冗長アルゴリズムSAR ADC の テスト容易化技術

小川智彦 小林春夫 〇伊藤聡志, 上森聡史 丹陽平 高井伸和 山口隆弘

群馬大学 電気電子工学専攻

発表内容

- 研究背景
- SAR ADC
- ・ 非2進アルゴリズム
- 提案テスト方法
- 再構成可能な非2進SAR ADC
- まとめ

発表内容

- 研究背景
- SAR ADC
- 非2進アルゴリズム
- ・提案テスト方法
- 再構成可能な非2進SAR ADC
- ・まとめ

研究背景

- アナログ・デジタル混載SOCのコスト削減
 - → アナログ部のテスト容易化が重要

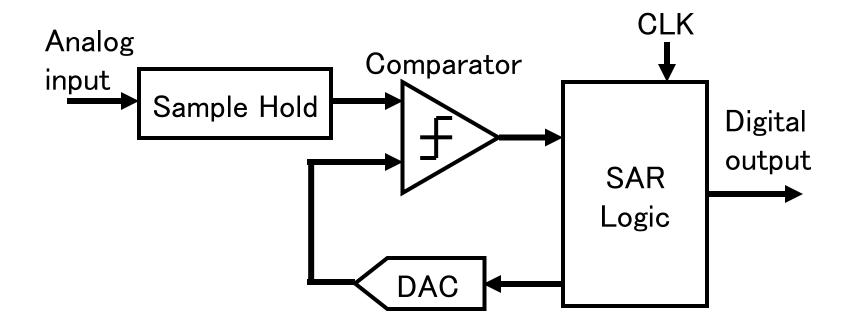
アナログテスト容易化技術

- アナログ回路ごと、性能仕様項目ごとに 個別対応しなければならない。
- 冗長性をもつ and/or 自己校正を行う アナログ回路はテストがより複雑になる。

研究目的

●非2進冗長アルゴリズムSAR ADCのテスト技術を検討

内部のDAC出力の整定時間の推定手法の提案

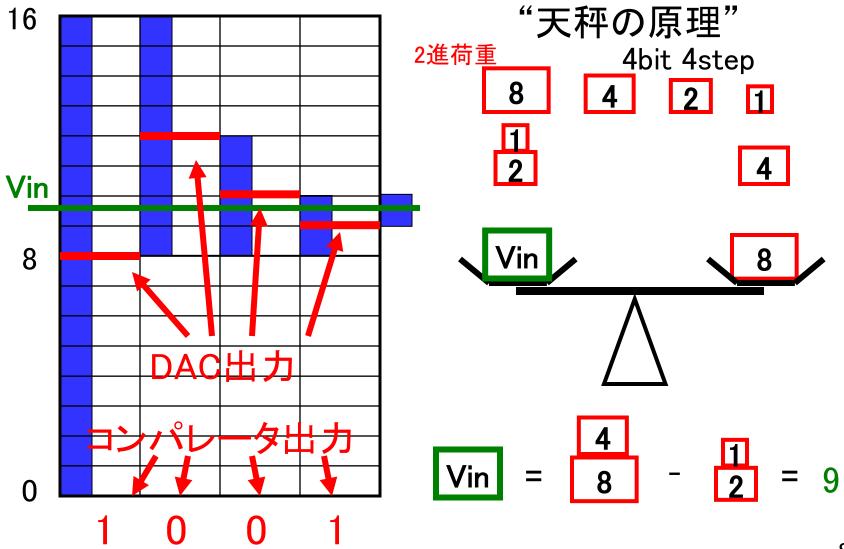

→ 回路スピード余裕の値を知る

- 低速ATEからの遅いクロックでSAR ADCが 実クロックスピードでの動作可能かどうかを推定可
- 電源電圧、温度変動に対するテスト工数削減 (低電源電圧、高温度ではスピード低下するが、 そのテストが省略でき得る)
- 再構成可能な SAR ADC で歩留まり向上・低消費電力化
 - ※ ATE: Automatic Test Equipment LSI試験装置

