群鸟大学 小林研究室

平成24年1月 FTC研究会

デジタル信号時間差測定用回路の構成の検討(システムレベル検証)

上森聡史 石井正道 小林春夫 土井佑太(群馬大学) 小林修(STARC) 松浦達治 新津葵一(群馬大学)

Gunma University Kobayashi-Lab

アウトライン

- 研究背景と目的
- ΔΣ TDCの構成・動作
- ・ マルチビットΔΣ TDCの構成・動作と エレメントローテーション回路の適用
- エレメントローテーション回路の動作
- MATLABシミュレーションによる検証
- 結論

アウトライン

- 研究背景と目的
- ΔΣ TDCの構成・動作
- マルチビットΔΣ TDCの構成・動作と
 エレメントローテーション回路の適用
- エレメントローテーション回路の動作
- MATLABシミュレーションによる検証
- 結論

研究背景

- 半導体製造コストの減少に対しテストコストは増加
 テストコストを下げる
- デジタル信号間の時間差の測定
 - 短時間で求める精度で測定する必要あり
- 適用するアプリケーションの例
 - DDR(Double Data Rate)メモリのデータ、クロック間の
 時間差の計測等:

内部処理回路とメモリアクセスのタイミング、制御信号・ データ信号間のタイミング

研究目的

- 2つの繰り返しクロック間の時間差を 高時間分解能・簡単な回路で計測
 ΔΣ型タイムデジタイザを用いる
- マルチビットΔΣ型タイムデジタイザの提案
 - ▶ 短時間で所定の精度・分解能で時間差をテスト

•Flash型TDC

アウトライン

- 研究背景と目的
- ΔΣ TDCの構成・動作
- マルチビットΔΣ TDCの構成・動作と エレメントローテーション回路の適用
- エレメントローテーション回路の動作
- MATLABシミュレーションによる検証
- 結論

ΔΣ TDC回路の構成

ΔΣ TDC回路の動作①

•CLK1とCLK2を入力

・比較器出力により経路選択

➤ CLK1a, CLK2aを得る

ΔΣ TDC回路の動作②

・タイミングジェネレータによりMask信号(=速い方の信号)を発生させる
 Mask信号とCLK1a, CLK2aとの論理積をとり、立下りを合わせる
 ▶ CLK1b, CLK2bを得る

ΔΣ TDC回路の動作③

・CLK1bとCLK2bとの差をとり結果のCLK_{in}を積分
 ・比較器でINT_{out}を0と比較し、出力D_{out}を得る
 ▶ 次のクロックでの経路を制御

- 研究背景と目的
- ΔΣ TDCの構成・動作
- マルチビットΔΣ TDCの構成・動作と
 エレメントローテーション回路の適用
- エレメントローテーション回路の動作
- MATLABシミュレーションによる検証
- 結論

マルチビットΔΣ TDC回路の構成

エレメントローテーション回路の適用

•エレメントローテーション回路(DWA)でFlash ADCの温度計コード出力を シャッフルしてから各MUXに入力する

・工夫してシャッフルすることでミスマッチを時間平均 ⇒ ノイズを高周波側へ移す

•遅延ばらつきの影響を少なくする

マルチビットにする利点

・シングルビットΔΣ TDC ・遅延ミスマッチが影響しない ・精度は出せる

・テストの際には短時間で所定の精度で評価
・マルチビットにすることで速く計測できる
・エレメントローテーション回路を用いることである程度精度が出せる

- 研究背景と目的
- ΔΣ TDCの構成・動作
- マルチビットΔΣ TDCの構成・動作と
 エレメントローテーション回路の適用
- エレメントローテーション回路の動作
- MATLABシミュレーションによる検証
- 結論

1次ノイズシェープ

1次ノイズシェープの動作

エレメントローテーション回路の効果

•積分して微分を等価的に実現 ▶遅延セルミスマッチが1次ノイズシェープ

繰り返し信号を測定する

DC成分のノイズが減少すれば 理想に近づく

•デジタル入力によりシフトする量を制御する

アウトライン

- 研究背景と目的
- ΔΣ TDCの構成・動作
- マルチビットΔΣ TDCの構成・動作と
 エレメントローテーション回路の適用
- エレメントローテーション回路の動作
- MATLABシミュレーションによる検証
- 結論

