開ループアンプを用いたパイプライン ADC の "Split ADC"構成によるバックグランド自己校正法

八木 拓哉*, 上森 聡史, 丹 陽平, 伊藤 聡志(群馬大学), 松浦 達治, 臼井 邦彦(ルネサステクノロジ), 小林 春夫(群馬大学)

> Background Calibration Algorithm for Pipelined ADC with Open-Loop Amplifier using Split ADC Structure Takuya Yagi*, Satoshi Uemori, Youhei Tan, Ito Satoshi(Gunma University) Tatsuji Matsuura, Kunihiko Usui (Renesas Technology Corporation) Haruo Kobayashi (Gunma University)

Abstract

This paper describes a background calibration algorithm for a pipelined ADC with open-loop amplifier using Split ADC structure. The open-loop amplifier is employed at the first stage in the pipelined ADC to realize low power and high speed. However it suffers from non-linearity, and hence the calibration is needed. We have investigated the split ADC structure for its background calibration with fast convergence, and shown its effectiveness with MATLAB simulation.

キーワード: ADC、自己校正、デジタルアシストアナログ技術、パイプライン AD 変換器、Split AD 変換器 (ADC, Self-Calibration, Digitally Assisted Analog Technology, Pipelined ADC, Split ADC)

1. はじめに

パイプライン AD 変換器ではトランジスタのプロセス技 術の微細化に伴い、アナログ回路部の要求性能を達成する ための回路設計が難しくなっている。デジタル回路部では トランジスタの微細化の恩恵を受け、小面積化、低消費電 力化を実現している。そこでデジタル補正回路を用いてア ナログ回路部の要求性能を緩和する、デジタルアシスト技 術が検討されている⁽¹⁾。特にパイプライン AD 変換器のアナ ログ回路部で用いられる段間アンプは低雑音、高速、高精 度な線形性が同時に要求されるため、AD 変換器の消費電力 の大半を占める。微細化により耐圧が低下し、高利得な段 間アンプを設計することは難しくなり、AD 変換器全体の精 度に大きく影響している。そこで低利得のオペアンプを用 いることで AD 変換器の小面積化、低消費電力化、高速化 を実現することが提案されている⁽¹⁾⁽⁴⁾。しかし AD 変換器の 変換誤差が大きくなり精度劣化の要因となるため、デジタ ル自己校正回路を付加することで AD 変換器の精度を得る 手法が報告されている。

デジタル自己校正回路は主にフォアグラウンド自己校正 法とバックグラウンド自己校正法に分類される。特にバッ

クグラウンド自己校正法は校正信号を必要とせず、不便さ が生じない方式である。また多くのバックグラウンド自己 校正回路では完全に補正されるまでの収束時間が長いとい う問題点があるが、収束時間を短縮するために Split AD 変 換器の構成が提案されている⁽²⁾⁽³⁾。しかしこのバックグラウ ンド自己校正法では、段間アンプの有限ゲイン誤差、容量 ミスマッチによる変換誤差しか補正することができず、段 間アンプの非線形性も補正する手法の適用例は報告されて いない。本論文ではバックグラウンド自己校正法に焦点を 当て、段間アンプの非線形性の補正を高速に収束させる新 たな手法を提案した。パイプライン AD 変換器の初段の段 間アンプには開ループアンプを適用し、パイプライン AD 変換器の低消費電力化、高速化を目標とした。また収束時 間を短縮するために Split AD 変換器構成を用いて、初段で 生じる変換誤差をバックグラウンドで自己校正し、その有 効性をシミュレーションにより確認した。

