# Timing Skew Compensation Technique Using Digital Filter with Novel Linear Phase Condition

### Koji Asami

**Advantest Corporation** 

Hiroyuki Miyajima, Tsuyoshi Kurosawa, Takenori Tateiwa, Haruo Kobayashi Gunma University





## Purpose

- Fine skew adjustment using a digital filter while maintaining a linear phase condition in ATE
  - Timing accuracy is important to ATE
  - Various digital filters are used for testing analog LSIs
  - Linear phase condition is required of the digital filter to preserve the analog waveform

## Outline

- Conventional linear phase FIR filter
- Time-shifted ideal filter
- Construction of linear phase filter
- Application examples
- Conclusion

## 4 Types of Generalized Linear-Phase FIR Systems



(1)Type I symmetric even-order



(3)Type III antisymmetric even-order



(4)Type IV antisymmetric odd-order

Ts

## **Frequency Characteristics of 4 Types**

| h(nT)    | H(e <sup>jωT</sup> )                                                                                              |
|----------|-------------------------------------------------------------------------------------------------------------------|
| Type I   | e <mark>-jω(N–1)T<sub>s</sub>/2</mark> (N–1)/2<br>∑a <sub>k</sub> cos[ωkT <sub>s</sub> ]<br>k=0                   |
| Type II  | e <sup>-jω(N–1)T<sub>s</sub>/2                                    </sup>                                          |
| Type III | e <sup>_j</sup> (ω(N–1)T <sub>s</sub> /2–π/2) <sup>(N–1)/2</sup><br>∑a <sub>k</sub> sin[ωkT <sub>s</sub> ]<br>k=0 |
| Type IV  | e <sup>_j(ω(N–1)T<sub>s</sub>/2–π/2)</sup>                                                                        |

Phase : 1st order function of frequency Delay : depends on number of Taps

## Outline

- Conventional linear phase FIR filter
- Time-shifted ideal filter
- Construction of linear phase filter
- Application examples
- Conclusion

## **Ideal Filter Response**

#### Frequency Response

Impulse Response



 $\omega_s = \frac{2\pi}{T_s}$ : Sampling Rate

## **Discrete-Time Expression**



## **Time Shifted Impulse Response**



 $\angle G(j\omega) = -\omega \Delta t$ 

Impulse response shifted  $\Delta t$ 

#### **Only phase changed**

## Influence to Coefficients by Time Shift



## Outline

- Conventional linear phase FIR filter
- Time-shifted ideal filter
- Construction of linear phase filter
- Application examples
- Conclusion

## 2 Tap FIR Model



## 2 Tap Delayed FIR Model



## **2 Tap Delayed FIR Model**



## **Comparison of Freq. Characteristic**



Only slope of phase characteristic is changed

## **Frequency Characteristic of Proposed Filter**

| g(nT)    | G(e <sup>jωT</sup> )                                                                                                   |
|----------|------------------------------------------------------------------------------------------------------------------------|
| Type I   | e <sup>-j(ω(N–1)T<sub>s</sub>/2+ωτ)<sup>(N–1)/2</sup><br/>∑a<sub>k</sub>cos[ωkT<sub>s</sub>]<br/>k=0</sup>             |
| Type II  | e <sup>-j(ω(N–1)T<sub>s</sub>/2+ωτ)</sup>                                                                              |
| Type III | e <sup>-j(</sup> ω(N–1)T <sub>s</sub> /2–π/2+ωτ) (N–1)/2<br>∑a <sub>k</sub> sin[ωkT <sub>s</sub> ]<br>k=0              |
| Type IV  | e <sup>-j(</sup> ω(N–1)T <sub>s</sub> /2–π/2+ωτ) <sup>N/2</sup><br>∑b <sub>k</sub> sin[ω(k–1/2)T <sub>s</sub> ]<br>k=1 |

Phase : 1st order function of frequency Delay : controllable with  $\tau$ 

## **Proposed Design Technique**



**Delayed FIR Filter with Desired Characteristic** 

## **Example of Raised Cosine Filter**

**61 tap Raised Cosine Filter** 0.4 0.2 -0.2 **Delayed Filter (0.3 samples delay)** 0.4 0.2 -0.2 

## **Effect of Window Function**



Window function can reduce Gibbs phenomenon

## **Novel Linear Phase Condition of D.F.**

- Original FIR filter has complete linear phase
- Original FIR filter is band-limited
- Bandwidth of signal is below Nyquist rate

#### Fine delay can be controlled using Ideal filter

- Delayed filter has infinite impulse response
- Window function can construct FIR effectively

## Outline

- Conventional linear phase FIR filter
- Time-shifted ideal filter
- Construction of linear phase filter
- Application examples
- Conclusion

## **Application to Quadrature Modulator**



## **Adjustment of I/Q Skew**

0



 $f_c - f_0 \quad f_c \quad f_c + f_0$ 

## **Simulation Results**



#### **Delay Compensation Filter**

| delay  | 0.1 sampling points |
|--------|---------------------|
| Taps   | 61 Taps             |
| Window | Hann                |

## **Application to Time-Interleaved ADCs**



## **Simulation Results**



# (a) 2ch interleaved ADC with 0.01 samples skew

(b) Compensate the skew using 91 taps delay filter

## Conclusion

- Fine delay controllable digital filter which maintains desired characteristics is proposed
- It is applicable not only to Low Pass Filters but also to Band Pass Filters
- It can compensate the timing skew of analog modules in ATE