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Abstract— This paper proposes a new AC-DC converter with 

Power Factor Correction (PFC) circuit. It requires few components 

(five switches, one inductor and one capacitor) to convert AC to DC 

directly. In this low-output-voltage H-bridge AC-DC converter, 

inductor current always flows in the same direction. We investigated 

two types of PFC circuits; boundary conduction mode (BCM) and 

continuous conduction mode (CCM). The new PFC circuit for BCM 

does not use an analog multiplier. We describe circuit topologies, 

operation principles and simulation results. 

 

Keywords— AC-DC converter, Buck-boost converter, PFC, 

Switched-mode power supply   

I. INTRODUCTION 

C-DC converters are indispensable for virtually all 

electronic devices, from cell phones to large 

manufacturing machinery. AC-DC converters produce 

steady direct current (DC) from alternating current (AC). In a 

typical converter, the AC input is rectified, drives a high-voltage 

high-frequency switching circuit connected to a transformer, 

and the desired DC voltage is output. However, this type of 

converter is bulky and has low efficiency, because it contains a 

switching DC-DC converter, a transformer, and a rectifier. 

In this paper we propose a new circuit to realize direct 

AC-DC conversion: a non- inverting buck-boost converter with 

H-bridge circuit comprising five switches operated by changes 

in input voltage polarity, to make current flow in the inductor in 

one direction.  

We also added a power factor correction (PFC) circuit. We 

investigated two PFC circuits: boundary conduction mode 

(BCM) and continuous conduction mode (CCM). We introduce 

their operating principles and show simulation results to verify 

their basic operation and performance. We also calculate the 

voltage-conversion ratio and compare it with that of a 

commonly-used buck-boost converter. 

II. DIRECT BUCK-BOOST AC-DC CONVERTER 

A. Proposed Circuit and Operation  

The proposed direct buck-boost AC-DC converter is shown 

in Fig.1 and Fig.2, where the red solid line shows current flow 

when the inductor is charged, and the blue dashed line shows the 

current flow when the inductor is discharged. Five switches 

operate at a frequency  of 200 kHz and the operation mode 
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varies with changes in input voltage polarity and the charging or 

discharging of the inductor.  

Let us consider the case when the input voltage is positive, as 

shown in Fig.1 and Fig.3 (a). First, S1 and S3 are ON for a time 

of D*Ts (D is the duty ratio, the ON part of the duty cycle, and 

Ts represents the switching period) and the inductor is charged. 

Next S1 and S3 are turned OFF and S2 and S5 are turned ON so 

that the inductor is discharged into the capacitor and the resistor. 

For a positive input, S1 and S3, S2 and S5 are alternately turned 

ON and OFF as shown in Fig.3 (a). The operation is just like the 

common buck-boost converter, and we obtain a steady output 

voltage. 

 

 

 

 

 

 

 

 

 

 

Fig.1  H-Bridge AC-DC converter (Current when Vin >0） 

 

 

 

 

 

 

 

 

 

 

Fig.2  H-Bridge AC-DC converter (Current when Vin <0） 

 

 

 

 

 

 

 

 

 

 

 

 

（ａ）Vin＞０   （ｂ）Vin＜０ 

Fig.3  Timing chart of switches 
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B. Simulation Results  

The circuit schematic for simulation is illustrated in Fig4. The 

input voltage is 100Vrms with a frequency of 50 Hz and we use 

PWM operating at 100 kHz. The other parameters are shown in 

Table 1. We set the output voltage to 50V and the output resistor 

current to Io=0.5A. 

 

Table Ⅰ 

Simulation Parameters of Figure 3 

C 220 uF 

R1 9 kΩ 

R2 1 kΩ 

Ｌ 220 uH 

VREF 5.0 V 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.4  Simulation circuit 

 

The waveforms of input voltage Vi and output voltage, output 

voltage ripple, the inductor current waveform and load transient 

response are shown in Fig.5, Fig.6, Fig.7 and Fig.8 respectively. 

These figures show the transient responses when the input 

voltage is near the peak. The output voltage ripple is 6mVpp, 

which is very small, and the inductor current ripple is under 

1.7App. 

For the transient response, we set the current change just as 

⊿I＝1.0 x 0.5A. The voltage ripple is 15mVpp / 0.5A in Fig.7, 

which is very small compared with the output voltage. We see in 

Fig.8 that when the inductor current is large (1.oA), it operates 

in continuous mode. When the inductor current is small (0.5A), 

it operates in intermittent mode.  

 

 

 

 

 

 

 

Fig.5  Waveform of input voltage and output voltage. 

 

 

 

 

 

 

 

Fig.6 Output voltage ripple. 

 

 

 

 

 

 

 

 

 

Fig.7  Load transient response. 