2. パイプライン AD 変換器の Split AD 変換器構成

〈2·1〉 パイプライン AD 変換器の基本構成と動作

パイプライン AD 変換器の全体構成を図 1 に示す。低分 解能のサブ AD 変換器とオペアンプを用いた乗算型 DAC を 含む単位変換回路の多段縦列接続によって構成される。ア ナログ入力信号をサンプルホールド回路で受け、サブ AD 変換器で上位ビットを求める。またサブ AD 変換器の出力 データは乗算型 DAC に入力されアナログ入力信号との残 差を求め増幅し、次の段へ入力され中間ビットを求める。 以下同様に各段では"増幅モード"と"サンプルモード"を繰 り返し、上位ビットからデジタル出力が得られる。出力は 入力が最初に取り込まれたタイミングから段数分遅れて得 られるが、半クロック毎に新しい入力が取り込まれパイプ ライン的に動作する。

最も精度が要求されるのは初段の構成要素であり、サブ AD変換器のコンパレータの誤差や乗算型 DAC に用いられ 容量のミスマッチ、オペアンプの有限ゲイン、非線形性が AD 変換器の変換誤差の主な要因となる。この中でもサブ AD 変換器のコンパレータの誤差は影響が少なく、各単位変 換回路に冗長性を考慮することでデジタル誤差補正するこ とが可能である。その他の要因はデジタル自己校正回路で 校正しなければならない。

図 1 パイプライン AD 変換器のブロック図と 単位変換回路の非理想要因. Fig.1 Pipeline ADC topology and stage circuit non-ideality.

〈2・2〉 パイプライン AD 変換器の Split AD 変換器構成 図 2 は Split AD 変換器構成を示す。Split AD 変換器は単 一の AD 変換器を 2 チャンネルの AD 変換器に分割されて おり、ADCA と ADCB にはそれぞれに同じアナログ信号を 入力する。それぞれの AD 変換器から出力コード DA、DB を得ることができ、二つの出力コードの平均値を計算する ことで Split AD 変換器の出力 D を求めることができる。出 カコード DA、DB の差 ΔD はバックグラウンド校正信号と して利用される。

仮に単一のNビットのAD変換器を定められた電力、速度、ノイズ特性を満たすように設計する。このAD変換器のアナログ領域と同じ領域で、NビットのADCAとADCBの2つのAD変換器に分割し設計したものがSplitAD変換器である。それぞれの帯域幅、全体の電力は変わらず、2つの出力コードを平均化して出力コードを得るため、全体としてのノイズ特性も変わらない⁽²⁾。

3. パイプライン AD 変換器の自己校正法

〈3·1〉 パイプライン AD 変換器の乗算型 DAC の誤差と オペアンプの誤差の設定

この節では、本論文で検討するパイプライン AD 変換器 の誤差要因について説明する。パイプライン AD 変換器の 初段の精度が最も要求されるために初段の消費電力が非常 に大きい。したがって初段のオペアンプを低精度な開ルー プアンプに代用して消費電力を低減することを提案する。 しかし開ループアンプを用いることで、従来の閉ループア ンプの歪みに対する負帰還の効果がなくなり、トランジス タの非線形性によってアンプの出力が歪み AD 変換器の精 度を劣化させる大きな要因となる。アンプの入力レベルが 大きくなるにつれて出力は強い非線形性となる。開ループ アンプの入出力特性の非線形性を以下の 3 次までのテイラ ー展開の式で近似する⁽¹⁾。

$$\mathbf{g}_{\mathbf{a}}(\mathbf{V}_{\mathbf{a}}) = \mathbf{V}_{\mathbf{r}} = \alpha_1 \cdot \mathbf{V}_{\mathbf{a}} + \alpha_3 \cdot \mathbf{V}_{\mathbf{a}}^3$$
(1)

ここで開ループアンプが差動回路で構成されており、ト ランジスタのミスマッチが非常に小さいと仮定して二次の 係数を省略している。

さらに、プロセスのばらつきにより乗算型 DAC で用いら れている容量にミスマッチが生じ、AD 変換器の精度の劣化 の要因となる。前述した 1 次の係数と容量ミスマッチによ って、出力コードでは MSB が遷移した時にミッシングコー ドが生じる。以上に述べた非線形性と容量ミスマッチをバ ックグラウンドで自己校正する。(図1参照)

