計測展Tokyo 2011

2011年11月18日

専門コンファレンス 4 電子計測技術の最前線

ミックストシグナルSOC テスト技術の動向と 最近の研究成果

群馬大学大学院 電気電子工学専攻 小林春夫

k_haruo@el.gunma-u.ac.jp http://www.el.gunma-u.ac.jp/~kobaweb/

発表内容

- 1. ミックスト・シグナルSoCテスト技術の動向
 - ミックスト・シグナルSoCテスト技術
 - アナログ回路部テストの問題点
 - アナログ回路のテスト容易化技術
- 2. ADCテスト信号発生技術の開発事例
 - アルゴリズム1:位相差切り替え法
 - アルゴリズム 2:ΔΣDAC使用
 - アルゴリズム 3: プリデストーション
- 3. まとめ

発表内容

1. ミックスト・シグナルSoCテスト技術の動向 ● ミックスト・シグナルSoCテスト技術 アナログ回路部テストの問題点 アナログ回路のテスト容易化技術 2. ADCテスト信号発生技術の開発事例 アルゴリズム1: 位相差切り替え法 ● アルゴリズム 2:ΔΣDAC使用 ● アルゴリズム 3: プリデストーション 3.まとめ

LSIテストはコストが最も重要な評価関数

微細化・高集積化で シリコンコストは低下、 テストコストは増加。 ●「コスト」の概念は ミクストシグナルSOCの テストの課題を明確にする。 ● LSIテスト技術は すべて「コスト」に収束する。

「テスト」と「測定」は異なる

 製造出荷テスト: 100% エンジニアリング "Go" or "No Go" の判定
 例: DUT と "Golden Device"の性能比較でよい。
 LSIテストは生産・製造技術である。
 エンジニアリングセンスが必要。

LSIテストは低コストでなければならない

● 測定:50% サイエンス,50% エンジニアリング 正確な性能評価

DUT: Device Under Test

LSIテストのマネージメント戦略

● 戦略1:

アナログDFT, BIST を開発し 低コストATEを用いてテストコスト削減

高性能ミクストシグナルATEと

そのノウハウを用いて、

素早くLSIを市場投入して利益を得る

DFT: Design for Testability

- **BIST:** Built-In Self-Test
- ATE: Automatic Test Equipment

LSIテスト技術 人的リソース

- 人の協力が重要
 - 回路設計者
 - テスト技術者
 - ATE メーカー技術者
 - 経営者
 - 大学での研究者
- アナログテスト容易化技術の研究・開発は LSIテスト技術に加えて アナログ技術のバックグランド必要
- 現状、アナログRF回路設計とそのテスト技術の 研究者、学会は別のグループで交流は限定

低コストテスト

理想:

● 全てのチップが動作. テストしない

実際:

- 低コスト ATEを使用
- テスト時間が短い
- 同時に多数のチップを並列テスト
- DFT, BISTの開発期間短く、チップ面積小
 テストによる付加価値:
- 不良品をださない
- 故障診断 (車載応用で重要)
- 歩留まり改善

低コストATE

- デジタル ATE
 - 任意波形発生器(AWG) 等の
 - アナログオプションを使用しない
 - 入出カピンがデジタル
- アナログATEのデジタルATEへの置き換え
 マルチサイトテストが可能になる
- 中古ATE
- 内製ATE

テスト時間が短いことは以前として重要

AWG: Arbitrary Waveform Generator

テストコスト低減にテスト時間は重要

ウェーハーテスト

- パッケージ前のウェーハーテストは 低コスト化につながる.
- プロービングの問題点
 - プロービングのオン抵抗
 - PADがダメージを受ける
 - 高周波信号のプロービングは高コスト
 - → 歩留まり改善後は行わない.
 - 複数チップ同時のプロービングは難しい.
- ウェーハーテスト研究事例

