デジタル信号時間差測定用回路の構成の検討 (回路実現)

○石井 正道 上森 聡史 土井 佑太 小林 春夫(群馬大学) 小林 修 (STARC) 松浦 達治 新津 葵一(群馬大学)

2012年1月19日

GunmaUniversity KobayasiLab

研究目的

ΔΣ型タイムデジタイザ型回路を回路レベルで検討

マルチプレクサ、位相比較器、チャージポンプ、コンパレータ により構成 回路シミュレータspectreで設計・検証

システムレベルから回路レベルへ

クロックの遅延選択回路

MOSによるインバータの設計

立ち上がりのタイミング

CLK1aとCLK2aの立ち上がりエッジのタイミング により出力が異なる

ージポンプ回路

基本型チャージポンプ

オペアンプ型チャージポンプ

オペアンプの回路設計

位相比較器とチャージポンプの接続

コンパレ-

 $V+>V- \rightarrow Dout=1$ $V+<V- \rightarrow Dout=0$

クロック同期型コンパレータ

入出力波形

コンパレータの回路設計

チャージポンプとコンパレータの接続

1ビットΔΣ型TDC

シミュレーション条件

電源電圧1.8V CLK1,CLK2 High:1.8V/Low:0V 周波数10MHz,パルス幅50ns

簡単な回路で構成

Vout+,Vout-,Doutの波形

Doutの波形・CLK1先に立ち上がる場合

Doutの波形・CLK2先に立ち上がる場合

Dout出力

CLK2が先に

立ち上がる

CLK1が先に 立ち上がる

∆ T(ns)	1の数							
0.95	39							
0.9	38							
0.8	36							
0.7	34							
0.6	32							
0.5	30							
0.4	28							
0.3	26							
0.2	24							
0.1	22							
0	20							

Δ T(ns)	1の数			
0.95	1			
0.9	2			
0.8	4			
0.7	6			
0.6	8			
0.5	10			
0.4	12			
0.3	14			
0.2	16			
0.1	18			
0	20			

※測定時間4us

時間差0.1n毎 にパルス数が 2づつ変化

測定時間4usでは 分解能50ps

シミュレーションで確認

マルチビットΔΣ型TDC

3ビットFlash ADC

3ビットΔΣ型TDCの出力

Flash ADCのダイナミックレンジ

3ビットΔΣ型TDCの出力波形

時間差0.6ns(CLK1先)

時間差0.6ns(CLK2先)

3ビットΔΣ型TDCの分解能

※測定時間4us

分解能7.14psをシミュレーションで確認 (測定時間4us)

遅延素子のばらつき

実際の回路では遅延素子にばらつきがありΔΣ型TDC出力が非線形性を持つ

エレメントローテーション回路による改善

てのばらつきの影響を低減する

エンコーダ、シフトレジスタ、加算器、バレルシフタにより構成

エンコー

Do7	Do6	Do5	Do4	Do3	Do2	Do1	B2	B1	B0
0	0	0	0	0	0	1	0	0	1
0	0	0	0	0	1	1	0	1	0
0	0	0	0	1	1	1	0	1	1
0	0	0	1	1	1	1	1	0	0
0	0	1	1	1	1	1	1	0	1
0	1	1	1	1	1	1	1	1	0
1	1	1	1	1	1	1	1	1	1

温度計コードを3bitデジタル信号に変換

真理值表

エンコーダの回路構成

バレルシフタ

入力信号を任意の数だけシフトする →右回転シフト回路

- 1000000入力
- 01000001回シフト
- 0 0 0 1 0 0 0 3回シフト
- 0000010 5回シフト
- 1 0 0 0 0 0 0 7回シフトで元の位置に戻る

備成 バレルシフタの回路

レジスタ

エンコーダおよび加算器の出力を1クロック シフトする

タイミングチャート

現在のクロック

1クロック前

加算器の回路構成

加算結果が7を超える場合、最下位ビットに1が加算する。

加算器のシミュレーション波形

エレメントローテーション前後の波形

3ビットΔΣ型TDC出力 (温度計コード) エレメントローテーション後の波形

結論

ΔΣ型TDCの回路設計とシミュレーション解析

- •ΔΣ型TDCではCLK1,CLK2の時間差に比例した数のパルスが 出力
- •マルチビット $\Delta\Sigma$ 型TDCだと1bitよりも高分解能
- 分解能(測定時間4us)
- 1ビット:50ps 3ビット:7.14ps
- •マルチビットΔΣ型TDCの出力にエレメントローテーション回路を 用いることで出力をシフト可能
- ●高分解能時間差測定用回路を簡単な回路で設計可能
 →BIST,BOSTで実現可能

補足

• コンパレータのクロックでDoutを確定した後、イネーブル信号で 次のCLK1a,CLK2aをマルチプレクサから出力する制御回路が必要