〈3・2〉 3次の非線形性の補正

本論文ではステージ 1A とステージ 1B のそれぞれに、 RNG(Random number generator)から 0、1 の疑似ランダ ム信号を付加することで、初段の出力に二つの残差波形を 生成し、オペアンプの 3 次の非線形性を補正する方法を提 案する。ステージ 1 ではそれぞれ 1 ビットの冗長性を考慮 し、オフセットを加えることでもう 1 つの残差波形を生成 することを考える。オフセットを加えない場合の波形 を"RNG=0"、オフセットを加えたときの波形を"RNG=1"と して疑似ランダム信号で制御することで 2 つの残差波形を 生成する。図 3 は本論文で検討した、4 ビットのステージ 1Aとステージ 1Bを示している。それぞれの、入力と二つの 残差波形の出力の関係は図 4、図 5 に示している。残差波

Fig.3 First stage topology.

図 4 ステージ 1A の入出力特性.

Fig.4 Stage1_A input-output characteristics.

Fig5. Stage1_B input-output characteristics.

形をずらしているのは、ADCA と ADCB が同じ誤差を持っ ていたとしても、それぞれの誤差を推定し補正することで 理想の AD 変換器に近づけるためである。後の有限ゲイン 誤差と容量ミスマッチを補正する場合に活用される。

まずはステージ 1A とステージ 1B の出力の残差波形の差 を求めることで非線形性を補正するための校正信号を得 る。ステージ 1A とステージ 1B の疑似ランダム信号はそれぞ れ初期値をずらし異なった周期で出力させ、RNGA=0、 RNGB=0 の時の差の平均値 dab00、RNGA=0、RNGB=1 の時 の差の平均値 dab01、RNGA=1、RNGB=0 の時の差の平均値 dab10、RNGA=1、RNGB=1 の時の差の平均値 dab11 の4 通り の差の平均値 d を求める。それぞれの平均値は任意の入力 信号に対して時間平均している。

図 6 残差波形からの差 dab00、dab01、dab10、dab11の測
定.(a) ステージ 1_Aの残差波形とステージ 1_Bが RNG_B=0
の時の残差波形.(b) ステージ 1_Aの残差波形と
ステージ 1_Bが RNG_B=1 の時の残差波形.

Fig.6 Measuring the difference d_{ab00}, d_{ab01}, d_{ab10} and d_{ab11} of the residue curves. (a) Stage1_A residue curves and Stage1_B residue curves in case of RNG_B = 0.

(b) Stage1_A residue curves and Stage1_B residue curves in case of RNG_B = 0.

図7 残差波形から距離 hal、hanlの測定.(a)自己校正前. (b)自己校正後.

Fig.7 Measuring the distance h_{al} and h_{anl} of the residue curves. (a) Before calibration.(b) After calibration.

次にステージ1Aの二つの残差電圧の距離の平均値haを求める。ステージ1Aの残差電圧について、上位4ビットの出力が2進数で"0000"の時、残差波形の距離の平均値hanlは、差の平均値dabooとdab10、もしくは差の平均値dabo1とdab11から求まる。このときのステージ1Aの残差波形はオペアンプの非線形性の影響が大きい区間になる。続いて上位4ビットの出力が2進数で"0001"の時、残差波形の距離の平均値halは、差の平均値dab00とdab10、もしくは差の平均値dab01とdab11から求まる。この時のステージ1Aの残差波形はオペアンプの非線形性の影響が小さく、ほぼ線形とみなせる区間になる。よって非線形性の大きい区間から求めた距離の

平均値 hanl を、非線形性の影響が小さく、ほぼ線形とみな せる区間から求めた距離の平均値 hal に近づけ、hanl と hal の差が 0 になるように非線形性の逆関数を用いて収束させ ることでステージ 1Aのオペアンプの非線形性を補正するこ とができる。ステージ 1Aの残差波形は上位4ビットの出力 が2進数で"0000"から"1111"まで、非線形性の影響が大きい 区間と非線形性の影響が小さい区間が交互に現れるため、 それぞれの区間から同じように距離 haを求めることができ る。

