Single Inductor DC-DC Converter with Bipolar Outputs using Charge Pump

Graduate School of Electrical Engineering
Faculty of Engineering
Gunma University, Gunma Japan
Asahi Kasei Toko Power Devices Corporation
Outline

① Introduction

② SIMO DC-DC Converter

③ Simulation Results

④ Conclusion
Outline

1. Introduction
2. SIMO DC-DC Converter
3. Simulation Results
4. Conclusion
Introduction

Industry Demands
High Efficiency and Extremely Small System Solution

Conventional Power Supply Circuits

<table>
<thead>
<tr>
<th>Power Supply Type</th>
<th>Efficiency</th>
<th>Circuit Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linear Regulator</td>
<td>30〜60%</td>
<td>Small</td>
</tr>
<tr>
<td>Switching Regulator</td>
<td>70〜90%</td>
<td>Large</td>
</tr>
</tbody>
</table>

Optimize Efficiency

Switching Regulator

GUNMA UNIVERSITY TAKAI-LAB
Introduction

Switching Regulator

Multi Output Power Supply Circuit

Digital Camera
- Positive Voltage: 15 V
- Negative Voltage: -8 V

OLED Display
- Positive Voltage: 5 V
- Negative Voltage: -2 V

Multi Output Power Supply Circuit
Introduction

Industry Demands

High Efficiency and Extremely Small System Solution

One Inductor is Removed

SIMO DC-DC Converter

SIMO: single inductor multi output

Multi Output Power Supply Circuit

Single Inductor

Multi Output Power Supply Circuit

V_{op}

V_{om}
Outline

① Introduction

② SIMO DC-DC Converter

③ Simulation Results

④ Conclusion
Conventional Circuit

Negative Voltage: \(V_{om} = -V_{op} + V_F \)

Negative Output Depends on Positive Output

Cause: S2 & S3 are on Simultaneously
Change of Timing Diagram

Conventional Timing Diagram

Proposed Timing Diagram

Inductor Current is Changed

The duty ratio of each switch is fixed

Change!
Change of Timing Diagram

SIMO DC-DC Converter

Operation of Switch Sf
Maintains the value of the current in the inductor.

Proposed timing diagram

INDUCTOR CURRENT WAVEFORM

I_L

I_P

V_{op}

V_{om}

S1
S2
S3
S_f

T_s : 1 cycle

Stages:
Stage 1
Stage 2
Stage 3
Stage 4
Stage 5
Stage 6

S1: ON OFF ON OFF
S2: OFF ON OFF OFF
S3: OFF OFF ON OFF
S_f: OFF ON OFF ON
Change of Timing Diagram

S1: Turns on

Inductor L stores energy from voltage V_{in}

Current that flows to inductor L

$$I_L = \frac{V_i}{L}t = \frac{I_p - I_B}{T1}t$$

SIMO DC-DC Converter

- **Stage 1:**
 - S1: Turns on
 - Inductor L stores energy from voltage V_{in}
 - Current that flows to inductor L

$$I_L = \frac{V_i}{L}t = \frac{I_p - I_B}{T1}t$$

Proposed timing diagram

- T_S: 1 cycle

Inductor Current Waveform

- I_L, I_B

Stage 1:

- S1: ON
- S2: OFF
- S3: OFF
- Sf: OFF

Stage 2:

- S1: OFF
- S2: ON
- S3: ON
- Sf: OFF

Stage 3:

- S1: OFF
- S2: OFF
- S3: OFF
- Sf: ON

Stage 4:

- S1: OFF
- S2: OFF
- S3: ON
- Sf: ON

Stage 5:

- S1: OFF
- S2: ON
- S3: OFF
- Sf: ON

Stage 6:

- S1: ON
- S2: OFF
- S3: ON
- Sf: OFF

Gunma University Takai-Lab

2010年12月13日月曜日
Change of Timing Diagram

SIMO DC-DC Converter

Stage 2

S 2 : Turn on · · · Inductor L supplies its energy to output terminal of V_{op}

$\frac{I_L}{L} = \frac{V_{op} - V_i}{t} = \frac{I_p - I_B}{T^2} t$

Equation of Stage 1

$\frac{I_L}{L} = \frac{V_i}{t} = \frac{I_p - I_B}{T^1} t$

$V_{op} = \frac{T1 + T^2}{T^2} V_i$

Proposed timing diagram

$T_s : 1$ cycle

Inductor Current Waveform

$\frac{I_L}{L} \begin{cases} I_p & T_1 \\ T_2 & T_s \\ I_{p2} & T_3 \\ T_4 & T_5 \\ T_6 & S \end{cases}$

$\frac{I_B}{B} \begin{cases} \text{ON} & \text{OFF} & \text{ON} & \text{OFF} & \text{ON} & \text{OFF} \end{cases}$

GUNMA UNIVERSITY TAKAI-LAB
Change of Timing Diagram

SIMO DC-DC Converter

Stage3

Sf : Turn on ・ ・ ・ The current of the inductor is maintained with the free wheel switch

Proposed timing diagram

Ts : 1 cycle

Inductor Current Waveform

Stage1 Stage2 Stage3 Stage4 Stage5 Stage6

S1 ON OFF ON OFF OFF OFF

S2 OFF ON OFF OFF OFF OFF

S3 OFF OFF ON OFF OFF OFF

Sf OFF ON OFF OFF OFF ON

GUNMA UNIVERSITY TAKAI-LAB

2010年12月13日月曜日
Change of Timing Diagram

SIMO DC-DC Converter

Stage 4

S1: Turn on • • • Inductor L stores energy from voltage V_{in}

Current that flows to inductor L

$$I_L = \frac{V_i}{L}t = \frac{I_{p2} - I_B}{T_4}t$$
Change of Timing Diagram

SIMO DC-DC Converter

Inductor Current Waveform

Proposed timing diagram

Ts : 1 cycle

Inductor Current Waveform

Stage 1: S1 ON, Sf OFF
Stage 2: S1 OFF, S3 ON
Stage 3: S3 OFF, S2 ON
Stage 4: S2 OFF, Sf ON
Stage 5: Sf OFF, S3 ON
Stage 6: S3 OFF