 

 

 

 

 

 

 

 

 

Fig.8  Waveform of inductor current 

 

C. Voltage Conversion Ratio  

Compared with the PWM clock frequency, the frequency of 

the input sine wave is very low; hence the instantaneous input 

voltage can be considered to be almost constant. Then the 

output voltage Vo can be calculated as follows: 

                       

Vo =                ・Vi 

 

    = 2 ･                ・Vrms･sin(θ)                             (1) 

  D(θ) =                                                                     (2) 

 

Here D is the duty ratio, and M is given by 

M=Vo／Vrms                                                       (3) 

Thus the average duty ratio D* in a half period is obtained as 

follows: 

 

D* =           ∫ D(θ) dθ 

     

=         ∫                                                                   (4) 

 

Since we cannot solve the above equation analytically, we 

solved it approximately by using interval integration. In Fig.9 

we compare the result with that of a commonly-used 

non-inverting buck- boost converter, where the lateral axis 

indicates the average duty ratio and the vertical axis shows 

output voltage. We see that, compared with the common 

buck-boost converter, the output voltage is a little bit smaller for 

the same duty ratio; in other words a larger duty ratio is used for 

a given low output voltage, which makes it possible for our 
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circuit to convert to a low output voltage directly, and this is an 

advantage over the commonly-used PWM-controlled 

buck-boost converter. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.9  Average duty ratio vs. output voltage (Vrms=100V). 

III. INVERTING H-BRIDGE AC-DC CONVERTER  

A. Proposed Circuit and Operation   

We can obtain negative outputs with the same circuit 

topology by reversing the direction of the inductor current. The 

circuit schematic is shown in Fig.10. We can reverse the 

inductor current just by changing the operation of the switch 

groups. 

 

 

 

 

 

 

 

 

 

（ａ）Current flow when Vi＞0 

 

 

 

 

 

 

 

 

 

（ｂ）Current flow when Vi＜0 

Fig.10 Inverting H-Bridge AC-DC converter 

 

The operation of the switch groups are as follows: (1)When Vi

＞0 , first S4-S2 are ON、then S2-S5 are ON; (2) Vi＜0, first 

S3-S1 are ON, then S2-S5 are ON. 

B. Simulation Results   

We have performed circuit simulations to check the operation 

and performance of the proposed inverting H-Bridge AC-DC 

converter (Fig.10) with the same simulation conditions as the 

non-inverting one. The waveforms of input and output voltages 

and output voltage ripple for a load current of 220mA are shown 

in Fig.11 and Fig.12. We see that output ripple is under 3mV, 

which is very small, and the characteristics are similar to those 

of the non-inverting H-Bridge AC-DC converter. 

The direct AC-DC converters described above have no 

problems when the input voltage is high enough. However, 

when the input is lower than 20V, output ripple becomes a bit 

larger than 3mV; we will find out the reason and solve this 

problem in the near future. 

 

 

 

 

 

 

 

 

 

Fig.11 Output voltage of inverting converter. 

 

 

 

 

 

 

 

 

 

 

Fig.12 Output ripple of the inverting converter. 

IV. POWER FACTOR CORRECTION (PFC) CIRCUIT  

For AC-DC converters, distortion of the input current, and 

spurious current at clock frequencies should be reduced below 

the level permitted by EMI (Electro Magnetic Interference) 

regulations, because the AC-DC converters are connected 

directly to the power lines. We have designed PFC circuits to 

meet this requirement. 

A. New PFC Circuit in BCM    

(1) Conventional PFC in Boost Converter 

  In conventional AC-DC converters, a boost- type PFC circuit 

with an active filter is frequently used as shown in Fig.13. It 

consists of an analog multiplier, an op-amp, two comparators 

and D, L, C components. In this circuit, on-time of PWM signal 

should be constant, to keep the waveform of the input current 

similar to that of the input voltage (=Sinewave). The waveform 

of the inductor current is shown in Fig.14 that is a series of 

triangle waveforms in BCM.  The current is zero at switching 

timing from off to on. The solid line represents the charge 

current to the inductor and the dashed line shows the discharge. 

So the input charges in a single triangle waveform and the 

voltage source is shown below. 

  Qin(t)=T*(Ton* Vi*sinωt)/2L                                         (5) 

The on-time Ton of PWM signal is designed to be constant but 

the off-time is variable, and thus the clock frequency varies in 

phase. In this case, the PWM period is given below, 
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IL: Inductor 

   Current 

Input Voltage 

 (Sine Wave) 

T=Ton+Toff                   

=Ton+L*Ton*Vi*sinθ/(Vo-Ton*Vi*sinθ)           (6) 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.13  Conventional PFC circuit in BCM 

 

 

 

 

 

 

 

 

 

 

Fig.14 Waveform of inductor current in BCM. 

 

(2) New PFC in Buck-Boost Converter 

Since our proposed circuit is a buck-boost converter different 

from the above boost converter, it needs a new PFC circuit. In 

our proposed circuit, the input current is not equal to the 

inductor current, because the on-time current is input current 

and the off-time current is load current.  Thus the on-time is 

constant and the off-time is given by 

  Ioff (t) = Ip－t*Vo/L 

=Ton*Vi*sin(θi)/L－t*Vo/L 

    ∴ Toff = (Vi/Vo)*Ton*sin(θi)                                    (7) 

  Here, Ip represents the peak current of IL. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.15 New BCM PFC without an analog multiplier. 