低コスト・プローブに電流制限

➡ DUTでテスト時にピン最大電流を抑える

発表内容

1. <u>ミックスト・シグナルSoCテスト技術の動向</u>

● ミックスト・シグナルSoCテスト技術

● <u>アナログ回路部テストの問題点</u>

アナログ回路のテスト容易化技術

2. ADCテスト信号発生技術の開発事例

● アルゴリズム1:位相差切り替え法

● アルゴリズム 2:ΔΣDAC使用

● アルゴリズム 3: プリデストーション

3. まとめ

アナログ回路テストの問題

- 汎用的テスト容易化手法がない
 - cf. デジタルのテスト容易化:
 - スキャンパス法、シグネチャアナリシス法
- アナログ回路毎
 その性能指標毎に対応しなければならない。
 - 例: ADCのテスト
 - DC線形性テスト → 高精度ランプ波発生 高周波特性テスト → 低クロックジッタ 高周波入力
- アナログ、RF, 高速IO, パワーマネージメントの テスト容易化技術はそれぞれ異なる

アナログ回路テストの問題

- 実用的な故障モデル(fault model)がない
- 故障(catastrophic fault)だけでなく、

パラメトリック故障(基本動作はしているが性能足りない) を検出する必要あり。

□ 「測定」に近い

Prof. A. Chatterjee 代替テスト (Alternative Test)

Specification-based Alternative Defect-based Test仕様ベース
テスト仕様ベースと等価
測定簡単なパラメータ故障ベース
テスト

アナログDFT, BIST付加の問題

- 負荷容量等で回路性能劣化
- チップ面積(チップコスト)増加
- DFT, BISTの故障で歩留まり低下
- データ転送(シリアルデータでのシフトレジスタ
 - へのモード設定)時間が問題になり得る
- 被テストアナログ回路より
 DFT, BIST への性能要求が厳しくなりがち

アナログDFT, BIST は簡単である必要あり

ミクストシグナルATEメーカー

- アナログDFT, BIST はミクストシグナルATE
 メーカーにも有益
- アナログ部の開発はコスト高
- ATEの開発には「今日の技術で明日の (高性能な)チップをテストする」のジレンマあり。
 革新的技術必要。

インターリーブ ADC は ATEで 今日のADCを用いて 超高速サンプリングを実現する

発表内容

1. <u>ミックスト・シグナルSoCテスト技術の動向</u>

- ミックスト・シグナルSoCテスト技術
- アナログ回路部テストの問題点
- アナログ回路のテスト容易化技術
- 2. ADCテスト信号発生技術の開発事例
 - アルゴリズム1:位相差切り替え法
 - アルゴリズム 2:ΔΣDAC使用
 - アルゴリズム 3: プリデストーション
- 3. まとめ

アナログテスト容易化7つの定跡

- ① オーバーサンプリング(ΔΣ変調技術)
- ② アンダーサンプリング技術
 - (等価時間サンプリング技術)
- ③ デジタル技術を多用
- ④ オンライン校正、自動ゼロ技術
- ⑤ 差動信号等、信号の差を利用
- ⑥ 被テスト回路内の冗長性をテスト基準として使用

⑦ SOC内回路ブロックをテスト時に利用 (ループバックテスト等)

等価時間サンプリング技術

製造出荷時テスト: LSI入力信号は制御可能(繰り返し信号) ⇒ 等価時間サンプリング使用可

繰り返し波形の 波形再構成

測定: 入力信号は未知

等価時間サンプリングで高周波信号を低コスト・テストが可能

ループバックテスト

対称的な回路で使用可能

SOC内に ADC, DAC 送信回路、受信回路を持っている場合等

アナログ BIST の例

- 信号発生にΔΣ変調使用
- 時間領域アナログ信号処理
- アナログバウンダリスキャン
- 電源線を用いる
- テスト時に発振を利用(アナログフィルタ、オペアンプ)

● "可制御性", "可観測性" は有用な概念.

