

# Digitally-Assisted Compensation for Timing Skew in ATE Systems

K. Asami T. Tateiwa T. Kurosawa H. Miyajima H. Kobayashi

> Advantest Corporation Gunma University



#### Contents

- <u>Research Goal</u>
- Conventional Linear Phase Digital Filter Condition
- New Linear Phase Digital Filter Condition
  - Time-Shift, Impulse Response of Ideal Filter
  - New Linear Phase Digital Filter
- MATLAB Simulation
- Design Considerations
  - Window
  - Gain Adjustment
- Application
- Conclusion

#### **Research Goal**

Timing skew is a major problem in ATE systems

Digital compensation for timing skew ⇒ Linear phase is important

Conventional linear-phase digital filter ⇒ coarse timing adjustment

**Proposed linear-phase digital filter** ⇒ **fine timing adjustment** 



# Features of Proposed Digital Filter



# Contents

- Research Purpose
- <u>Conventional Linear Phase Digital Filter Condition</u>
- New Linear Phase Digital Filter Condition
  - Time-Shift, Impulse Response of Ideal Filter
  - New Linear Phase Digital Filter
- MATLAB Simulation
- Design Consideration
  - Window
  - Gain Adjustment
- Application
- Conclusion

#### Linear Phase FIR Filter Impulse Response



# **Frequency Characteristics**



# Contents

- Research Purpose
- Conventional Linear Phase Digital Filter Condition
- <u>New Linear Phase Digital Filter Condition</u>
  - <u>Time-Shift, Impulse Response of Ideal Filter</u>
  - New Linear Phase Digital Filter
- MATLAB Simulation
- Design Consideration
  - Window
  - Gain Adjustment
- Application
- Conclusion

#### Ideal LPF



# Discrete-Time Representation of Ideal LPF



#### Impulse Response Time-Shift



 $\Delta t$  time-shift of impulse response

No change of Gain

#### Time-Shift and Filter Coefficients



# Contents

- Research Purpose
- Conventional Linear Phase Digital Filter Condition
- <u>New Linear Phase Digital Filter Condition</u>
  - Time-Shift, Impulse Response of Ideal Filter
  - New Linear Phase Digital Filter
- MATLAB Simulation
- Design Consideration
  - Window
  - Gain Adjustment
- Application
- Conclusion

#### 2-Tap Filter: Model



#### 2-Tap Filter: Delay Model



#### 2-Tap Filter: Delay Model



#### **Proposed Delay Digital Filter**



#### Frequency Characteristics of Proposed Delay Digital Filter



Phase : proportional to  $\omega$  (linear phase) Group delay time resolution  $\tau$  : Arbitrary small

# Contents

- Research Purpose
- Conventional Linear Phase Digital Filter Condition
- New Linear Phase Digital Filter Condition
  - Time-Shift, Impulse Response of Ideal Filter
  - New Linear Phase Digital Filter
- MATLAB Simulation
- Design Consideration
  - Window
  - Gain Adjustment
- Application
- Conclusion

#### Comparison of 2-Tap Filter Impulse Responses





#### Finite Tap Truncation of Proposed Delay Filter



# **Effects of Window**



Frequency characteristics of delay filter with 61-tap truncation

# Contents

- Research Purpose
- Conventional Linear Phase Digital Filter Condition
- New Linear Phase Digital Filter Condition
  - Time-Shift, Impulse Response of Ideal Filter
  - New Linear Phase Digital Filter
- MATLAB Simulation
- Design Consideration
  - <u>Window</u>
  - Gain Adjustment
- Application
- Conclusion

# How to Apply Window



#### Frequency Characteristics of Delay Filter after Applying Window



#### Group Delay Characteristics of Delay Filter after Applying Window



#### Frequency Characteristics of Delay Filter after Applying Window



#### Group Delay Characteristics of Delay Filter after Applying Window



#### Group Delay Characteristics of Delay Filter after Applying Window



# Applying window centered at impulse response Constant group delay over entire passband

Normalized frequency

Normalized frequency

| Delay      | 0.3 samples            |
|------------|------------------------|
| Filter Tap | 100 taps               |
| Window     | Han                    |
| Pass band  | (0.05 <b>~</b> 0.3)•Fs |
| FFT points | 1024 points            |

# Contents

- Research Purpose
- Conventional Linear Phase Digital Filter Condition
- New Linear Phase Digital Filter Condition
  - Time-Shift, Impulse Response of Ideal Filter
  - New Linear Phase Digital Filter
- MATLAB Simulation
- Design Consideration
  - Window
  - <u>Gain Adjustment</u>
- Application
- Conclusion

# Proposed Filter DC Gain Adjustment



#### Frequency Characteristics of Proposed Delay Filter



#### Gain Characteristics of Proposed Delay Filter



#### Gain Characteristics of Proposed Delay Filter



#### Gain Characteristics of Proposed Delay Filter



# Contents

- Research Purpose
- Conventional Linear Phase Digital Filter Condition
- New Linear Phase Digital Filter Condition
  - Time-Shift, Impulse Response of Ideal Filter
  - New Linear Phase Digital Filter
- MATLAB Simulation
- Design Consideration
  - Window
  - Gain Adjustment

#### <u>Application</u>

Conclusion

#### I/Q Delay Mismatch in Quadrature Modulator



#### I/Q Delay Mismatch Compensation in Quadrature Modulator



# Matlab Simulation Results



(b) Timing skew case



# **Matlab Simulation Results**

(c) Compensation using delay filter Without adjustment of window, gain (d) Compensation using delay filter With adjustment of window, gain



# Interleaved ADC System

M channel ADCs M-times sampling rate



#### Timing Skew in Interleaved ADC System



#### Timing Skew Compensation in Interleaved ADC System



# **Matlab Simulation Results**



# **Matlab Simulation Results**



(d) Compensation using delay filter

# Conclusion

- Linear phase digital filter with fine time resolution of group delay
- Design consideration
  - How to apply window
  - DC gain adjustment
  - Application Examples
    - I/Q delay mismatch compensation in quadrature modulator
    - Timing skew compensation in interleaved ADC system

#### **On-going work**

- Implementation issues
  - Finite word length, finite tap effects
  - LSI implementation