Architecture of High-Efficiency Digitally-Controlled Class-E Power Amplifier

Jiani Ye, Zachary Nosker¹, Kazuyuki Wakabayashi, Takuya Yagi, Nobukazu Takai, Kiichi Niitsu Keisuke Kato, Takao Ootsuki, Haruo Kobayashi² Department of Electronic Engineering Gunma University 1-5-1 Tenjin-cho Kiryu, Gunma 376-8515 Japan t11802471@gunma-u.ac.jp¹, k_haruo@el.gunma-u.ac.jp²

Abstract—This paper describes the analysis and design of digitally-controlled class-E power amplifiers, which are suitable for fine CMOS implementation. Two methods for implementing digitally-controlled class-E(-like) amplifiers have already been proposed: using NMOS switch arrays or digital PWM. In this paper we analyze the operation and efficiency of these methods, and then propose combining them to achieve higher efficiency.

Keywords- Power Amplifier, Class E, Efficiency, Digital Control, CMOS

I. INTRODUCTION

Class-E amplifiers are widely used due to their high efficiency [1-7]. Digitally-controlled class-E(-like) amplifiers that use an NMOS switch array or digital PWM have recently been proposed in [8-11]. Compared to ideal class-E amplifiers, the efficiency of these amplifiers is degraded because they cannot achieve zero-voltage, zero-derivative switching. However, because they are largely digital, they are suitable for fine CMOS implementation.

In this paper we analyze the operation and efficiency of NMOS switch array and digital PWM methods, then propose using a combination of these methods to achieve higher efficiency. This proposed method requires a complicated look up table (LUT) to choose the best combination of duty ratio and number of on-state NMOS FETs for high efficiency and distortion compensation. While this approach sounds difficult, recent rapid advances in digital technology make it feasible to implement, and our simulations validate its effectiveness.

II. CLASS-E POWER AMPLIFIER

The basic circuit of the class E power amplifier is shown in Fig. 1 [1-7]. It consists of a choke inductor L_f , a power MOSFET operating as a switch, shunt capacitance C_I , and an L-C-R series-resonant circuit. The switch is turned on and off at the operating frequency $f = \omega/(2\pi)$ by the gate driver circuit. The transistor output capacitance, choke parasitic capacitance, and stray capacitances are included in the shunt capacitance C_I . The resistance R is the output load. The choke inductance L_f is assumed to be large enough that AC current ripple on the DC supply current (I_{DD}) can be neglected [1]. An ideal class-E amplifier can achieve high efficiency because of its zero-voltage, zero-derivative switching.

Osamu Yamamoto, Isao Akiyama Gigatec Inc. 625 Shimo-Oshimamachi Takasaki, Gunma 370-0886 Japan

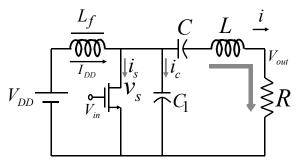


Fig. 1: Basic class E power amplifier circuit.

III. CLASS E AMPLIFIER WITH DIGITALLY-CONTROLLED MOS SWITCH ARRAY

A fully-digital amplitude-controlled class-E(-like) power amplifier using an array of NMOS switches is proposed in [8] (Fig. 2). With amplitude control digital signals (d_1 , d_2 , d_3 , d_4 ,...) and phase modulation signal (PM), polar modulation is realized. The output signal amplitude will change according to which switches are activated, and this is suitable for fine CMOS implementation. As is clarified later, the amplifier in Fig.2 is not an ideal class-E amplifier as it cannot achieve zero-

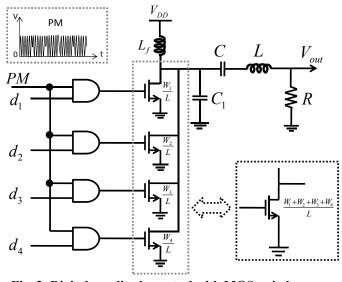


Fig. 2: Digital amplitude control with MOS switch array.

voltage switching, because the activated NMOS FETs (whose width is limited) work as current sources and not as ideal switches. To the best of our knowledge, the efficiency of the amplifier in Fig.2 has not yet been clarified.