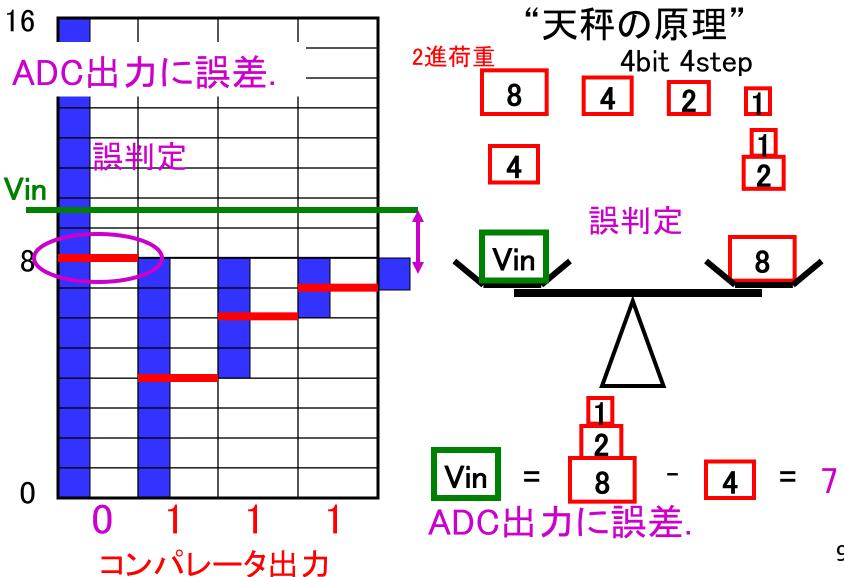
発表内容

- 研究背景
- SAR ADC
- 非2進アルゴリズム
- ・提案テスト方法
- 再構成可能な非2進SAR ADC
- ・まとめ

SAR ADCの構成

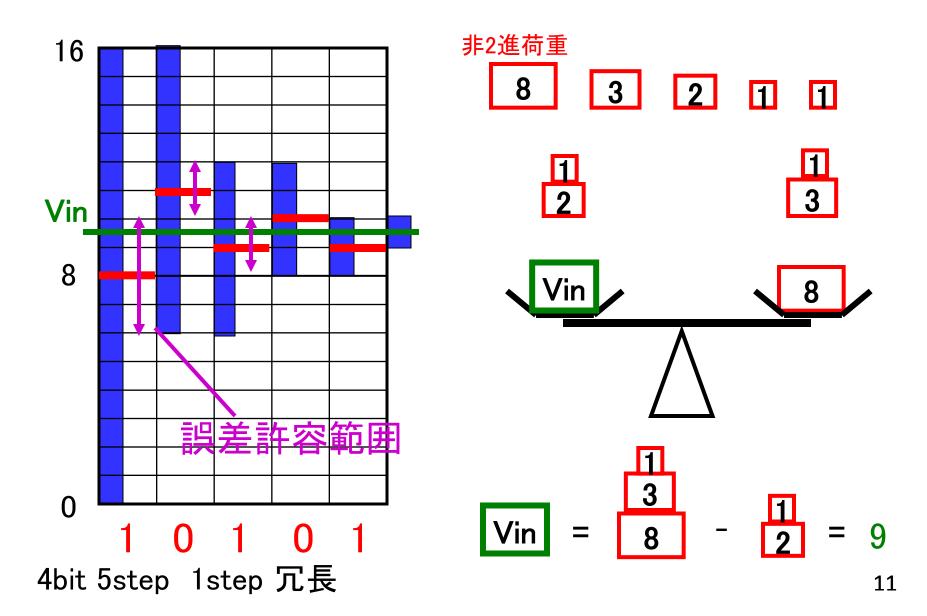


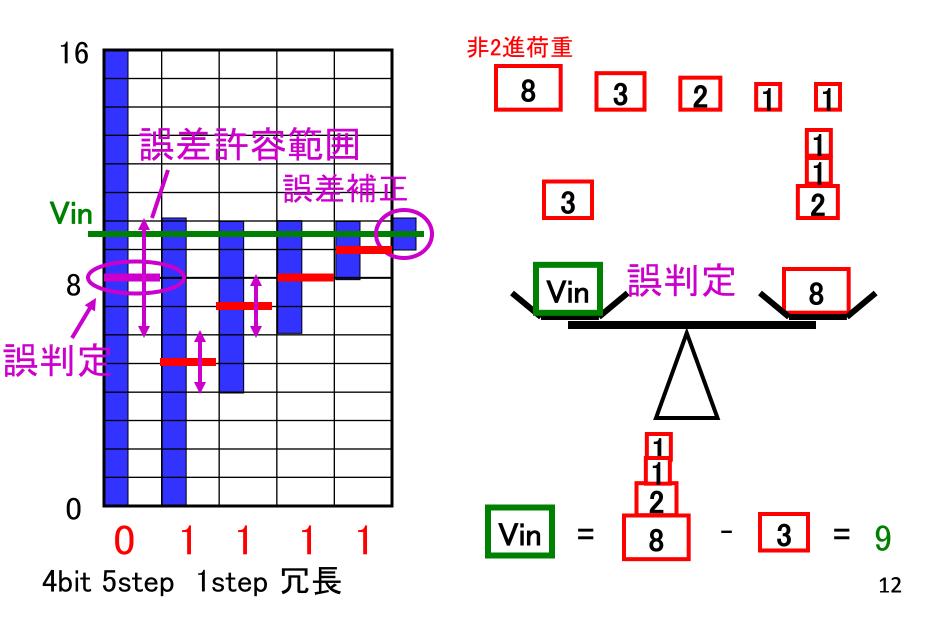
デジタル回路中心, オペアンプ不要.


→ 微細CMOSでの実現に適している.

