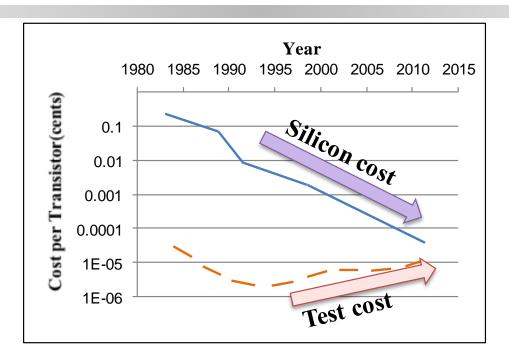
APCCAS

Session: Accord Network Room

Test Technology I

ID: 1569327697

ADC Linearity Test Signal Generation Algorithm


S. Uemori, T. J. Yamaguchi, S. Ito, Y. Tan, H. Kobayashi, N. Takai Gunma University, Japan

Supported by STARC

- Research purpose
- Conventional linearity testing
- Proposed test signal generation method
- Implementation method
- Conclusion

- Research purpose
- Conventional linearity testing
- Proposed test signal generation method
- Implementation method
- Conclusion

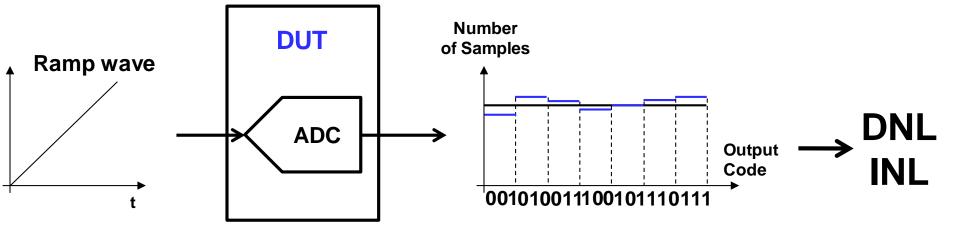
LSI Production Testing

- Test cost is proportional to testing time
- Important factors
 - Reducing testing cost
 - Improving testing quality

Agenda & Approach

- In mixed-signal SoCs, ADCs/DACs
 - DC linearity testing
 - Important
 - Long testing time

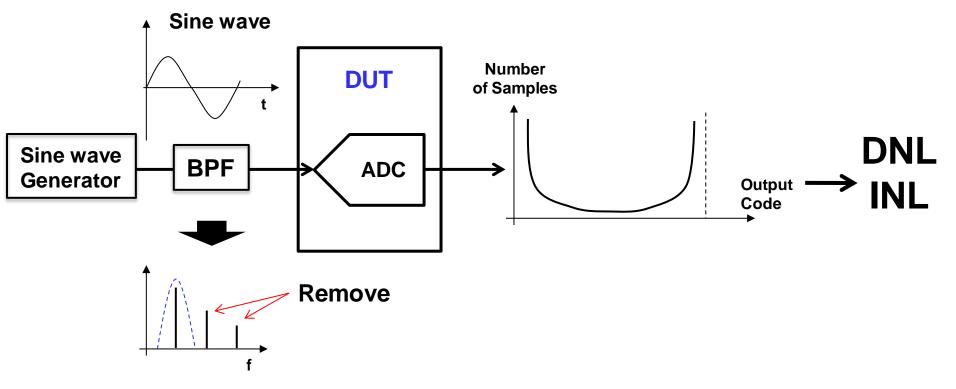
- Requirements for DC linearity testing of ADCs
 - Short testing time
 - Good testing quality


Propose "short-time" ADC Linearity Test
 Signal Generation Algorithm

- Research purpose
- Conventional linearity testing
- Proposed test signal generation method
- Implementation method
- Conclusion

Conventional Linearity Testing 1

Histogram method (Ramp wave input)



- ADC output histograms for all bins are equal if ADC is perfectly linear
- Highly linear ramp signal generation is difficult (><)