Eq.(7) tells us that Toff is proportional to the input sin(θi) 

wave. Thus the input current is shaped nearly the same as the 

input voltage because the average of Vi/Vo is much larger than 

1 in Eq.(7). This means that a multiplier is not needed in the new 

PFC system shown in Fig.15. We note that conventional AC-DC 

PFC correction requires large capacitors to hold the input AC 

power and to output the DC power, and our proposed converter 

also requires a large capacitor of 47mF.  

 

(3) Simulation Results of New Converter 

In general, AC-DC converters have many output voltages and 

the most popular level is 24V output. Fig.16 shows the input 

voltage and the output voltage as well as the input current. The 

input current is of saw-tooth shape with clock frequency of 

about 100 kHz. In Fig.16, the input current represents the 

waveform of the source current through a LPF.  

 

 

 

 

 

 

 

 

 

 

Fig.16 Waveform of input voltage, output voltage, and input 

current. 

 

In this waveform, the power factor calculated from simulation 

is about 0.97. The output voltage ripple caused by clock signals 

is small enough, and ripple caused by input signals is 25mVpp 

at Io=0.25A. and 60mVpp at Io=1.0A. The ripple frequency is 

100Hz. Fig.18 shows the waveform of the input voltage and the 

inductor current while Fig.19 shows the wide scope waveform 

of the inductor current. 

 

 

 

   

 

 

 

 

 

 

Fig.17  Output voltage ripple (100Hz). 

 

 

 

 

 

 

 

 

 

 

Fig.18 Input voltage and inductor current. 

DC 

OUT 

× 

ATTN 

OP 

S 

 

R 

∽ 

Boost Converter 

Error Amp. 

Multiplier 

IL Detector 

DC 

OUT 

OP 

∽ 

Buck-Boost 

 Converter 

Error Amp. 

Current 

Detector 

S 

 

R 

Q 

Control  

Logic 

Saw-tooth Gen. 

input current 



 

International Conference on Power Electronics and Power Engineering (ICPEPE), Phuket, Thailand (Dec. 21-23, 2011) 

 

 

 

 

 

 

 

 

 

 

 

Fig.19 Inductor current in BCM. 

 

B. New PFC Circuit in CCM    

(1) Conventional PFC in the Boost Converter 

    Fig.20 shows a conventional AC-DC converter with CCM 

PFC. This circuit consists of an analog multiplier, two op-amps, 

a comparator and several components like in a normal boost 

converter. There the inductor current and the input current are 

the same and they flow as shown in Fig.21. Usually the 

frequency of the PWM signal is kept constant and the off-time 

Toff is controlled to be proportional to the input voltage wave.  

 

  

 

 

 

 

 

 

 

 

 

 

 

Fig.20 Conventional PFC circuit in CCM. 

 

 

 

 

 

 

 

 

 

Fig.21 Waveform of inductor current in CCM. 

 

(2) New PFC in Buck-Boost Converter 

We have developed a new PFC circuit for our AC-DC direct 

converter shown in Fig.22.  This PFC circuit consists of a new 

multiplier, two op-amps and a comparator to generate the PWM 

signal. The multiplier circled by the red dashed line consists of a 

pulse generator controlled by the output of the error amp, a 

time-to-voltage converter. 

  

(3) Simulation Results of New Converter 

  Fig.23 shows the output voltage, the input current through a 

LPF and the inductor current. The input current is almost similar 

to the input sinewave shape except for zero-crossing points. 

Output voltage ripple caused by the input voltage is 60mVpp at 

Io=1.0A shown in Fig.24. The waveform of the inductor current 

is shown in Fig.25 at the timing of the inductor current peak at 

t=95ms. The ripple of the inductor current is about 0.2App. In 

this case, the power factor in our simulation is 0.99.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.22 CCM PFC with new multiplier. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.23 Input current and inductor current. 

 

 

 

 

 

 

 

 

 

 

 

Fig.24 Output voltage ripple. 

 

 

 

 

 

 

 

 

 

 

Fig.25 Inductor current in CCM. 
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V. CONCLUSION  

In this paper, we have described a direct AC-DC converter 

with H-bridge topology and PFC circuits. We have investigated 

and proposed two PFC circuits in BCM and CCM. We 

explained their principles of operation and verified their basic 

operation by simulations. Simulation results show that the 

output voltage ripple is 60mVpp for BCM and 50mVpp for 

CCM at Io=1.0A. Furthermore we have developed a new PFC 

circuit in BCM converter and a new multiplier with 

time-to-voltage converter in CCM. Our simulations show that 

the power factor is 0.96 in BCM and 0.99 in CCM at 

Vi=100Vrms, Vo=24V and Io=1.0A. 
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