アナログテスト技術の展開

- 個別アナログ回路のテスト容易化だけでなく、 SOCシステム全体としてのテスト容易化設計が要
- 多くの側面の技術を用いる
 - 回路技術
 - BIST, BOST & ATEの協調
 - 信号処理
 - SOC 内のリソース

μP コア, メモリ, ADC/DAC

特に、SOC内のデジタルを利用する 微細化で概念が変わる

BOST: Built-Out Self-Test

いくつかの話題(1) デジタルRFプロセッサ

テスト容易化のためのアーキテクチャ デジタルテスターでテスト可能

携帯電話送受信機ICのテスト容易化

ループバックテスト構成

●携帯電話ではRx, Tx のキャリア周波数が異なる。
 直接にはループバックが使用不可
 テスト時にRx, Tx のキャリア周波数を合わせ得る。

いくつかの話題 (2)

- BIST, BOST, ATE の協調
 - BIST: 高速、低精度、簡単な回路
 - BOST: FPGAでデジタル実現
 - ATE: 低速・高精度基準信号の供給
- パワーマネージメント
 - LSI内 異なる電源電圧領域つなぎの回路部分
 - 電源立ち上げの際にBGRを急速に立ち上げる
- アナログRF回路の自己校正とテスト
 - 「これは回路研究者とテスト研究者の接点」 (Prof. A. Chatterjee, 米ジョージアエ科大)

いくつかの話題 (3)

- LSI内の各ブロックを同時・並列にテストして
- テスト時間を短縮
- 新概念 マルチ・ドメイン・テストも提案
- オンチップ計測器
 - ジッタ等はチップ外からは測定できないレベル

いくつかの話題 (4)

適応テスト (Adaptive Test)

DUTの途中のテスト結果に応じてテスト項目を変更/ 省略して短時間で効率のよいテストを行う

激変する環境下で生き残る生物。
 強い者でもない、
 賢い者でもない。
 変化に適応する者だけが
 生き残る。

Charles Robert Darwin 卿

いくつかの話題 (5)

アナログテストバス

T型スイッチによるアイソレーションの確保

バッファ回路

アナログバンダリスキャン

テスト時にピン数が少ない

➡ 並列テスト可能の観点から見直す コンパレータ出力をうまく利用

1. ミックスト・シグナルSoCテスト技術の動向 ミックスト・シグナルSoCテスト技術 ● アナログ回路部テストの問題点 アナログ回路のテスト容易化技術 2. ADCテスト信号発生技術の開発事例 アルゴリズム1: 位相差切り替え法 ● アルゴリズム 2:ΔΣDAC使用 ● アルゴリズム 3: プリデストーション 3.まとめ

紹介する研究のスタンス

Q:「1番ではなく 2番ではだめなのですか。」 A:「5番でも10番でもよいです。 比較的廉価で、 最高性能ではないものを用いて、 最高の仕事をしますよ。 エンジニアリングの精神

#この研究は半導体理工学研究センター(STARC)との共同研究として行われた。

研究目的

低性能(低コスト)信号発生器で 適正な品質のAD変換器テストを実現

低歪みの正弦波、2トーン正弦波信号を 低コストAWGで生成

大量生産時のLSIテストに効果大

AWG(Arbitrary Waveform Generator:任意波形発生器)

研究背景

DSPでデジタル信号を生成しDACでアナログ信号に変換 テスト信号として純粋な単一正弦波・2トーン信号を発生

低コストAWG内DACには非線形性が存在

素子のばらつきにより非線形

37

ADC線形性テスト(単一正弦波入力)

入力信号に歪成分(HD3)がある場合

ADCの歪成分(HD3)の高精度な計測が不可

ADC線形性テスト(単一正弦波入力)

提案手法により歪成分(HD3)をキャンセル可能

ADCの歪成分(HD3)の高精度な計測が可能

提案する3つの低歪み 正弦波、2トーン信号発生技術の特長

- AWG内部のDSPプログラム部の変更で実現
- AWG内部のDACの非線形性の同定必要なし
- アナログ部のキャリブレーション・調整必要なし
- 基本波近傍の歪み除去 信号帯域から十分離れているスプリアス発生

アナログフィルタで除去可能

<u>ディストーションシェイピング機能</u>

1. ミックスト・シグナルSoCテスト技術の動向 ミックスト・シグナルSoCテスト技術 ● アナログ回路部テストの問題点 アナログ回路のテスト容易化技術 2. ADCテスト信号発生技術の開発事例 アルゴリズム1:位相差切り替え法 ● アルゴリズム 2:ΔΣDAC使用 ● アルゴリズム 3: プリデストーション 3.まとめ

位相差切り替え型: 単一正弦波発生

提案手法の原理

出力Yのパワースペクトル

位相差の切り替えにより発生した歪 44

実験結果 -サンプリング周波数10MHz-(振幅1.3Vpp)