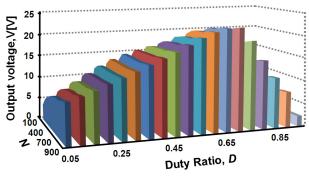
IV CLASS-E AMPLIFIER WITH DIGITAL PWM CONTROL

The output voltage amplitude of the class E amplifier can be adjusted by changing the switch duty cycle as shown in Figs. 3, 4. The highest output voltage is attained with the following duty ratio D:

$$D = \frac{T_1}{T_1 + T_2} \tag{1}$$

where $T_1 = 1/f_1$, $T_2 = 1/f_2$ and

$$f_{1} = \frac{1}{2\pi\sqrt{LC}} \quad f_{2} = \frac{1}{2\pi\sqrt{L\frac{C \cdot C_{tot}}{C + C_{tot}}}}$$
(2)


Here f_l is the resonant frequency when the transistor is off and f_2 is that when it is on. With our design parameters, the calculated result is D = 0.58 ($C_{tot} \approx C_l$), which is close to the value of 0.65 found through simulation.

A digitally-controlled PWM class-E amplifier is proposed in [9,10], which emphasize that digital PWM with fine time resolution is relatively easy to implement with a fine CMOS process.

PROPOSED DIGITALLY-CONTROLLED AMPLIFIER V.

We aimed to design a digitally-controlled power amplifier with high efficiency. Digital control is suitable for fine CMOS implementation, but previous designs suffer from low efficiency. We have performed simulations-results are shown in Figs. 5 and 6-relating MOSFET width (the number of onstate MOSFETs, N), duty ratio D, output voltage, input power, output power and efficiency. We see that for a given output power Po, there can be multiple combinations of (N, D), and the efficiency is different for each. We propose the following implementation:

1. Class E amplifier with NMOS switch array, where pulse width and position are digitally controlled.

2. For each output power P_O (or output voltage amplitude

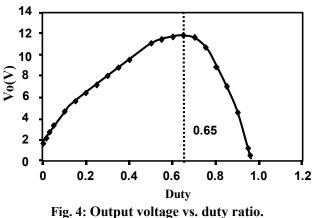
Fig. 3: Output voltage, duty ratio for each N.

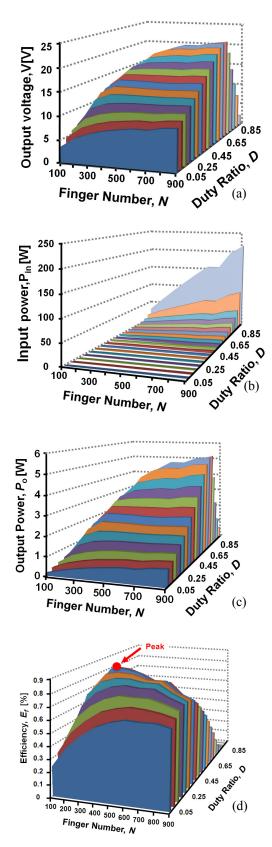
 V_{O}) store the (N, D) combination that realizes the highest efficiency in LUT memory.

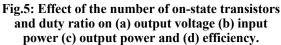
During normal operation of the power amplifier, use 3. stored (N, D) data with digital amplitude control for a targeted output voltage V_{O} , and also control the pulse position digitally for desired phase.

The above control system may be complicated, but it is relatively easy to implement with modern advanced digital technology.

Simulated efficiency with respect to output voltage is shown in Fig.7. For a targeted output voltage, the proposed method chooses N and D for peak efficiency, and we see that the efficiency of the proposed method can be higher than that for fixed N or for fixed D.


VI. ANALYSIS OF DIGITALLY-CONTROLLED AMPLIFIER


MOSFET Width, Efficiency and Output Power А.


There are a number of factors that affect the efficiency of the basic class E amplifier. Previous work has shown that changing either or both input voltage and duty cycle affects the efficiency[4],[5]. Models for the class E amplifier operating at high or low frequencies [6] have also been proposed. Our simulation results are validated by calculations (below) that explain how MOSFET width (which is equivalent to the number (N) of activated MOS switches) affects the basic class E amplifier.

First we assume that the transistor is an ideal switch in designing a class E amplifier. We are using a 0.18µm CMOS process with switching transistor parameters L=400nm, W=8µm, N=900 (total width of 7200µm) (Fig.8). Using an input voltage source V_{DD} =10V, the maximum output power is designed to be $P_{O(max)}$ =5.00W with a driver signal of 2.00GHz and a 50% duty ratio. The parameters have been calculated using [1] as $R=11.5\Omega$, $L_{f}=40.4$ nH, $C_{I}=1.27$ pF, C=1.18 pF, *L*=6.43nH.