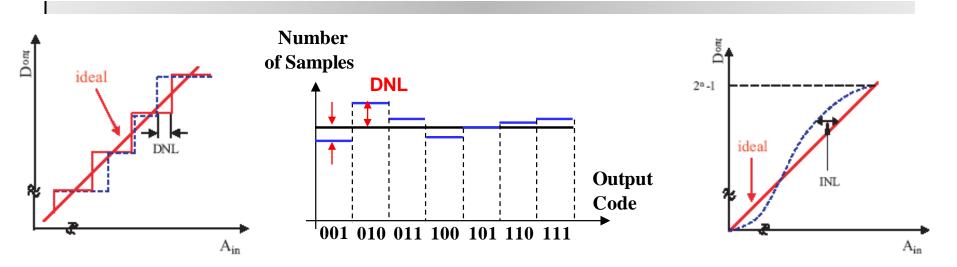
Conventional Linearity Testing 2

Histogram method(Single sine wave input)

 The number of samples is small around the middle of output codes

High accuracy sine wave can be generated

Target of This Research


	Ramp Wave	Sine Wave	Proposed
Bin	(i)		
	All bins are equal	Few samples around the center	Middle range increases
Signal Generation			
	Difficult	Easy	Easy

DNL & INL

Important testing for ADCs

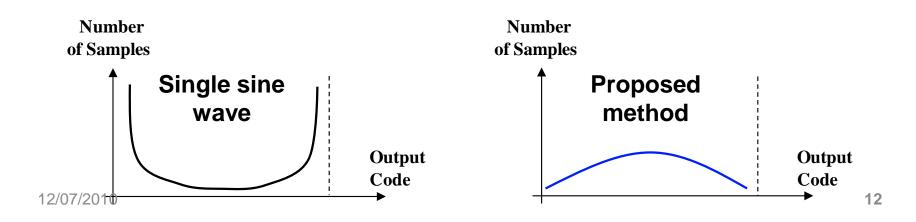
DNL: Difference between an actual step width and the ideal value

INL: Deviation from ideal conversion line

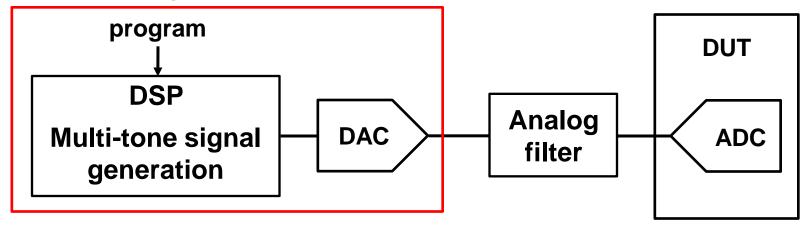
$$INL(k) = \sum_{i=1}^{k} DNL(i)$$

- Research purpose
- Conventional linearity testing
- Proposed test signal generation method
- Implementation method
- Conclusion

12/07/2010 **11**


Linearity Testing of ADCs in SoCs

- In mixed-signal SoCs, ...
 - Accurate ADC linearity evaluation
 "around the middle of its input range" is required
 - Single sine wave is unsuitable (


Middle range of histogram increases

Architecture for Generating Proposed Test Signal

AWG: Arbitrary Waveform Generator

- DSP program : Multi-tone sine wave
- Analog filter : Harmonics removal

Histogram for the middle of ADC input range
 12/0 can be high (**)

Role of Analog Filter

- Resolution of an ADC under test is 14 bits
- Linearity of AWG is less than 12 bits
 - → Not suitable if directly applied

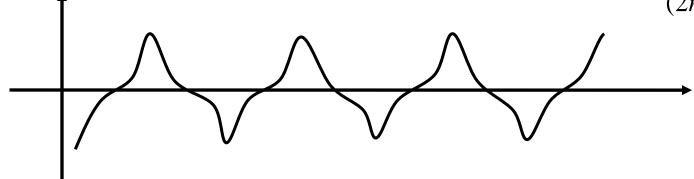
- The analog filter can remove spurious components
 - This method has compatibility with "moderate-performance" AWG