※SAR: Successive Approximation Register 逐次比較近似

SAR ADCの動作 2進探索アルゴリズム


2進探索アルゴリズムの問題点


発表内容

- 研究背景
- SAR ADC
- ・ 非2進アルゴリズム
- ・提案テスト方法
- 再構成可能な非2進SAR ADC
- ・まとめ

非2進探索アルゴリズム 判定が正しい場合

非2進探索アルゴリズム 1ステップ目で誤判定した場合

非2進アルゴリズムでのデジタル誤差補正原理

デジタル出力"9"の場合 2進探索アルゴリズム

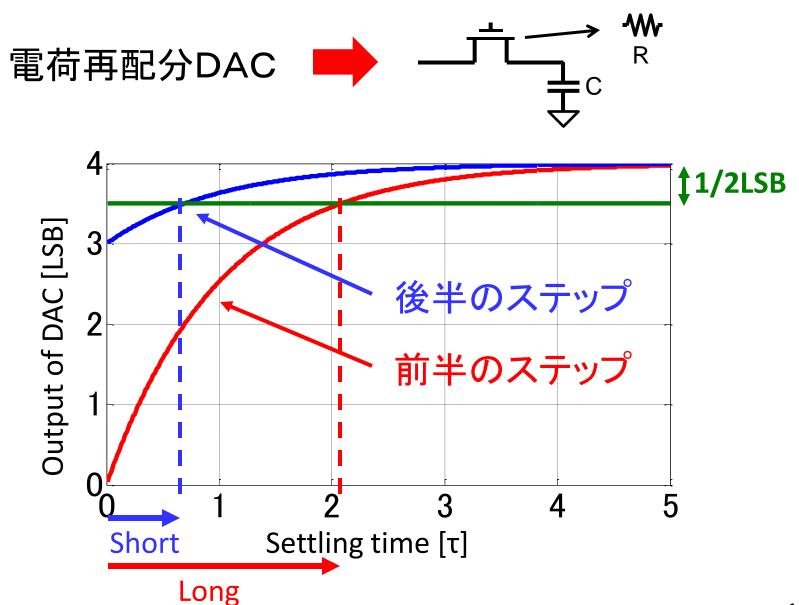
誤差補正不可

コンパレータ出力: 1001

Dout =
$$8 + 4 - 2 - 1 + 0.5 - 0.5 = 9$$

非2進探索アルゴリズム

誤差補正可能


---- 複数パターン

Dout = 8 + 3 - 2 + 1 - 1 + 0.5 - 0.5 = 9

コンパレータ出力: 01111

Dout = 8 - 3 + 2 + 1 + 1 + 0.5 - 0.5 = 9

DAC出力の整定

非2進アルゴリズムによる SAR ADC高速化の原理

4bit 2進アルゴリズム Step1 Step2 Step3 Step4 完全に整定 → 時間:長 AD変換時間 非2進アルゴリズム Step2 Step3 Step4 Step5 Step1

不完全整定誤差を補正

不完全整定→時間:短

発表内容

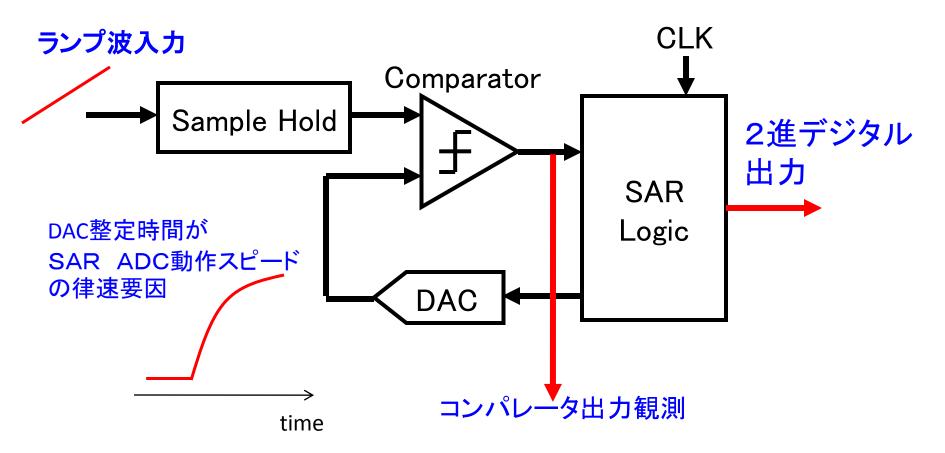
- 研究背景
- SAR ADC
- 非2進アルゴリズム
- 提案テスト方法
- 再構成可能な非2進SAR ADC
- ・まとめ