Next we consider a digitally controlled amplifier in Fig.2 Fig.7 shows the effect of changing the number of on-state transistors, N, simulated using the circuit in fig. 8.

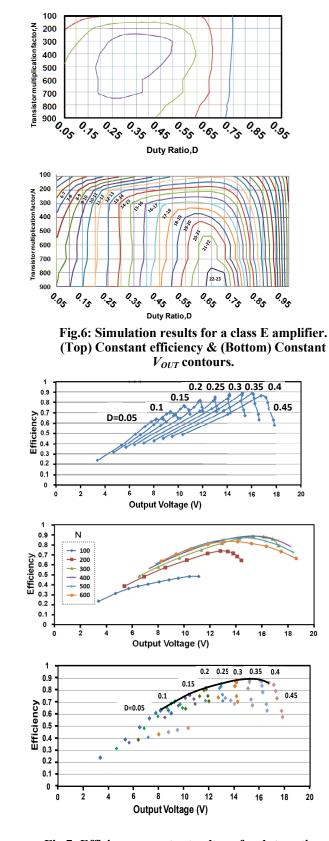


Fig.7: Efficiency vs output voltage for duty ratio. (Top) Constant duty cycle. (Middle) Constant N. (Bottom) Proposed.

20

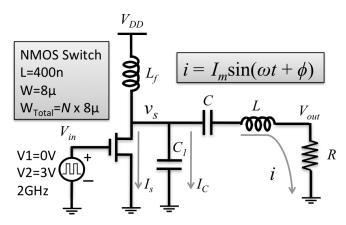


Fig.8: Simulated class E-like amplifier.

- 1. With N > 300, we notice that the output voltage remains approximately constant even as N increases. This range is used in a conventional class-E amplifier.
- 2. For the range 0 < N < 300, the output voltage increases with *N*, and this range is used for a digitally controlled amplifier (Fig.2)

For the range 0 < N < 300, the MOSFET is seen to be operating in the saturation region, hence the drain current satisfies eq. (3)

$$I_{D} = \frac{1}{2} k_{n}^{'} \frac{W}{L} (V_{GS} - V_{t})^{2}$$
(3)

When the transistor is in saturation, it can be thought of as a current source in series with a switch, which causes power loss.

Simulation results show the operating region of the switch transistor for different *N* values (Fig 10). The simulation shows that small transistors ($N=20\sim300$) operate in the saturation region, while large transistors ($N=300\sim800$) operate in the triode region when the transistor is ON.

B. PWM, Efficiency and Output Voltage

It has been shown that using the switching nature of a class E amplifier can be used to improve the amplifier efficiency [1]. However, this previous analysis assumes the transistor to be an ideal switch.

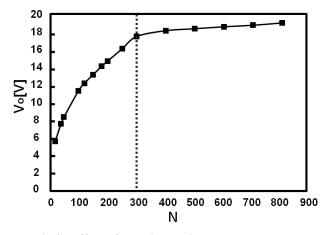


Fig.9: Effect of transistor width N on output voltage

It has also been shown that adjusting the duty cycle will affect efficiency [2], and an equation was provided to explain the relation between the instantaneous phase, ϕ and duty ratio. Given the duty ratio, the function

 $f(\phi)$ =VSM can be derived [3]. Changing the duty ratio affects the output power efficiency. Because the transistor is not an ideal switch, it has resistive power loss, since static power will be consumed when current passes through the switch. Because of this, a longer duty cycle means that the transistor is 'on' for a longer amount of time, and hence the static power consumption is larger. Changing the size of the transistor also changes the drain-to-source and gate-to-source capacitances, which affects both the output power and the signal linearity.

The work presented here focuses on how the transistor size affects the efficiency. In order to facilitate calculations, we assume $r \rightarrow \infty$. The switch turns on in the interval $0 < \omega t < \pi$, during which time the current through capacitor C_l is zero [1]. We have derived the following equation from the ZVS condition:

$$I_m = \frac{\frac{1}{2}k_n^{\prime}\frac{W}{L}(V_{GS} - V_t)^2}{-\frac{2\cos\phi}{\pi} - \sin(\omega t + \phi)}$$
(4)

We notice in eq.(4) that increasing the width (W) of the switch transistor also increases the switch current. Since the output voltage is a function of the switch current, an increase in transistor width will also increase the output voltage as

$$v_o = I_m \sin(\omega t + \phi) R \tag{5}$$

We have performed simulation with the parameter values in Table I, and obtained the following:

Calculation :	$I_s = 1.40 \mathrm{A},$	$I_m = 0.855 A$
Simulation :	<i>I</i> _s =1.35A,	$I_m = 0.858 A$

We see that theoretical and simulation results agree well.