提案手法(位相差切り替え)

従来手法

実験結果 -サンプリング 周波数10MHz- (HD3)

実験結果-サンプリング周波数10MHz- (減少値)

アルゴリズムの一般化

 ①4相インターリーブによるHD2、HD3の同時キャンセル
②8相インターリーブによるHD3,HD5,HD7の同時キャンセル (HD2, HD4, HD6は 差動構成でキャンセル)
③位相差切り替えアルゴリズムの一般式化

──〉 ①、②をシミュレーションで確認済

アルゴリズムの一般化

 ①4相インターリーブによるHD2、HD3の同時キャンセル
②8相インターリーブによるHD3,HD5,HD7の同時キャンセル (HD2, HD4, HD6は 差動構成でキャンセル)
③位相差切り替えアルゴリズムの一般式化

①、②をシミュレーションで確認済

アルゴリズムの一般化

①4相インターリーブによるHD2、HD3の同時キャンセル
②8相インターリーブによるHD3,HD5,HD7の同時キャンセル
(HD2, HD4, HD6は 差動構成でキャンセル)
③位相差切り替えアルゴリズムの一般式化

①、②をシミュレーションで確認済

アルゴリズムの一般化

 14相インターリーブによるHD2、HD3の同時キャンセル
②8相インターリーブによるHD3,HD5,HD7の同時キャンセル (HD2, HD4, HD6は 差動構成でキャンセル)
③14月20月4月20日日

①、②をシミュレーションで確認済

位相差切り替え型:2トーン信号発生

	手法	
信号 Xk (k:0~1)	Sin(2πf ₁ t+θ _k)+Sin(2πf ₂ t-θ _k)	
位相	+π/6 -π/6	
入力信号 Din	k=0,1のインターリーブ	
入力周波数 f1、f2	f1=100 , f2=150	
サンプリング周波数 fs	2048	
DACの伝達特性	X + (-0.005) X ³	

シミュレーション結果

シミュレーション条件

提案手法

信号 Xk (k:0~3) _{θ0} θ ₁ θ ₂ θ ₃	sin(2πf ₁ t+θ _k)+sin(2πf ₂ t-θ _k) 4π/15 π/15 -π/15 -4π/15
位相 θ _{0、} θ _{1、} θ _{2、} θ ₃	4π/15 π/15 -π/15 -4π/15
入力信号 Din	k=0~3のインターリーブ
入力周波数 f 1、f 2	f1=51, f2=81
サンプリング周波数 fs	4096
DACの伝達特性	X + (-0.005) X ³ +(-0.0005) X ⁵

シミュレーション結果

シミュレーション条件

提案手法

位相 θ ₀ θ ₁ θ ₂ θ ₃ θ ₄ θ ₅ θ ₆ θ ₇ 71π/210 41π/210 29π/210 π/210 -π/210 -29π/210 -41π/210 -71π/210 入力信号 Din k = 0~7のインターリーブ 入力周波数 f 1、f 2 f1=19, f2=31 サンプリング周波数 f 4096	信号 Xk (k:0~7)	Sin(2πf ₁ t+θ _k)+Sin(2πf ₂ t-θ _k)
入力信号 Din k = 0~7のインターリーブ 入力周波数 f 1、f 2 f1=19, f2=31 サンプリング周波数 f 1 4096		71π/210 41π/210 29π/210 π/210 -π/210 -29π/210 -41π/210 -71π/210
入力周波数 f 1、f 2f1=19, f2=31サンプリング周波数 f14096	入力信号 Din	k=0~7のインターリーブ
サンプリング周波数 4096	入力周波数 f1、f2	f1=19, f2=31
I S	サンプリング周波数 f s	4096
DACの伝達特性 X + (-0.005) X ³ +(-0.0005) X ⁵ +(-0.00005) X ⁷	DACの伝達特性	X + (-0.005) X ³ +(-0.0005) X ⁵ +(-0.00005) X ⁷