同様にしてステージ1Bの二つの残差波形の距離の平均値 hbを求める。ステージ1Bの残差波形について、上位5ビッ トの出力が2進数で"00000"の時、残差波形の距離の平均値 hblは、差の平均値 dab00 と dab01、もしくは差の平均値 dab10 と dab11 から求まる。このときのステージ 1Bの残差波形はオ ペアンプの非線形性の影響が小さく、ほぼ線形とみなせる 区間になる。続いて上位5ビットの出力が2進数で"00001" の時、残差波形の距離の平均値 hbnl は、差の平均値 dab00 と dab01、もしくは差の平均値 dab10 と dab11 から求まる。この 時のステージ1Bの残差波形はオペアンプの非線形性の影響 が大きい区間になる。よって非線形性の大きい区間から求 めた距離の平均値 hbnl を、非線形性の影響が小さく、ほぼ 線形とみなせる区間から求めた距離の平均値 hbl に近づけ、 hblと hbnlの差が0になるように非線形性の逆関数を用いて 収束させる。よってステージ 1Bのオペアンプの非線形性を 補正することができる。ステージ 1Bの残差波形は上位5ビ ットの出力が2進数で"00000"から"10000"まで、非線形性 の影響が小さい区間と非線形性の影響が大きい区間が交互 に現れるため、それぞれの区間から同じように距離の平均 値 hbを求めることができる。

〈3·3〉 有限ゲイン誤差、容量ミスマッチの補正

本論文では、有限ゲイン誤差と容量ミスマッチによって 生じる変換誤差を引用文献⁽³⁾で報告されているバックグラ ウンド自己校正法を応用して校正した。有限ゲイン誤差、 容量ミスマッチは3次の非線形性を補正した後に補正を行 う。まず初段にランダム信号で加えたオフセットを減算し1 つの残差波形に戻す。加えられたオフセットは、3次の非線 形性を補正する時に求めた距離の平均値hから、疑似ラン ダム信号が"RNG=1"の時に平均値hを減算すればよい。(図 8参照)またステージ1Aとステージ1Bの残差波形の傾きが オペアンプの非線形性の1次の係数によって異なる場合、 正確に有限ゲイン誤差と容量ミスマッチを補正することが できない。そのためステージ1Bの残差波形の傾きをステー ジ1Aの出力の残差波形の傾きを等しくするために、ステー ジ1Bの残差波形を一つにした後に残差波形にha/hbを乗算 することで傾きを等しくする。(図9参照)

有限ゲイン誤差と容量ミスマッチの補正は、まずはADCA と ADCBの出力コードの差を取ることで校正信号を得る。 有限ゲイン誤差と容量ミスマッチの影響により初段の出力 の残差波形に誤差が生じ、ADCの出力コードにはそれぞれ 上位ビットが遷移するときにミッシングコードが生じる。 ADC_A と ADC_Bは Sub-AD 変換器の比較値をずらしている ため、ADC_Aの上位 4 ビットが"0000"のとき ADC_Bの上位 5 ビット MSB_Bは"00000"から"00001"へ遷移するように上位 ビットが交互に遷移する。この時に ADC_B ではミッシング コードが生じる。したがって ADC_A を理想の直線として参 照し、ADC_Bのミッシングコードを測定する。同様に ADC_A の MSB_A が遷移するときのミッシングコードを測定するこ とができる。最後に各上位ビットに対して測定したミッシ ングコードを、ADC_A、ADC_Bの出力コードに減算すること でミッシングコードを補正する⁽³⁾。

図8 2つの残差波形から1つの残差波形の生成. Fig.8 Translation of two residue curves into one residue curve.

図 9 ADCAと ADCBの傾きの補正. Fig.9 Gain mismatch correction between ADCA and ADCB.