Proposed Test Signal Generation Method

Approximate triangle wave
 by multi-tone sine waves

$$V_{in} = \frac{4}{\pi} \sum_{n=1}^{\infty} A_n V_n$$

$$V_n = \frac{\cos(2\pi \cdot (2n-1) \cdot f \cdot t)}{(2n-1)^2}$$

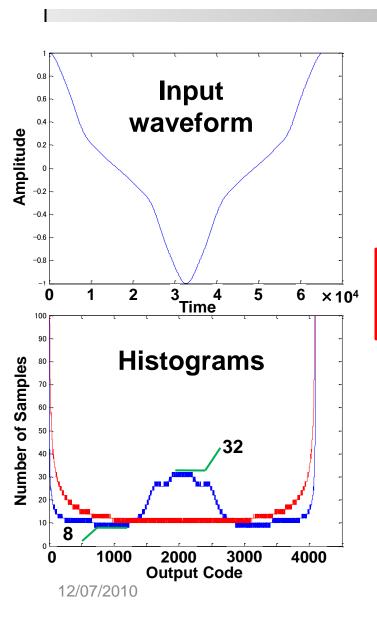

$$n=1,2,\cdots$$

Proposed Test Signal Generation Method

- Select terms (V_n)
- Decide their coefficients (A_n)

$$V_{in} = \frac{4}{\pi} \sum_{n=1}^{\infty} A_n V_n$$

$$V_n = \frac{\cos(2\pi \cdot (2n-1) \cdot f \cdot t)}{(2n-1)^2}$$

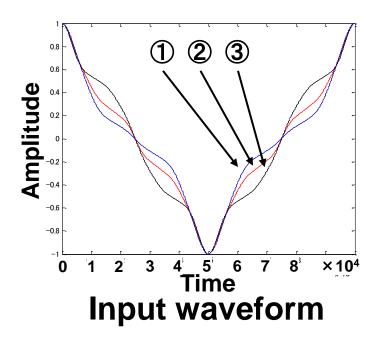

As a result ...

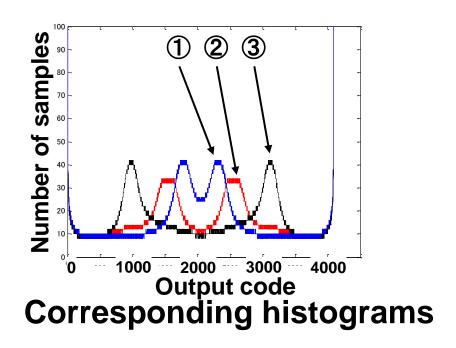
Histogram for the middle

of ADC input range increases

- Reducing test time
- Maintaining the required testing quality

Simulation Result of Proposed Method


$$V_n = \frac{\cos((2n-1)\omega t)}{(2n-1)^2}$$
 n=1,2,---


$$V_{in} = \frac{4}{\pi} \left(V_1 + 2.6 \cdot V_2 + 1.8 \cdot V_3 + 1.4 \cdot V_6 + 1.2 \cdot V_7 \right)$$

 Histogram for the middle of ADC input range increases

Simulation Result of Proposed Method

Proposed method can be applied to the several cases.
 (Shape of the histogram can be changed)

Contents of Testing Time with ATE

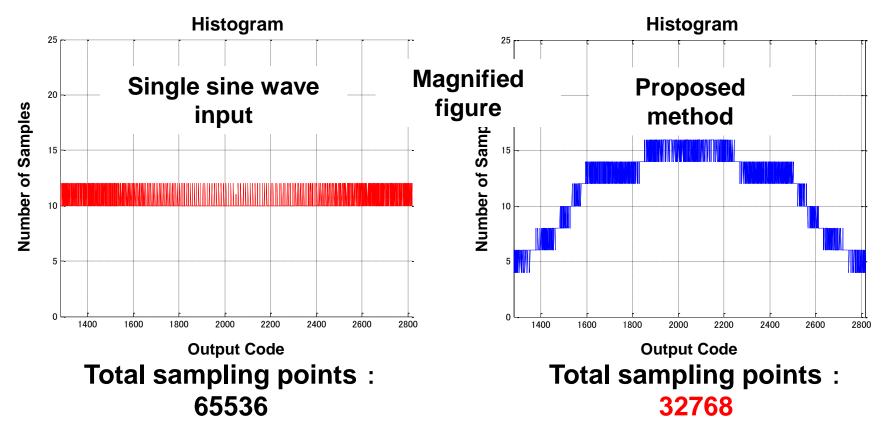
Table: ADC testing time with ATE

	Content	Time	
1)	Setup time for module	Less than 1 msec	
2)	Settling time for module and DUT	Several msec	
3)	DC linearity testing time	2 ^{bit} ×(16~64)×(ADC conversion time)	
4)	SINAD testing time	2 ^{bit} ×(1~4)×(ADC conversion time)	
5)	Time for data transfer and operation	Several msec	
6)	Other test time	Several msec	