Stage 5

S3 : Turn on • • • Charge pump capacitor Cc charges energy from the inductor

Current that flows to inductor L

\[I_L = -\frac{V_i - V_c}{L}t = -\frac{I_{p2} - I_B}{T^5}t \]
Change of Timing Diagram

SIMO DC-DC Converter

Vop

Vom

S1

S2

S3

Sf

I_L

I_B

Ts : 1 cycle

Stage1

Stage2

Stage3

Stage4

Stage5

Stage6

S1: ON

OFF

ON

OFF

S2: OFF

ON

OFF

S3: OFF

ON

OFF

Sf: OFF

ON

OFF

Inductor Current Waveform

GUNMA UNIVERSITY TAKAI-LAB

The current of the inductor is maintained with the free wheel switch.
Change of Timing Diagram

SIMO DC-DC Converter

Stage 1
- **S1**: Turn on
- Energy of capacitor is discharged
- and negative voltage V_{om} are given

Equation of Stage 4

$$I_L = \frac{V_i}{L} t = \frac{I_{p2} - I_B}{T_4} t$$

Equation of Stage 5

$$I_L = -\frac{V_i - V_c}{L} t = -\frac{I_{p2} - I_B}{T_5} t$$

Proposed timing diagram
- T_s: 1 cycle
- T_s: Inductor Current Waveform

Inductor Current Waveform
- I_L
- I_B
- I_{p2}
- V_{op}
- V_{om}

GUNMA UNIVERSITY TAKAI-LAB
Change of Timing Diagram

SIMO DC-DC Converter

V_{op} = \frac{T1 + T2}{T2} V_i = \frac{D1 + D2}{D2} V_i

V_{om} = -\frac{T4 + T5}{T5} V_i + V_F = -\frac{D4 + D5}{D5} V_i + V_F

Negative output voltage can be changed independently
Outline

1 Introduction
2 SIMO DC-DC Converter
3 Simulation Results
4 Conclusion
Simulation Results

Simulation Condition

Switching Frequency: 500kHz
Input Voltage V_{in}: 3.5V
Inductor L: 2u
Output Capacitor C_{out}: 10u
Load Resistance R_o: 15Ω
Charge Pump Capacitor C_c: 5u

![SIMO DC-DC Converter Diagram]
Simulation Results (Conventional)

Positive Output Voltage: 7V

Positive Voltage

Negative Voltage

Negative Output Voltage: -5.93V

Positive Output Voltage: 10.5V

Positive Voltage

Negative Voltage

Negative Output Voltage: -9V
Simulation Results (Conventional)

<table>
<thead>
<tr>
<th>Positive Voltage</th>
<th>Positive Voltage Ripple (Vpp)</th>
<th>Negative Voltage</th>
<th>Negative Voltage Ripple (Vpp)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.89V</td>
<td>75.5mV</td>
<td>-5.9V</td>
<td>54.3mV</td>
</tr>
<tr>
<td>10.1V</td>
<td>119.7mV</td>
<td>-9.1V</td>
<td>87.9mV</td>
</tr>
</tbody>
</table>

Negatives Voltage: $V_{om} = -V_{op} + V_F$

Conventional Circuit

A negative voltage depends on a positive voltage
Simulation Results (Proposed)

Positive Output Voltage: 6.7V

Negative Output Voltage: -4.54V

Negative Output Voltage: -6.3V
Simulation Results

<table>
<thead>
<tr>
<th>Positive Voltage</th>
<th>Positive Voltage Ripple (Vpp)</th>
<th>Negative Voltage</th>
<th>Negative Voltage Ripple (Vpp)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.7V</td>
<td>50.8mV</td>
<td>-4.5V</td>
<td>20.8mV</td>
</tr>
<tr>
<td>6.7V</td>
<td>50.8mV</td>
<td>-6.3V</td>
<td>27.1mV</td>
</tr>
<tr>
<td>6.9V</td>
<td>75.5mV</td>
<td>-5.9V</td>
<td>54.2mV</td>
</tr>
<tr>
<td>10.1V</td>
<td>119.7mV</td>
<td>-9.1V</td>
<td>87.9mV</td>
</tr>
</tbody>
</table>

Proposed Timing Diagram

Conventional Timing Diagram

Voltage Ripple has Decreased
Inductor Current Waveform

<table>
<thead>
<tr>
<th></th>
<th>Current Ripple (Vpp)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conventional</td>
<td>1.35 A</td>
</tr>
<tr>
<td>Proposed</td>
<td>630.4mA</td>
</tr>
</tbody>
</table>

Inductor Current Ripple is Reduced by 50%

At The One Cycle

Conventional

Inductor L is one charge & discharge

Proposed

Inductor L is two charge & discharge

GUNMA UNIVERSITY TAKAI-LAB
Transient Response (Conventional)

Negative output voltage depends on positive output voltage

Output Voltage Waveform
Transient response (Proposed)

- Negative output voltage independent of positive output voltage
- Cross-regulation is Improved

Output Voltage Waveform
Outline

① Introduction
② SIMO DC-DC Converter
③ Simulation Results
④ Conclusion
A new timing diagram is proposed

- Independent positive and negative output voltage
- Voltage ripple and inductor ripple less than conventional timing diagram
- Cross-regulation is improved