③ DAC3,5,7次歪み

シミュレーション結果

位相差切り替え順序変更による影響

※位相差気切り替え6パターンの内違いが最も顕著に見られたものを示した。

1. ミックスト・シグナルSoCテスト技術の動向 ミックスト・シグナルSoCテスト技術 ● アナログ回路部テストの問題点 アナログ回路のテスト容易化技術 2. ADCテスト信号発生技術の開発事例 アルゴリズム1: 位相差切り替え法 ● アルゴリズム 2:ΔΣDAC使用 ● アルゴリズム 3: プリデストーション 3.まとめ

ΣΔ DACの構成

ΣΔDAC ⇒ テストモード時に SoC内のDSP, DAC コアを用いて構成

提案手法の原理

単一正弦波発生

2トーン信号発生

実験結果: 単一正弦波発生

実験結果: 2トーン信号発生

1. ミックスト・シグナルSoCテスト技術の動向 ミックスト・シグナルSoCテスト技術 ● アナログ回路部テストの問題点 アナログ回路のテスト容易化技術 2. ADCテスト信号発生技術の開発事例 ● アルゴリズム1: 位相差切り替え法 ● アルゴリズム 2:ΔΣDAC使用 アルゴリズム 3: プリデストーション 3.まとめ

DSPで主信号に加え3次高調波を入力 入力周波数近くのIMD3を除去

3ω₁,3ω₂等はフィルタで除去

提案手法でのIMD3キャンセル原理

入力電圧[Vpp]

従来手法

提案手法

1. ミックスト・シグナルSoCテスト技術の動向 ミックスト・シグナルSoCテスト技術 アナログ回路部テストの問題点 アナログ回路のテスト容易化技術 2. ADCテスト信号発生技術の開発事例 アルゴリズム1: 位相差切り替え法 ● アルゴリズム 2:ΔΣDAC使用 ● アルゴリズム 3: プリデストーション

ミックスト・シグナルSoCテスト技術

- 生産技術と位置付けられる
- 「低コスト」が最も重要な指標

Cost, Cost, Cost !

● アナログRF部のテストは

産業的に重要

技術的にチャレンジング

開発したADCテスト信号発生技術

例:2トーンの場合

Band-pass Noise Shaping Band-pass Distortion Shaping 6号付近のノイズ・歪み →帯域外 79

新概念 Distortion-Shaping

提案アルゴリズムを ΣΔ変調のNoise-Shaping に関連づける。

「創造力とは、いろいろなものをつなぐカだ」 (Steve Jobs, Apple社)

- [1] K. Wakabayashi, T. Yamada, S. Uemori, O. Kobayashi, K. Kato, H. Kobayashi, K. Niitsu, H. Miyashita, S. Kishigami, K. Rikino, Y. Yano, T. Gake, "Low-Distortion Single-Tone and Two-Tone Sinewave Generation Algorithms Using an Arbitrary Waveform Generator", IEEE International Mixed-Signals, Sensors, and Systems Test Workshop, Santa Barbara, CA (May 2011).
- [2] T. Yamada, O. Kobayashi, K. Kato, K. Wakabayashi, H. Kobayashi, T. Matsuura,Y. Yano, T. Gake, K. Niitsu, N. Takai, T. J. Yamaguchi,
 - "Low-Distortion Single-Tone and Two-Tone Sinewave Generation Using $\Sigma\Delta$ DAC", IEEE International Test Conference (poster session), Anaheim, CA (Sept. 2011).
- [3] 山田貴文, 若林和行, 上森聡史, 加藤啓介, 小林修, 新津葵一, 宮下博之, 小林春夫 「高次<u>/</u>ΣDAC信号発生回路での歪キャンセル・ノイズ低減技術」 電子情報通信学会 総合大会、東京 (2011年3月)
- [4] 加藤 啓介, 若林 和行, 山田 貴文, 小林 春夫, 小林 修, 新津 葵一 「任意波形発生器を用いた低歪み2トーン信号発生技術」 第24回 回路とシステムワークショップ、淡路島 (2011年8月2日).
- [5] 安部文隆, 加藤啓介, 若林和行, 小林修, 小林春夫, 新津葵一
 - 「インターリーブを用いた低歪み2トーン信号発生技術」
 - 電気学会 電子回路研究会, ECT-11-084, 長崎 (2011年10月20日).