

高速データ受信回路 ジッタ耐性テスト回路の検討

〇土井佑太 〇佐久間一哲 石井正道 小林春夫 小林修 starc Ja Lab 高井伸和 新津葵一 山口隆弘

群馬大学

Gunna. University

発表内容

● 研究背景

- 高速データ受信回路ジッタ耐性テスト用 デジタル制御ジッタ発生回路
 ○ 広帯域ジッタ発生回路
 - O 正弦波分布ジッタ発生回路
- 送信回路出力信号ジッタ計測回路
- まとめ

発表内容

研究背景

- 高速データ受信回路ジッタ耐性テスト用 デジタル制御ジッタ発生回路
 広帯域ジッタ発生回路
 正弦波分布ジッタ発生回路
- 送信回路出力信号ジッタ計測回路
- まとめ

研究背景

4

ジッタ(信号のずれや揺らぎ)の問題が顕在化

研究背景

ジッタが大きいほど動作不良が起きやすい
ジッタの特性評価(ジッタ耐性テスト)が不可欠

研究背景

発表内容

研究背景

<u>高速データ受信回路ジッタ耐性テスト用</u> <u>デジタル制御ジッタ発生回路</u> 広帯域ジッタ発生回路 正弦波分布ジッタ発生回路

送信回路出力信号ジッタ計測回路

● まとめ

研究目的

高速データ受信回路のジッタ耐性テスト回路として ジッタをもつクロック生成回路を開発

FPGA:Field-Programmable Gate Array BOST:Built-Out Self Test BERT: Bit Error Rate Tester 研究目的

FPGAでBOST実現を目指す

9

研究アプローチ

遅延セル配列をデジタル制御信号で選択

- ② 遅延セル選択法の工夫により遅延ばらつきを 抑える

発表内容

研究背景

高速データ受信回路ジッタ耐性テスト用 デジタル制御ジッタ発生回路 広帯域ジッタ発生回路 正弦波分布ジッタ発生回路

- 送信回路出力信号ジッタ計測回路
- まとめ

CMOS微細化による特性ばらつき

ランダムばらつき(敵)

デジタル制御タイミング発生回路の 非線形性

特性ばらつきを積極的利用

確率的デジタル時間変換回路

デジタル時間変換回路: Digital-to-Time Converter (DTC)

確率的DTC回路の原理

細かい時間分解能のジッタを与えることが可能

確率的DTC回路の原理

広い範囲の値のジッタを与えることが可能

遅延ばらつきの測定

リング発振回路構成にして測定

● リング発振回路構成(インバータ奇数個)
 ● 自己測定 (Self-Measurement)

デジタル的に測定可

遅延ばらつきの測定

遅延ばらつきの測定の原理

遅延と発振周期との関係

20

遅延ばらつきの計算手順

 $\tau_1 = \tau + \Delta \tau_1 = \tau' + (\tau + \Delta \tau_1) - \tau'$

同様にして τ_N まで測定

21

遅延ばらつきの計算手順

 $\tau = \tau_1 \sim \tau_N$ の平均値と定義 $\tau = \frac{1}{N} (\tau_1 + \tau_2 + \dots + \tau_N)$

$$\Delta \tau_1 = \tau_1 - \tau, \Delta \tau_2 = \tau_2 - \tau, \cdots, \Delta \tau_N = \tau_N - \tau$$

$$\left(\Delta\tau_1 + \Delta\tau_2 + \dots + \Delta\tau_N = 0\right)$$

確率的DTC回路の全体動作

23

より高精度計測のための考察

リング発振回路での遅延測定の問題点

リング発振回路から計算するτ+Δτ は 立ち上がり遅延τ_rと立ち下がり遅延 τ_fの平均値

使用するのは立ち上がり遅延 7

立ち上がり時間で測定発振回路

タイミングチャート

26

タイミングチャート

27

シミュレーション結果

タイミングチャート

パルス幅が一定に

発振周波数

7.55 [MHz]