ΔΣ TDCのシミュレーション結果

MATLABシミュレーション

1bitの場合

- ・立ち上がり間隔:T=0.04ns刻み -0.9~0.9ns
- •遅延時間:τ=1ns
- ・出力数(コンパレータで比較した回数): 99点

●立ち上がり間隔Tに対する1の出力数

3bitの場合

- ・立ち上がり間隔:T=0.04ns刻み -0.9~0.9ns
- •遅延時間: τ=0.145ns
- ・出力数(コンパレータで比較した回数): 99点

測定時間を短縮した場合の検討

1bit

- •遅延時間: τ=1ns
- ・出力数(コンパレータの比較回数):2点

3bit

- •遅延時間:τ=0.145ns
- ・出力数(コンパレータの比較回数):2点

√マルチビット化することで短時間で細かく測定可能

遅延ばらつきの影響の検証

・遅延ばらつき:ガウス分布でランダムに生成
 最大でτ=0.145nsの±10%程度の誤差とした

・シミュレーション時に生成した遅延パラメータ

*:CLK1経路の遅延値 *:CLK2経路の遅延値

エレメントローテーションの効果(条件①)

- 3bit, 遅延ばらつき有
- •遅延時間:τ=0.145ns
- ・出力数(コンパレータの比較回数):99点

✓遅延ばらつきの影響を軽減できる

3bit, エレメントローテーション回路適用

- •遅延時間:τ=0.145ns
- ・出力数(コンパレータの比較回数):99点

エレメントローテーションの効果(条件②)

- 3bit, 遅延ばらつき有
- •遅延時間:τ=0.145ns
- ・出力数(コンパレータの比較回数):99点

✓遅延ばらつきの影響を軽減できる

3bit, エレメントローテーション回路適用

- •遅延時間:τ=0.145ns
- ・出力数(コンパレータの比較回数):99点

回路性能のまとめ

	Flash TDC	1-bit ΔΣ TDC	マルチビット ΔΣ TDC (without ER)	マルチビット ΔΣ TDC (with ER)
回路量	大 ×	小 ◎	中〇	中〇
時間分解能	粗×	細の	細の	æ ◎
精度	Δ	Ø	×	0
測定時間	短◎	長 ×	中〇	中〇

2ステップ方式による測定範囲拡大

- 細かく測定するにはτは出来るだけ小さい方が良い
 - > 測定可能範囲は狭くなる
- Coarse TDC:通常のTDC回路
 > バッファ遅延線とFlip-Flopアレイを使用
- Fine TDC : ΔΣ TDC
 - ▶ マルチビットの場合はエレメントローテーションを用いて補正

● 自己校正:

 基準クロックを与えてCoarse TDC内バッファ遅延線の各 バッファ遅延値を測定

その値を元にデジタル補正

逐次比較TDCを用いた広入力範囲TDC

- Step1: 8τ "を通して測定 \Rightarrow Q=0ならS₁=0, Q=1ならS₁=1
- Step2: 4τ "を通して測定 \Rightarrow Q=0ならS₂=0, Q=1ならS₂=1
- Step3: 2τ "を通して測定 \Rightarrow Q=0ならS₃=0, Q=1ならS₃=1
- Step4: τ "を通して測定 \Rightarrow Q=0ならS₄=0, Q=1ならS₄=1

- ΔΣTDCで精度を出すには何クロックも入力する必要がある
 - ▶ 数ステップ増えても大差ないことを利用
- 測定時:通常動作
- 遅延誤差補正:テスト動作
- 測定可能範囲:15τ"+τ

 $\tau:\Delta\Sigma$ TDC内の遅延値($\tau \ge \tau$ ")

広入力範囲TDCの例

- Coarse TDCの遅延値に0.5n secの±10%の誤差
- 1-bitと3-bitのΔΣ TDC(遅延誤差なし)で測定 (シミュレーション: MATLAB)
- Tが8.5n secまで測定可(Coarse TDC 7.5n sec+ ΔΣ TDC 1n sec)

出力数(比較回数):99点

△:1-bit ΔΣ TDCの結果 △:3-bit ΔΣ TDCの結果

✓同じ測定時間でも3-bitのΔΣ TDCの方が細かく測定できる

アウトライン

- 研究背景と目的
- ΔΣ TDCの構成・動作
- マルチビットΔΣ TDCの構成・動作と
 エレメントローテーション回路の適用
- エレメントローテーション回路の動作
- MATLABシミュレーションによる検証
- 結論

結論

- 時間差測定回路としてΔΣ TDCを検証
- 短時間測定のためのマルチビット ΔΣ TDCを提案
 > 3bit で動作確認
 - ▶ 短時間で細かく測定できることを確認(テスト時間短縮可)
- 遅延誤差により測定誤差が生じる
- エレメントローテーション回路を適用した3bit ΔΣ TDCを提 案・動作を確認

≻線形性を改善可能

• 2ステップ変換方式を検討