提案テスト方法

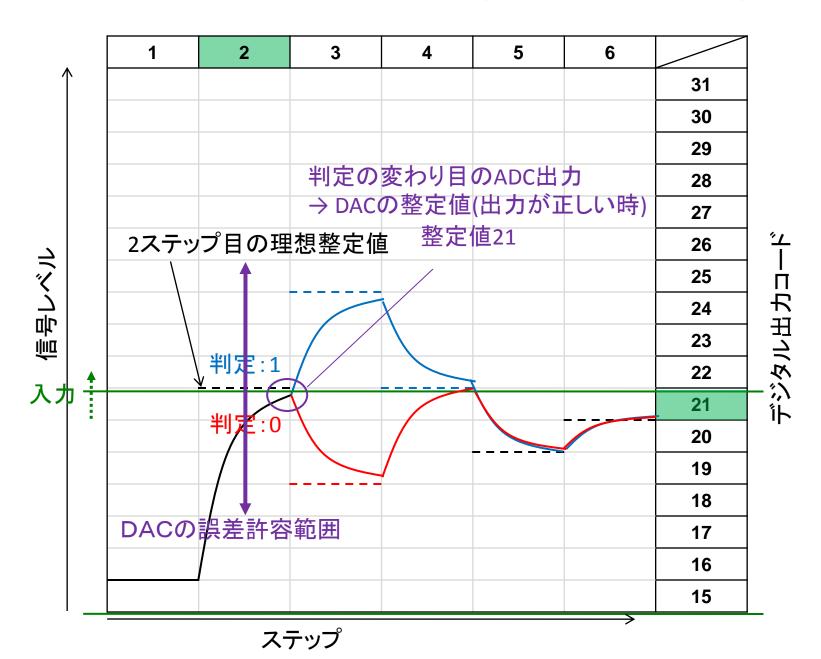
- ・ランプ波入力
- ・コンパレータ出力観測、ADC出力観測

• 非2進SAR ADCの各ステップでの DACの整定値を推定

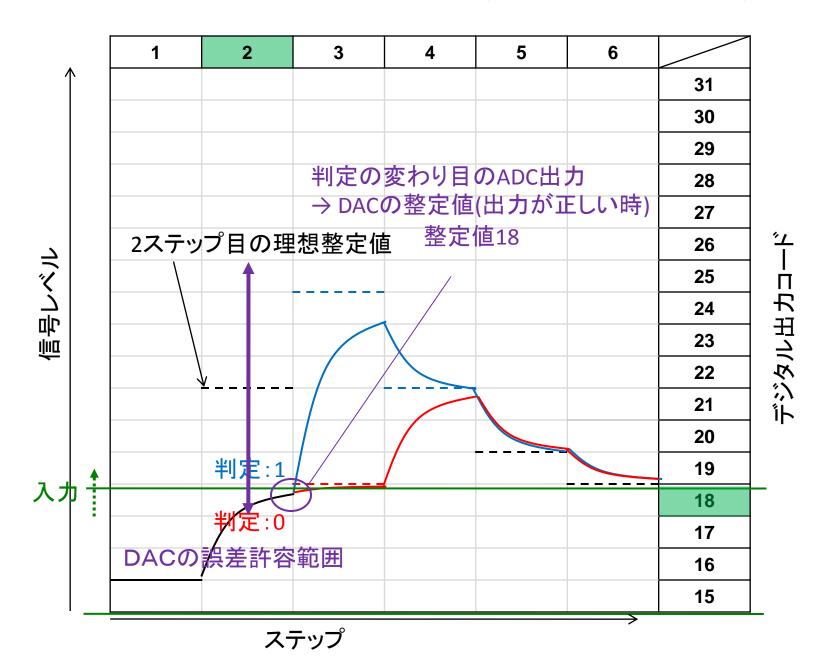
・ADCチップのスピードの余裕を計算



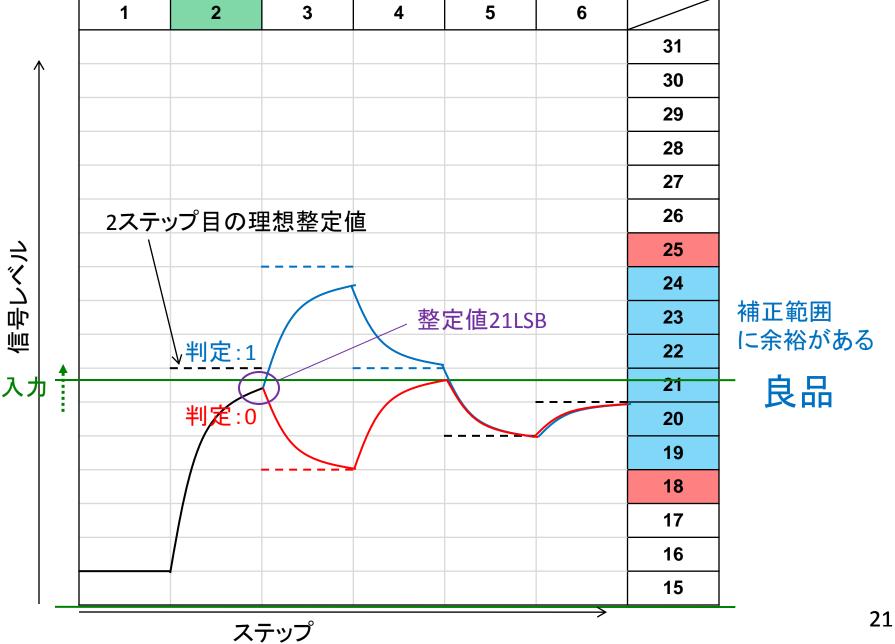
- ・ADCスピードと電源電圧、温度変動に相関あり
- •十分余裕があれば変動による劣化を吸収可能