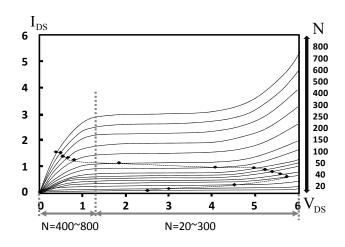


Fig.10: Switch transistor operating mode and N

TABLE I.

Simulation Parameters		
Parameter	Value	
R	6 Ω	
L	6.43 nH	
C_{I}	1.267 pF	
С	1.18 pF	
L_{f}	40.376 nH	
ϕ	π rad	

C. Simulation of Efficiency and Output Power

SPICE simulation results for output power, power loss and efficiency for a constant duty ratio are shown in Fig.11, and we observe the following:

- 1. The output power changes little when the MOSFET width is larger than 300 x 8µm.
- 2. As the size of the transistor is increased beyond N = 300, the power loss increases and hence the efficiency decreases.
- 3. When the width is up to 300 x 8μm, the output power increases with MOSFET width (the digitally- controlled class E amplifier uses this region).
- 4. When the size of the transistor is less than N = 300, the efficiency drops as N decreases. However the method we propose in Section 5 will improve the efficiency in this region.

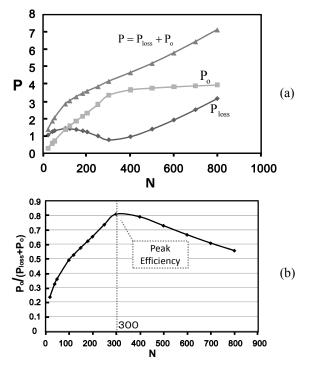


Fig.11: Simulation results. (a) Output power, total power and power loss (b) Efficiency.

D. Simulation of Efficiency and Output Power

We consider here the effects of duty and N on the output signal phase, and we found from simulation as follows:

For a given duty ratio D, we changed the transistor size N. For small N (N < 300), the output voltage amplitude changes, but phase is little affected. On the other hand, for large N (N >300), the amplitude changes little, but the phase obviously changes.

When we use an ideal switch for the simulation, both amplitude and phase change continuously with *D*. Fig. 12 shows the effect of duty ratio on the output signal waveform for (D, N) = (0.1, 400), (D, N) = (0.3, 400). We see that both phase and the amplitude change as duty changes, which makes the pre-distortion LUT compatible with separate control of amplitude and phase modulation, as opposed to [9] which only implements phase modulation.

Compared with PWM, using the relation between output amplitude and N for the small transistor situation is an easier way to implement amplitude modulation. As shown in Fig.13 for (D, N) = (0.4, 75), (0.4, 175), the amplitudes change but phase change is small.

Based on the above observation, we have to choose the best (D, N), and use pulse position control (Fig.13) to change the phase. We have to control D and N for both amplitude and phase modulation with high efficiency, which makes the LUT system complicated.

Note that there are some defined relations between duty and phase (Fig.15):

$$\phi = \tan^{-1} \left[\frac{\cos(2\pi D) - 1}{2\pi (1 - D) + \sin(2\pi D)} \right] + n\pi$$
(6)

E. Simulation of Efficiency and Output Power

We have built a model of a class E amplifier for small as well as big MOSFETs in Fig.16 for simple and approximate calculation. Here the MOSFET is simulated by an ideal switch in series with a variable resistance and in parallel with a variable capacitor. Changing the size N is equivalent to

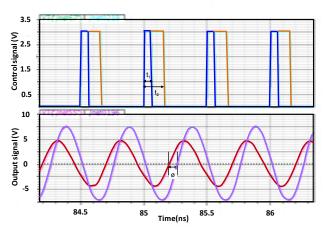


Fig.12: Simulation results for duty ratio change. (Top) Gate input. (Bottom) Output waveform.

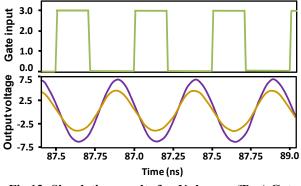
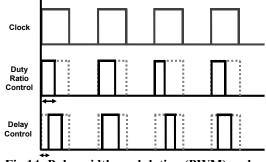



Fig.13: Simulation results for *N* change. (Top) Gate input. (Bottom) Output waveform.