発振周波数の比較

7.55 [MHz]

理論式とシミュレーション結果の一致を確認

発表内容

<u>高速データ受信回路ジッタ耐性テスト用</u> <u>デジタル制御ジッタ発生回路</u> 広帯域ジッタ発生回路 正弦波分布ジッタ発生回路

送信回路出力信号ジッタ計測回路

● まとめ

正弦波分布ジッタ発生回路

タイミング変位が正弦波状に変化するクロックを生成

遅延ばらつきの影響を抑える (完全にタイミングを制御する)

・デジタル制御パルス位置変調
 ・デジタル∆Σ変調
 ・Element Rotation アルゴリズム

・PLL回路

を組み合わせて実現する構成を提案

ばらつきを抑えるとは

敵のコマを取ること

ばらつきを積極利用はしない

正弦波分布ジッタ発生回路全体構成

デジタルΔΣ変調回路の役割

遅延量子化(r)の 誤差影響を 高周波に押しやる (ノイズシェーピング)

CLKm タイミング変位のパワースペクトル
Element Rotation回路の役割

CLKm タイミング変位のパワースペクトル

Element Rotation回路

遅延セルの選択を均等化

PLL回路の役割

発表内容

研究背景

まとめ

高速データ受信回路ジッタ耐性テスト用 デジタル制御ジッタ発生回路 広帯域ジッタ発生回路 正弦波分布ジッタ発生回路

● 送信回路出力信号ジッタ計測回路

研究目的

<u>ジッタ特性</u> 回路の性能測定項目の1つ

全てデジタル回路で構成 FPGAでBOST 実現を目指す。 高価な計測器(デジタルオシロ等)が不要。

参者文献

下記文献をシミュレーション・解析で追試

A. H. Chan, G. W. Roberts
"A Jitter Characterization System
Using a Component-Invariant Vernier Delay Line,"
IEEE Trans. VLSI, Vol.12, No.1, pp.79–95 (Jan. 2004).

44

<u>highの数をカウントする</u>

ジッタのRMS値とピークtoピーク値

Sampling Instances

Sampling Instances

PDFを元にRMS値やピークtoピーク値を得る

ジッタのRMS値とピークtoピーク値

<u>PDFを元にRMS値やピークtoピーク値を得る</u>

Component-Invariant VDL

バーニア型とは「差」が分解能

囲碁は 陣地(領土)の 広さの差で勝負をする

バーニア型

時間の差 △T=Ts-Tf:時間分解能

ジッタ計測回路

ジッタ計測回路

ジッタ計測回路

ジッタの計測原理

Calibration Mode

<u>**T**₀とリング発振周期T_s, T_fを求めている</u>

T₀:回路固有の遅延のみを含む

jitter-free

Measurement Mode

<u>サンプルTnを集める</u>

Tn:回路固有の遅延とジッタを含む

ジッタ量の抽出

ジッタ量が算出可能となる

表:	シ	Ξ	ユ	レー	シ	Ξ	ン	·指標
----	---	---	---	----	---	---	---	-----

DATA周波数[GHz]	1.0	各入力信号電圧[V]	١.2
CLOCK周波数[GHz]	1.0	インバータ遅延T[ps]	20.43
発振周期Ts[ps]	169.5	インバータ遅延т₅[ps]	59.42
発振周期T _f [ps]	158.2	インバータ遅延т _f [ps]	45.07

発振器と出力波形

<u>波形が周期的に出力されている</u>

発振器と出力波形

<u>波形が周期的に出力されている</u>

各波形の拡大図

ジッタ測定時間分解能に対する評価

$$\Delta T = T_s - T_f = \frac{T_p}{N_p(N_p - 1)}$$

60

 $\Delta T = T_s - T_f = 169.5 - 158.2 = 11.3[ps]$

$$\Delta T = \frac{T_p}{N_p(N_p - 1)} = \frac{2380}{15(15 - 1)} = 11.33[ps]$$
$$\implies integration integrated integration integrated integration integrated integrat$$