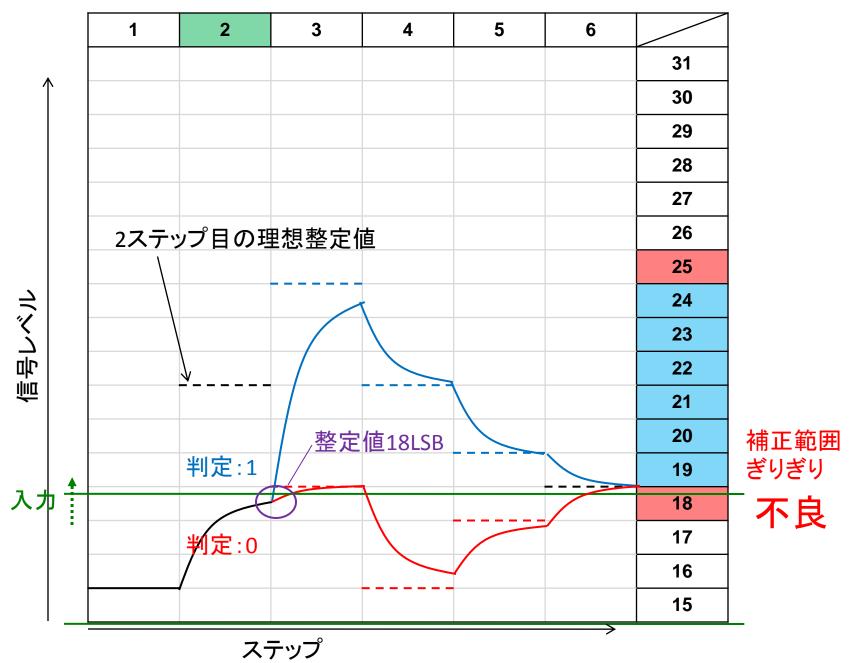

・低速ATEでSAR ADC が実クロック速度動作 可能かの推定可

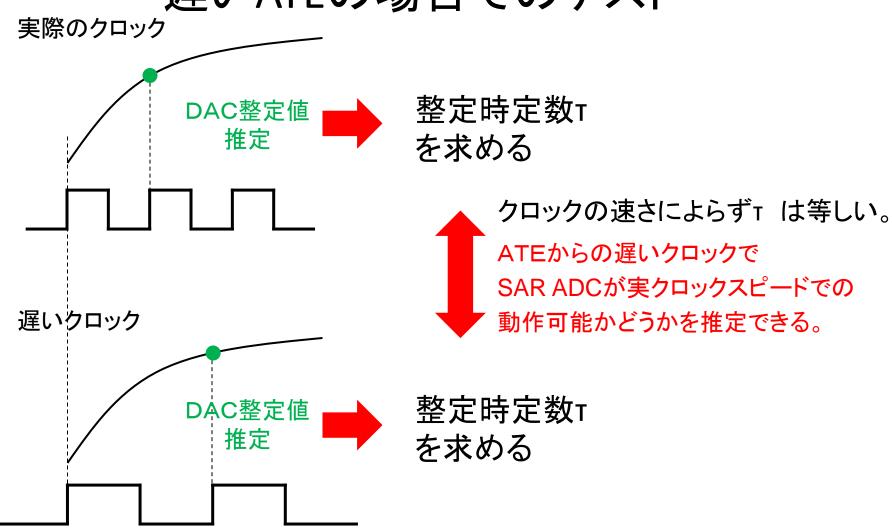
非2進冗長SAR ADC テストの構成

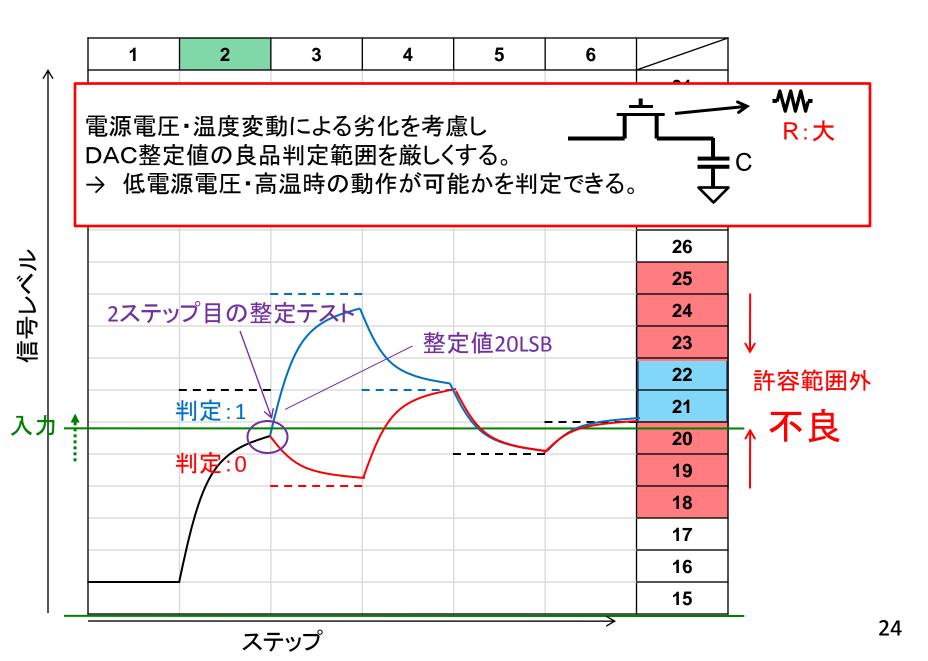


- テスト用に、SAR ADCチップはコンパレータ出力ピンを設ける
- ATEはSAR ADCに対して
 - ランプ波入力
 - 各ステップ毎にコンパレータ出力を読む
 - 最後に2進デジタル出力を読む


DAC整定値の推定方法(5ビット6ステップ)


DAC整定値の推定方法(5ビット6ステップ)


2ステップ目の整定テスト(5ビット6ステップ)


2ステップ目の整定テスト(5ビット6ステップ)

実際のクロック周波数よりも遅いATEの場合でのテスト

電源電圧・温度変動に対するテスト

シミュレーションによる確認 非2進アルゴリズム 10ビット12ステップの例

step	p(DACの重み)	q(誤差許容範囲)
1	512	20
2	246	40
3	113	23
4	65	14
5	37	9
6	21	4
7	13	3
8	7	2
9	4	2
10	2	0
11	2	0
12	1	0

2ステップ目の整定値(1ステップ目の判定1)

時定数typicalの時

2ステップ目でDACは 充分時間あれば 512+246=758 に収束する

ステップ

 $512 + 246(1 - e^{\tau_{TP}}) = 733.3 LSB$ **一** DAC整定値 コンパレータの判定(MATLABシミュレーション)

	\longrightarrow					,,,,,,				 /		
1	2	3	4	5	6	7	8	9	10	11	12	出力
1	1	0	0	0	0	0	1	1	1	0	0	734
1	1	0	0	0	0	_	コンバ		タ出ナ	<u> </u>	0	734
1	1	0	0	0	0	Ļ_			У ЦІ /		0	734
1	1	0	0	0	0	0	1	1	1	0	0	734
1	1	0	0	0	0	0	1	1	1	0	0	734
1	1	0	0	0	0	0	1	1	0	1	1	733
1	1	0	0	0	0	0	1	1	0	1	1	733
