値(1ステップ目の判定1)														
2ステップ	プ目で[246—4	DACは 40		時定数typicalの80% <mark>(fast)</mark> の時										
=718 以上の値に			:	$t = 2.3 \tau_{TP}$										
収束すれば 正解を得る				$512+246(1-e^{-\tau})$ τ_{TP} : typical の時定数								宇定数		
	512+246(1- $e^{-0.8*\tau_{TP}}$)=744.1 <i>LSB</i> 体 DAC整定值													
	ステッ	<i>י</i> プ →		コンパ	゚゚レー゚	タの判	l定(M	ATLAB	シミュ	レージ	レヨン)	,	L	
	1	2	3	4	5	6	7	8	9	10	11	12	出力	
	1	1	0	0	0	0	1	1	0	1	0	1	745	
	1	1	0	0	0	0		コンパ	シー	タ出ナ	_ ר	1	745	
	1	1	0	0	0	0	_ L					1	745	
	1	1	0	0	0	0	1	1	0	1	0	0	744	
	1	1	0	0	0	0	1	1	0	1	0	0	744	
	1	1	0	0	0	0	1	1	0	1	0	0	744	
	1	1	0	0	0	0	1	1	0	1	0	0	744	
	1	0	1	1	0	1	1	0	1	1	0	0	744	
	1	0	1	1	0	1	1	0	1	0	1	1	743	
	1	0	1	1	0	1	1	0	1	0	1	1	743	
	1	0	1	1	0	1	1	0	1	0	1	1	743	
	1	0	1	1	0	1	1	0	1	0	1	1	743	
	1	0	1	1	0	1	1	0	1	0	1	0	742	
	1	0	1	1	0	1	1	0	1	0	1	0	742	
	1	0	1	1	0	1	1	0	1	0	1	0	742	27

2ステップ目の整定値(1ステップ目の判定1)														
2ステップ目でDACは 512+246-40 時定数typicalの110%(slow)の時														
=718 収束すれ 正解を得	以上 いば 縁る	の値に	-		51	2+	246 		$e^{-\frac{t}{\tau}}$	t	= 2.3	3τ _{τρ} vpica	nlのF	時定数
512+246(1- $e^{-1.1*\tau_{TP}}$)=727.6LSB (口AC整定值														
		\rightarrow		コンパ		タの判	I定(M	ATLAB	シミュ		レヨン)	1		1
	1	2	3	4	5	6	7	8	9	10	11	12	出力	
	1	1	0	0	0	0	0	1	0	0	1	1	729	
	1	1	0	0	0	0	_ =	コンパ	いー	タ出ノ	ך כ	1	729	
	1	1	0	0	0	0	L	U	l			0	728	
	1	1	0	0	0	0	0	0	1	1	1	0	728	
	1	1	0	0	0	0	0	0	1	1	1	0	728	
	1	1	0	0	0	0	0	0	1	1	1	0	728	
	1	1	0	0	0	0	0	0	1	1	1	0	728	
	1	0	1	1	0	0	1	1	1	1	0	1	727	
	1	0	1	1	0	0	1	1	1	1	0	1	727	
	1	0	1	1	0	0	1	1	1	1	0	0	726	
	1	0	1	1	0	0	1	1	1	1	0	0	726	
	1	0	1	1	0	0	1	1	1	1	0	0	726	
	1	0	1	1	0	0	1	1	1	1	0	0	726	
	1	0	1	1	0	0	1	1	1	1	0	0	726	
	1	0	1	1	0	0	1	1	1	1	0	0	726	28

試作チップでの検証

DAC整定値の推定を試作チップでの検証
 DAC整定がリンギングしているもの(Chip A)
 DAC整定がリンギングしていないもの(Chip B)
 → 整定値の違いを確認

※Chip A: バイパス容量なし

%外部から参照電圧を与えているので ボンデング・インダクタと寄生容量で 参照電圧がリンギングしていると推定した。

リンギングしているもの(Chip A)

非2進10ビット12ステップ(1~4ステップ)

リンギングしていないもの(Chip B)

非2進10ビット12ステップ(1~4ステップ)

- 研究背景
- SAR ADC
- ・非2進アルゴリズム
- ・提案テスト方法
- 再構成可能な非2進SAR ADC
- まとめ

再構成可能な非2進SAR ADCの目的 (Reconfigurable SAR ADC) 例: 10MS/s,10bit非2進SAR ADC DAC時定数_T:小 DAC時定数T:大 10MS/s動作可能な 10MS/s動作可能な ステップ数:少 ステップ数:多 (例:11ステップ) (例:14ステップ) 消費電力:低 消費電力:高 スピード性能救済

> 冗長アルゴリズムSAR ADC ステップ数:多 → 高速 → 消費電力大

再構成可能な非2進SAR ADC

(Reconfigurable SAR ADC)

再構成可能な非2進SAR ADCの 実現構成例

10MS/s 10bit SAR ADC 実現のための アルゴリズムの適用例 早いチップ | 遅いチップ

推定DAC時定数 τ=3.5ns 10ビット11ステップ 10ビット12ステップ 必要な整定時間:2.3て

τ =4.0ns

必要な整定時間: 1.9τ 必要な整定時間: 1.6τ

許容時定数τ=3.95ns

許容時定数τ=4.38ns

 $\tau = 4.5$ ns 10ビット13ステップ 許容時定数τ=4.80ns

ステップ	DACの重み:p	誤差許容:q	ステップ	DACの重み:p	誤差許 [:]
1	512	0	1	512	0
2	256	26	2	256	38
3	115	15	3	109	23
4	63	8	4	62	13
5	35	5	5	36	7
6	19	2	6	21	4
7	11	1	7	12	2
8	6	1	8	7	1
9	3	0	9	4	1
10	2	0	10	2	1
11	1	0	11	1	0
			12	1	0

消費電力 小

- 研究背景
- SAR ADC
- ・非2進アルゴリズム
- ・提案テスト方法
- ・ 再構成可能な非2進SAR ADC
- まとめ

まとめ

 ・ 非2進SAR ADCの各ステップでのDAC整定値を コンパレータの判定とADC出力から 推定する方法を提案した。
 → スピード余裕の推定可能
 ・ シミュレーション、試作チップで推定方法の

実証を行った。

再構成可能な非2進SAR ADC の提案した。

→ チップ毎に歩留まり向上、低消費電力化可能

謝 辞

有意義なご討論をいただきました、森俊彦氏、 宮下博之氏、矢野雄二氏、力野邦人氏、 岸上真也氏、我毛辰弘氏、荒井智氏、 小林修氏、松浦達治氏、新津葵一氏 およびこの研究をご支援いただいています STARCに感謝の意を表します。