4. バックグラウンド自己校正回路の構成

バックグラウンド自己校正回路を用いたパイプライン AD 変換器の全体構成を図 10 に示す。また図 11 には Split AD 変換器で構成したアナログ回路部の詳細図を示す。 ADC_A と ADC_B に分かれており、それぞれ有効分解能が 3 ビットのステージ1、ステージ2からステージ9までは1.5 ビットのステージ、最後のステージは3ビットのフラッシ ュ AD 変換器の構成である。ステージ1の段間アンプは開 ループアンプを用いて 8 倍を実現している。またサブ AD 変換器は5ビットのフラッシュ AD 変換器の構成となり、 MDACA と MDACB にはそれぞれ比較値がずれた出力コー ドが入力される。これは残差波形をずらすことで ADCA と ADCBのそれぞれの誤差を推定し補正するためである。本論 文では、最も精度が要求されるステージ1の乗算型 DACの 容量ミスマッチ、オペアンプの有限ゲイン誤差、非線形性 を考慮し、第2ステージから最後のステージまでは理想的 な回路として近似して検討する。

後段の出力コードはデジタル自己校正ブロック 1 に入力 され3次の非線形性を補正する。(図 12 参照)4通りの差d の平均値を1次の IIR フィルタを用いて移動平均値を求め て距離の平均値hを計算する。(図 14 参照)積算器を用い

図 10 ADC の全体構成図. Fig.10 Whole ADC topology.

図 11 AD 変換器のアナログ回路部.

Fig.11 Analog portion of ADC topology.

て LMS(Least Mean Square)ループを構成し、LUT(Look Up Table)には非線形性の逆関数 e の値を用いて、非線形の 影響が大きいときの距離 h_{nl}を非線形性の影響が小さい時の 距離 h_lに近づけるように差を 0 に収束させる。この時の 3 次の補正係数を p3 として、収束させている。

その後、残差波形においてランダム信号が"1"の時にオフセット分の距離 h を減算することで 1 つの残差波形に戻す。 さらにステージ 1A とステージ 1B の残差波形の傾きを等し くするために、ステージ 1B の残差波形に係数 hal/hbl を乗算 し傾きのミスマッチを補正する。(図 13 参照)

最後に有限ゲイン誤差、容量ミスマッチを補正するため にデジタル自己校正ブロック 2 にデジタル自己校正ブロッ ク 1 の出力コードを入力する。ADCA と ADCBの差Δを計 算し、IIR フィルタを用いて移動平均値を計算する。差Δの

図 14 デジタル自己校正ブロック 1 で用いられる IIR フィルタのブロック図.

Fig.14 IIR filter blocks used in digital calibration block1.

Fig.15 Example of open loop amplifier.

平均値からミッシングコードが求められ、各 MSB に対して 出力コードに減算することで、ミッシングコードを補正す ることができる⁽³⁾。よって補正後の ADC_A と ADC_Bの出力 コードの平均値を計算し 12 ビットの出力コードを得る。

5. シミュレーションによる自己校正法の有効性 の確認

ここでは MATLAB シミュレータを用いて、数値計算で自 己校正法の確認を行う。シミュレーション条件は、12 ビッ ト 10MS/s のパイプライン AD 変換器を目標とし、初段の誤 差を考慮した。開ループアンプの非線形性は以下の式で近 似した⁽¹⁾。

$$\mathbf{g}_{\mathbf{a}}(\mathbf{V}_{\mathbf{a}}) = \mathbf{V}_{\mathbf{r}} = \mathbf{g}_{\mathbf{m}} \mathbf{R} \cdot \left[\left(\frac{\mathbf{V}_{\mathbf{a}}}{\mathbf{V}_{\mathsf{ref}}} \right) - \frac{1}{8} \left(\frac{\mathbf{V}_{\mathsf{ref}}}{\mathbf{V}_{\mathsf{ov}}} \right)^2 \left(\frac{\mathbf{V}_{\mathbf{a}}}{\mathbf{V}_{\mathsf{ref}}} \right)^3 \right]$$
(2)