1	0	1	1	0	1	0	1	0	0	1	1	733
1	0	1	1	0	1	0	1	0	0	1	1	733
1	0	1	1	0	1	0	1	0	0	1	0	732
1	0	1	1	0	1	0	0	1	1	1	0	732
1	0	1	1	0	1	0	0	1	1	1	0	732
1	0	1	1	0	1	0	0	1	1	1	0	732
1	0	1	1	0	1	0	0	1	1	0	1	731
1	0	1	1	0	1	0	0	1	1	0	1	731

2ステップ目の整定値(1ステップ目の判定1)

2ステップ目でDACは 512+246-40 =718 以上の値に 収束すれば 正解を得る

時定数typicalの80% (fast)の時

$$\begin{array}{ll} -\frac{t}{\tau} & t = 2.3\tau_{TP} \\ 512 + 246(1 - e^{-\tau}) & \tau_{TP} : typical \circ)$$
時定数

 $512 + 246(1 - e^{-0.8*\tau_{TP}}) = 744.1 LSB$ DAC整定値 コンパレータの判定(MATLABシミュレーション)

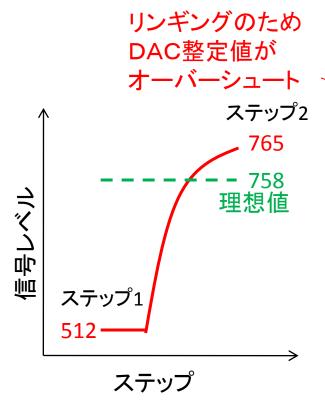
												
1	2	3	4	5	6	7	8	9	10	11	12	出力
1	1	0	0	0	0	1	1	0	1	0	1	745
1	1	0	0	0	0	_	コンバ	سرا	タ出ナ	1	1	745
1	1	0	0	0	0	4		U	<u> </u>		1	745
1	1	0	0	0	0	1	1	0	1	0	0	744
1	1	0	0	0	0	1	1	0	1	0	0	744
1	1	0	0	0	0	1	1	0	1	0	0	744
1	1	0	0	0	0	1	1	0	1	0	0	744
1	0	1	1	0	1	1	0	1	1	0	0	744
1	0	1	1	0	1	1	0	1	0	1	1	743
1	0	1	1	0	1	1	0	1	0	1	1	743
1	0	1	1	0	1	1	0	1	0	1	1	743
1	0	1	1	0	1	1	0	1	0	1	1	743
1	0	1	1	0	1	1	0	1	0	1	0	742
1	0	1	1	0	1	1	0	1	0	1	0	742
1	0	1	1	0	1	1	0	1	0	1	0	742