Fig.14: Pulse width modulation (PWM) and pulse position modulation (PPM)

changing the resistance and capacitance values. For a small MOSFET, parasitic capacitance is small enough to ignore, and it is equivalent to an ideal switch in series with a resistor. For a large MOSFET, parasitic capacitance has a large effect, but resistance is small enough to be ignored. We have checked the accuracy of this model by SPICE simulation.

VII. CONCLUSIONS

This paper has described the analysis and design of digitally-controlled class-E(-like) power amplifiers, targeted for fine CMOS implementation. Conventional digitally-controlled class-E(-like) amplifiers use an NMOS switch array or digital PWM, but their efficiency is low. This paper proposes using a hybrid method, provided an analysis, and shown by simulation that it can improve efficiency: using

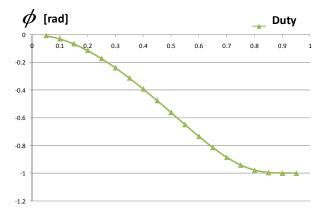


Fig.15: Duty cycle vs. phase shift

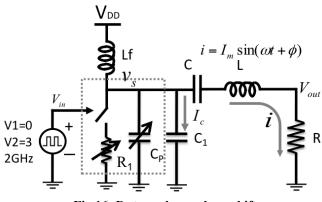


Fig.16: Duty cycle vs. phase shift

PWM control (together with PPM for phase control) with a large enough N for a high voltage output and NMOS switch array control for a low output voltage leads to large output voltage range with high efficiency.

ACKNOWLEDGMENT

We thank K. Wilkinson for improving the manuscript.

REFERENCES

- M. K. Kazimierczuk, RF Power Amplifiers, John Wiley & Sons, Ltd. (2008).
- [2] D. J. Kessler, M. K. Kazimierczuk, "Power Losses and Efficiency of Class E RF Power Amplifiers at Any Duty Cycle," IEEE Trans. on Circuits and Systems I, vol.51, no.9, 1675 - 1689 (Sept. 2004).
- [3] T. Suetsugu, M.K.Kazimierczuk, "Design Procedure of Class-E Amplifier for Off-Nominal Operation at 50% Duty Ratio", IEEE Trans. on Circuits and Systems I, vol.53, no.7 (July 2007).
- [4] T. Suetsugu, M. K.Kazimierczuk, "Off-Nominal Operation of Class-E Amplifier at Any Duty Ratio," IEEE Trans. on Circuits and Systems I, vol.53, no.6, pp.1389-1397 (June 2007).
- [5] T. Suetsugu, M. K.Kazimierczuk, "ZVS Operating Frequency Versus Duty Ratio of Class E Amplifier with Nonlinear Shunt Capacitance," IEEE ISCAS, pp.3258-3261 (2008).
- [6] T. Suetsugu, M. K. Kazimierczuk, "Analysis of Dynamic Frequency Response of Class E Amplifier," IEEE ISCAS, pp.2866-2869 (2009).
- [7] S. C. Cripps, RF Power Amplifier for Wireless Communications, Artech House Publishers (1999).
- [8] R. B. Staszewski, P. T. Balsara, All-Digital Frequency Synthesizer in Deep-Submicron CMOS, John Wiley & Sons, Ltd. (2006).
- [9] J. S. Walling, H. Lakdawala, Y. Palaskas, A. Ravi, O. Degani, K. Soumyanath, D. J. Allstot, "A Class-E PA With Pulse-Width and Pulse-Position Modulation in 65 nm CMOS," IEEE Journal of Solid-State Circuits, vol.44, no.6, pp. 1668-1678 (June 2009).
- [10] M. Park, M. H. Perrot, R. B. Staszewski, "A Time-Domain Resolution Improvement of an RF DAC," IEEE Trans. Circuits and Systems II, vol.57, no.7, pp.507-512 (July 2010).
- [11] I. Mori, K. Kimura, Y. Yamada, H. Kobayashi, Y. Kobori, S. A. Wibowo, K. Shimizu, M. Kono, H. San, "High-Resolution DPWM Generator for Digitally Controlled DC-DC Converters", IEEE Asia Pacific Conference on Circuits and Systems, Macao, pp.914-917, (Dec. 2008).