12/07/2010 **19**

Estimation of ADC Test Time

- Example: 12 bit 100kS/s SAR ADC
 - Setup time for measurement module and settling time for DUT: 10 msec
 - •DC linearity testing time : $2^{12} \times 40 \times 10u$ sec = 1600 msec
 - •SINAD testing time : $2^{12} \times 4 \times 10u$ sec = 160 msec
 - The time for data transfer and operation: 10 msec

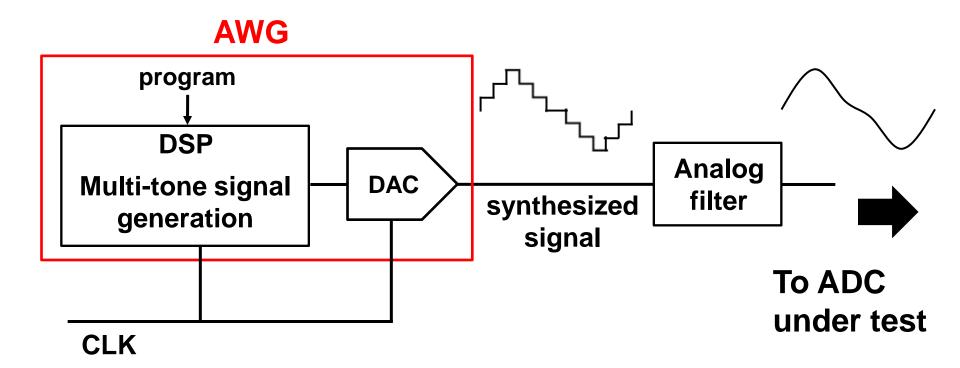

- Conventional method
 - Total testing time = 1780 msec

Acceptable Test Time

- Testing time for high resolution, slow sampling rate ADCs
 Very time consuming
- Testing time of 1 sec for a \$1 chip is acceptable
 Total test time (about 1.8 sec) is too long
- Reduce DC linearity test time

Verification of Effectiveness

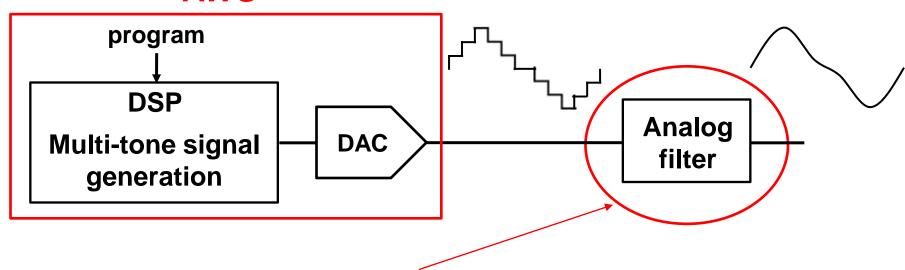
[Condition] Sampling points for the middle of ADC input range is more than 10 points, other range is more than 4 points


Reduce the # of sampling points to half

Meet the bottom sampling points

- Research purpose
- Conventional linearity testing
- Proposed test signal generation method
- Implementation method
- Conclusion

12/07/2010 **23**


Implementation Method

12/07/2010 **24**

Settling Time of Analog Filter

AWG

- Settling time of analog filter
 - •10X the time constant
 - i.e. 10ms for a 1kHz filter
 - Doesn't interfere with the tests

25

- Research purpose
- Conventional linearity testing
- Proposed test signal generation method
- Implementation method
- Conclusion

12/07/2010 **26**

Conclusion

- Propose DC linearity testing method for ADC in SoCs
 - Using multi-tone sine wave
 - Histogram for the middle of ADC input range is high
- Testing time for ADC DC linearity by half
- Implementation method
 - An AWG and an analog filter