2ステップ目の整定値(1ステップ目の判定1)

2ステップ目でDACは 512 + 246 - 40=718 以上の値に 収束すれば 正解を得る

時定数typicalの110%(slow)の時

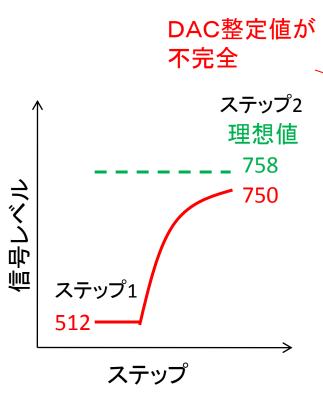
$$512+246(1-e^{-\frac{t}{\tau}})$$
 $t=2.3\tau_{TP}$ $\tau_{TP}:typical$ の時定数


	\longrightarrow											
1	2	3	4	5	6	7	8	9	10	11	12	出力
1	1	0	0	0	0	0	1	0	0	1	1	729
1	1	0	0	0	0	_	コンバ	سرا	タ出ナ	ا ا	1	729
1	1	0	0	0	0	<u> </u>			<u>'</u>		0	728
1	1	0	0	0	0	0	0	1	1	1	0	728
1	1	0	0	0	0	0	0	1	1	1	0	728
1	1	0	0	0	0	0	0	1	1	1	0	728
1	1	0	0	0	0	0	0	1	1	1	0	728
1	0	1	1	0	0	1	1	1	1	0	1	727
1	0	1	1	0	0	1	1	1	1	0	1	727
1	0	1	1	0	0	1	1	1	1	0	0	726
1	0	1	1	0	0	1	1	1	1	0	0	726
1	0	1	1	0	0	1	1	1	1	0	0	726
1	0	1	1	0	0	1	1	1	1	0	0	726
1	0	1	1	0	0	1	1	1	1	0	0	726
1	0	1	1	0	0	1	1	1	1	0	0	726

試作チップでの検証

- DAC整定値の推定を試作チップでの検証
 - •DAC整定がリンギングしているもの(Chip A)
 - •DAC整定がリンギングしていないもの(Chip B)
 - → 整定値の違いを確認
 - ※Chip A: バイパス容量なし
- % 外部から参照電圧を与えているので ボンデング・インダクタと寄生容量で 参照電圧がリンギングしていると推定した。

リンギングしているもの(Chip A)


非2進10ビット12ステップ(1~4ステップ)

step1	step2	step3	step4	判定
			理想:936	111
		理想:871	推定:939	
		推定:876	理想:806	110
	理想:758		推定:809	
	推定:765	/	理想:710	101
		理想:645	推定:712	
		推定:647	理想:580	100
理想:512			推定:580	
推定:512			理想:444	011
		理想:379	推定:443	
		推定:377	理想:314	010
	理想:266		推定:311	
	推定:258		理想:218	001
		理想:153	推定:214	
		推定:146	理想: 88	000
			推定: 84	

リンギングしていないもの(Chip B)

非2進10ビット12ステップ(1~4ステップ)

step1	step2	step3	step4	判定
			理想:936	111
		理想:871	推定:931	
		推定:864	理想:806	110
	理想:758		推定:802	
	推定:750)	理想:710	101
		理想:645	推定:707	
		推定:642	理想:580	100
理想:512			推定:579	
推定:511			理想:444	011
		理想:379	推定:444	
		推定:381	理想:314	010
	理想:266		推定:315	
	推定:273		理想:218	001
		理想:153	推定:221	
		推定:160	理想: 88	000
			推定: 92	3

発表内容

- 研究背景
- SAR ADC
- 非2進アルゴリズム
- ・提案テスト方法
- 再構成可能な非2進SAR ADC
- ・まとめ

再構成可能な非2進SAR ADCの目的

(Reconfigurable SAR ADC)

例: 10MS/s,10bit非2進SAR ADC

DAC時定数τ:小

DAC時定数τ:大

 \downarrow

10MS/s動作可能な

ステップ数:少

(例:11ステップ)

