A Small, Low Power Boost Regulator Optimized for Energy Harvesting Applications

Zachary Nosker¹ Yasunori Kobori¹
Haruo Kobayashi¹ Kiichi Niitsu¹ Nobukazu Takai¹
Takeshi Oomori² Takahiro Odaguchi²
Isao Nakanishi² Kenji Nemoto² Jun-ichi Matsuda³

¹Department of Electronic Engineering, Gunma University

²AKM Technology Corporation

³Asahi Kasei Power Devices Corporation

Outline

- Introduction to current energy harvesting systems
- Proposed circuit
 - Design specifications
 - Block diagram
 - Circuit operation
- Simulation results
 - Simulation parameters
 - Initial startup
 - Steady state operation
- 4 Efficiency
- Conclusion

Current Energy Harvesting Systems

Battery/energy storage device must be replaced regularly

Design Specifications

- **①** Startup from input voltage below $V_{t(NMOS)}$
 - ullet Works down to $V_{IN}=$ 240mV
- Efficiency > 95%
 - Low I_Q ($\approx 15 \mu A$)
 - Low conduction losses
 - Low switching losses
- Output Load > 5mW

Target application: low-power microcontroller and wireless interface

Initial Startup Block Diagram

Steady-State Block Diagram

Overall System Block Diagram

Startup Flowchart

Charge Pump Oscillator

- Transistor M_{P3} has long length $(W/L=2\mu/5\mu)$
 - \bullet Other PMOS have $W/L=2\mu m/0.25\mu m$
 - Shutdown leakage current is very small $({pprox} 1 \mu {\sf A})$
- Capacitor (20fF) sets oscillation frequency
 - Oscillator operates at \approx 40MHz

Full Charge Pump Schematic

- All NMOS are native devices
 - $V_{t0} \approx 0 \text{V}$
- All capacitors are 10pF
- Currently using 10 gain stages

High Duty-Cycle Startup Circuit

Full Startup Schematic

Simulation Parameters

Circuit Component	Value
V_I	300mV
V_O	1.0V
L	$10 \mu H$
C_I	2.2μ F
C_O	$5.0 \mu F$
t_{on}	1.5μ s
V_{REF}	500mV
NMOS	5 mm $/$ 0.18μ m
PMOS	10 mm $/$ 0.18μ m

Charge Pump Startup Simulation

Full Startup Simulation

State Diagram: Steady State Operation

Steady State Operation Simulation

Calculations

Inductor current equation

$$i_L(t) = \begin{cases} \frac{V_I}{L}t, & t_0 < t \le t_1\\ I_P - \frac{V_O - V_I}{L} (t - t_1), & t_1 < t \le t_2 \end{cases}$$

Calculations Continued

Output voltage ripple

$$\Delta v_O = \frac{1}{C_O} \int i_L(t) dt = \frac{I_P^2 L}{2C_O(V_O - V_I)}$$
$$\Delta v_O = t_{on}^2 \frac{V_I^2}{2LC_O(V_O - V_I)}$$

Maximum load current

$$I_{O(max)} = t_{on} \frac{V_I^2}{2LV_O}$$

Circuit Efficiency

Efficiency Comparison

Conclusion

- Introduced bootstrapped boost for EH applications
- Better performance than previous works
 - Higher efficiency
 - Extended load range
- Only requires 3 external components
 - Input capacitor, output capacitor, inductor
 - No external energy storage components
- Future work
 - Create chip in actual Si
 - Continue to optimize key parameters
 - Minimum V_{IN} , efficiency, etc.

Fin

• Questions?

Questions From the Audience

- Maximum power point is not always at the same voltage. Have you considered MPPT or similar?
 - This is not something I have considered yet
- What limits the minimum input voltage?
 - Limited by the charge pump oscillator $(V_{IN(min)} = 240mV)$
- You are using a lot of strange devices—what process are you using?
 - TSMC $0.18\mu\mathrm{m}$ CMOS process that has Native–, Low– and Nominal– V_t devices
- Have you looked into the output impedance of your circuit and how it affects efficiency?
 - This isn't something I have looked at yet
- Are you using adaptive on time control?
 - At this time, the on time is just a constant value

Photos

Food

Strange Fruits

Banquet

Scenery 1

Scenery 2

Pool

Beach