11.3

<u> 分解能はほぼ理論通りになっている</u>

発表内容

● 研究背景と目的

高速データ受信回路ジッタ耐性テスト用 デジタル制御ジッタ発生回路 広帯域ジッタ発生回路 正弦波分布ジッタ発生回路

送信回路出力信号ジッタ計測回路

● まとめ

まとめ

● 高速データ受信回路のジッタ耐性BOSTとして ジッタをもつクロック生成回路を2つ提案

- ① 確率的DTC回路 ⇒遅延ばらつきを利用し細かい分解能を実現
- ② 正弦波分布ジッタ発生回路
 ⇒∆Σ変調、Element Rotation を利用し 遅延ばらつきの影響を除去
- 送信回路出力のジッタ測定用回路を検討

まとめ

● 高速データ受信回路のジッタ耐性BOSTとして ジッタをもつクロック生成回路を2つ提案

- ① 確率的DTC回路 ⇒遅延ばらつきを利用し細かい分解能を実現
- ② 正弦波分布ジッタ発生回路
 ⇒∆Σ変調、Element Rotation を利用し 遅延ばらつきの影響を除去
- 送信回路出力のジッタ測定用回路を検討

全てデジタル技術で実現可能

謝 辞

有意義な御討論をいただきました 矢野雄二、我毛辰弘、 松浦達治 宮下博之、力野邦人、岸上真也 各氏に 感謝の意を表します。

付録

 τ_r :立ち上がり遅延 τ_f:立ち下がり遅延 b a τ_1 τ_r / τ_f トリガ $\tau_r < \tau_f$ トリガ τ_1 אא а $\boldsymbol{\tau}_f$ b トリガのパルス幅に遅延が加算され、 a、b共に波形が1になる

ゲート遅延 発振回路

発振を維持できない

66

発振周波数の比較

7.55 [MHz]

理論式とシミュレーション結果の一致を確認

リング発振回路(_{τ_f}測定)

ANDとORを入れ替え、トリガを反転させる

リング発振回路(τ_f測定)

タイミングチャート

70

発振周波数

71

シミュレーション結果

タイミングチャート

パルス幅が一定に

発振周波数

10.89 [MHz]
発振周波数の比較

10.89 [MHz]

理論式とシミュレーション結果の一致を確認

ΔΣ変調と量子化ノイズのノイズシェーピング 74

DACでのエレメントローテーションアルゴリズム 75

積分して微分

1-z⁻¹で1次ローパスノイズシェープ

質疑応答

研究会での質問

Q1

MUXでも遅延が発生するが、その点は考慮しているのか。 理論式が変わってしまうのでは。 MUXの遅延は無視できるレベルなのかどうか。

•Q2

FPGAで回路を構成すると、 実際の論理とは異なってしまうのでは。 FPGAの機能を用いて回路を構成しても いいかもしれない。

質疑

Q3

分解能を上げるための理論的な解析はした?
 (こうすると上げる、こうすると下がるのような)
 佐久間 → まだ行っていません。
 ジッタの発生と計測で1つのものにしたい?
 佐久間 → 最終的にできたらいいです。

Q4

•T_pは長い方がいいの、短い方がいいの?

佐久間 $\rightarrow T_p$ が小さければ測定時間は短くなるかもしれませんが、

ー概には言えないと思います。

質疑

• Q5

FPGAで実装できそう? FPGAには色々なツールあるから、そうゆうのも考えて。

• Q6

FPGAでVDLをつくるのは難しい。 もしできるようなら教えて下さい。

質疑

- ・これはFPGAなどのツールを使ったもの?
 それとも回路シミュレーション?
 佐久間 → spectreで回路シミュレーションしたものです。
- Q7
 - • $T_p \ge T_f$ は同じものですか?
 - 佐久間 → いいえ、違う値を使います。