ここで開ループアンプが差動回路で構成されており、ト ランジスタのミスマッチが非常に小さいと仮定して二次の 図16は入力周波数が約625kHzを想定した時の出力デー タの FFT 結果である。補正なし、有限ゲイン誤差と容量ミ スマッチの補正、有限ゲイン誤差と容量ミスマッチと非線 形性の補正の場合をプロットした。補正なしの場合 SNDR が 50.4dB に対して、全て補正した場合は SNDR が 73.9dB となり有効分解能 12bit を実現できることが確認できた。ま た DNL、INL についても同様の条件で図 17 に示した。補 正前の INL のピーク値は+7.2LSB、-4.5LSB であるが、全 て補正することで INL と DNL を±0.5LSB 以内に収めるこ とができた。最後に図18には3次の補正係数の収束状況と、 LMS ループ内の平均二乗誤差(MSE: Mean Square Error) の変化を示した。約6*105サンプル点で MSE が-60dB 以下 となりバックエンドの AD 変換器が 10 ビット以上の精度を 得た。また平均化回路についても、約6*105サンプル点以下 で収束した。10MS/s の場合、収束時間は約 0.06 秒であっ た。

6. まとめ

パイプライン AD 変換器で最も精度が必要となる初段の オペアンプを、開ループアンプを用いることで低消費電力 化、高速化を目標とした。このときに生じる開ループアン プの非線形性、有限ゲイン誤差、また乗算型 MDAC の容量 ミスマッチを補正するためにバックグラウンド自己校正法 を提案した。パイプライン AD 変換器に Split AD 変換器構 成を適用し、提案したバックグラウンド自己校正法の有効 性を MATLAB シミュレーションで確認した。収束時間は 10MS/s で約 0.06 秒となり、収束時間の短縮を実現した。

図 16 ADC 出力データの FFT による パワースペクトラム.

図 17 ADC の出力データの DNL と INL. Fig.17 DNL and INL of ADC output.

LMS ループ内の平均二乗誤差.

Fig.18 Convergence of 3rd order coefficient and mean square error in LMS loop.

	表 1	ADC の性能	表.
Table	1. Summ	ary of ADC p	erformance

No calibration	Gain error and C mismatch calibration	Gain error, C mismatch and Nonlinearity calibration
+7.2/-4.6	+1.8/-0.94	+0.16/-0.12
+0.18/-0.96	+0.5/-0.93	+0.21/-0.27
50.4 dB	68.5 dB	73.9 dB
	No calibration +7.2/-4.6 +0.18/-0.96 50.4 dB	No Gain error and C mismatch calibration calibration +7.2/-4.6 +1.8/-0.94 +0.18/-0.96 +0.5/-0.93 50.4 dB 68.5 dB

謝辞:有意義な御討論をいただきました、傘昊先生、今泉 栄亀氏に謝意を表します。

文	献
---	---

- B. Murmann and B. E. Boser : "Digitally Assisted Pipeline ADCs Theory and Implementation", Kluwer Academic Publishers (2004)
- (2) J McNeill, M.C.W. Coln, and B. J. Larivee : ""Split ADC" architecture for deterministic digital background calibration of a 16-bit 1-MS/s ADC", IEEE Journal of Solid-State Circuits, Vol.40, No.12 pp.2347-2445 (Dec. 2005)
- (3) I Ahmed and D. A. Johns : "An 11-Bit 45MS/s Pipelined ADC With Rapid Calibration of DAC Errors in a Multibit Pipeline Stage", IEEE Journal of Solid-State Circuits, Vol.43, No.7 pp.1626-1637 (July. 2008)
- (4) B. Murmann and B. E. Boser : "A 12-bit 75-MS/s Pipelined ADC Using Open-loop Residue Amplification", IEEE Journal of Solid-State Circuits, Vol.38, No.12 pp.2040-2050 (Dec. 2003)