 \downarrow

消費電力:低

10MS/s動作可能な

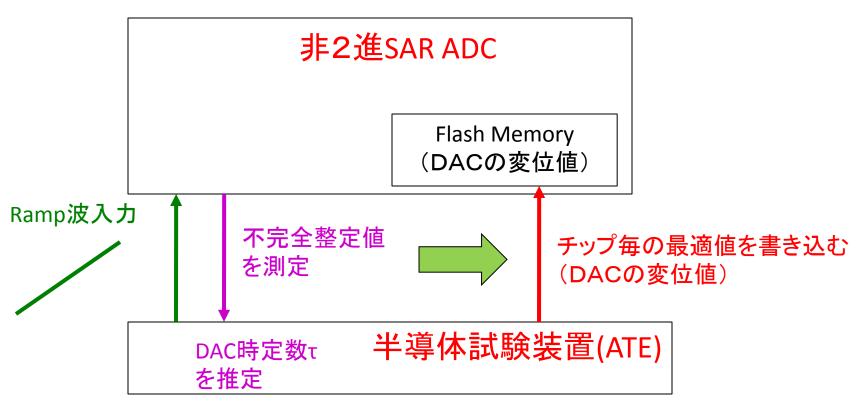
ステップ数:多

(例:14ステップ)

 \downarrow

消費電力:高

スピード性能救済


冗長アルゴリズムSAR ADC

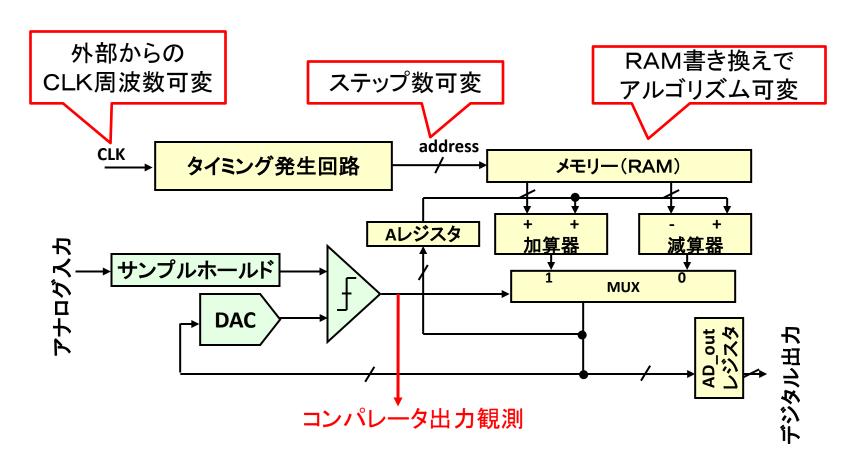
ステップ数: 多 → 高速

→ 消費電力大

再構成可能な非2進SAR ADC

(Reconfigurable SAR ADC)

時定数τが大きいチップ →


スピード仕様を満たせる

時定数τが小さいチップ

ステップ数小さくして 低消費電力化

再構成可能な非2進SAR ADCの 実現構成例

10MS/s 10bit SAR ADC 実現のための

早いチップ

アルゴリズムの適用例

遅いチップ

推定DAC時定数 τ=3.5ns

10ビット11ステップ

必要な整定時間:2.3τ

許容時定数τ=3.95ns

 $\tau = 4.0 \text{ns}$

10ビット12ステップ

必要な整定時間: 1.9τ

許容時定数τ=4.38ns

 $\tau = 4.5 \text{ns}$

10ビット13ステップ

必要な整定時間: 1.6で

許容時定数τ=4.80ns

ステップ	DACの重み:p	誤差許容:q				
1	512	0				
2	256	26				
3	115	15				
4	63	8				
5	35	5				
6	19	2				
7	11	1				
8	6	1				
9	3	0				
10	2	0				
11	1	0				

ステップ	DACの重み:p	誤差許容∶q
1	512	0
2	256	38
3	109	23
4	62	13
5	36	7
6	21	4
7	12	2
8	7	1
9	4	1
10	2	1
11	1	0
12	1	0

ステップ	DACの重み:p	誤差許容:q
1	512	0
2	256	52
3	102	32
4	61	19
5	37	12
6	22	8
7	13	5
8	8	3
9	5	2
10	3	1
11	2	1
12	1	0
13	1	0

発表内容

- 研究背景
- SAR ADC
- 非2進アルゴリズム
- ・提案テスト方法
- 再構成可能な非2進SAR ADC
- まとめ

まとめ

- 非2進SAR ADCの各ステップでのDAC整定値を コンパレータの判定とADC出力から 推定する方法を提案した。
- ➡スピード余裕の推定可能
- シミュレーション、試作チップで推定方法の 実証を行った。
- 再構成可能な非2進SAR ADC の提案した。
- ➡ チップ毎に歩留まり向上、低消費電力化可能

謝辞

有意義なご討論をいただきました、森俊彦氏、 宮下博之氏、矢野雄二氏、力野邦人氏、 岸上真也氏、我毛辰弘氏、荒井智氏、 小林修氏、松浦達治氏、新津葵一氏 およびこの研究をご支援いただいています STARCに感謝の意を表します。