18th International Mixed-Signals, Sensors, and Systems Test Workshop May 15 2012 @ Taipei, Taiwan

Low-IMD Two-Tone Signal Generation for ADC Testing

K. Kato, F. Abe, K. Wakabayashi, T. Yamada, H. Kobayashi, O. Kobayashi, K. Niitsu

Gunma University

Semiconductor Technology Academic Research Center

Presented by Fumitaka ABE (安部文隆)

Outline

- Research Background
- Conventional Method
- Proposed Method
- Experimental Results
- Extension to $\Delta\Sigma DAC$
- Conclusion

Outline

- Research Background
- Conventional Method
- Proposed Method
- Experimental Results
- Extension to ΔΣDAC
- Conclusion

Research Goal

Low distortion two-tone signal generation for communication application ADC testing with low cost AWG by only changing DSP program

Two-Tone Generation with AWG

IMD3 is important for two tone signal !

Outline

- Research Background
- Conventional Method
- Proposed Method
- Experimental Results
- Extension to ΔΣDAC
- Conclusion

Conventional Method

 $X = A \cdot cos(2\pi f_1 nT_s) + A \cdot cos(2\pi f_2 nT_s)$

Outline

- Research Background
- Conventional Method
- Proposed Method
- Experimental Results
- Extension to ΔΣDAC
- Conclusion

Four Proposed Techniques

- Phase Switching
- Frequency Switching
- Phase Frequency Switching
- Pre-Distortion

Four Proposed Techniques

- Phase Switching
- Frequency Switching
- Phase Frequency Switching
- Pre-Distortion

 $X_0 = A \cdot cos(2\pi f_1(n-1)T_s) + A \cdot cos(2\pi f_2(n-1)T_s)$ $X_1 = A \cdot cos(2\pi f_1nT_s + \pi/3) + A \cdot cos(2\pi f_2nT_s - \pi/3)$

Principle of Phase Switching

Four Proposed Techniques

- Phase Switching
- Frequency Switching
- Phase Frequency Switching
- Pre-Distortion

Principle of Frequency Switching

$$Y = a_1 D_{in} + a_3 D_{in}^3 \quad 2A' \sin(\omega_1 n T_s)$$

$$2A \sin(\omega_1 n T_s) \longrightarrow DAC \longrightarrow \begin{array}{c} 2A' \sin(\omega_2 n T_s) \\ B \sin(3\omega_1 n T_s) \end{array} + \alpha$$

$$B \sin(3\omega_2 n T_s) \quad B \sin(3\omega_2 n T_s) \end{array}$$

 α : around f_s/2 Spurious components

In principle, IMD components do not appear

Four Proposed Techniques

- Phase Switching
- Frequency Switching
- Phase Frequency Switching
- Pre-Distortion

$$X_{1} = A \cdot cos(2\pi f_{1}(n-2)T_{s} + \pi/3)$$

$$X_{2} = A \cdot cos(2\pi f_{2}(n-1)T_{s})$$

$$X_{3} = A \cdot cos(2\pi f_{2}nT_{s} + \pi/3)$$

Principle of Phase Frequency Switching

Four Proposed Techniques

- Phase Switching
- Frequency Switching
- Phase Frequency Switching
- Pre-Distortion

Add HD3 components in Din.

$\begin{aligned} X &= A \cdot \cos(2\pi f_1 n T_s) + A \cdot \cos(2\pi f_1 n T_s) \\ &+ A/2 \cdot \cos(2\pi (3f_1) n T_s) + A/2 \cdot \cos(2\pi (3f_2) n T_s) \end{aligned}$

Principle of Pre-Distortion

Principle of Pre-Distortion

Principle of Pre-Distortion

IMD3 components disappear

Proposed Low IMD3 Two-tone Generation $D_{in} = X = A \cdot \cos(2\pi f_1 n T_s) + A \cdot \cos(2\pi f_2 n T_s)$ Change DSP program **Nonlinearity** D_{in} DSP **CLK** CLK D_{in}

- No hardware change
- No need for calibration
- No need for DAC nonlinearity identification

Simulation Conditions

D_{in} Signal Parameter

Sampling Points	4096
Two-tone Signal	$f_1 = 99 \\ f_2 = 111$
Amplitude (peak-to-peak)	1.2

Phase, Frequency, Phase Freq. Switching

Pre-Distortion

34/50

Output Power Spectrum Comparison

	Disappear	Appear
Conventional		$2f_1 - f_2$ $2f_2 - f_1$
Phase Switching	$2f_1 - f_2$ $2f_2 - f_1$ $3f_1$ $3f_2$	Around f _s /2
Frequency Switching	$\begin{array}{ccc} 2f_1 - f_2 & 2f_2 - f_1 \\ 2f_1 + f_2 & 2f_2 + f_1 \end{array}$	Around f _s /2
Phase & Freq. Switching	$\begin{array}{ccc} 2f_1 - f_2 & 2f_2 - f_1 \\ 2f_1 + f_2 & 2f_2 + f_1 \\ 3f_1 & 3f_2 \end{array}$	Around $f_s/2$ $f_s/4$
Pre-Distortion	$2f_1 - f_2$ $2f_2 - f_1$	$\begin{array}{rrrr} 4f_1 - 3f_2 & 4f_2 - 3f_1 \\ \mbox{Around} & 3f_1 & 5f_1 & 7f_1 & 9f_1 \end{array}$

Outline

- Research Background
- Conventional Method
- Proposed Method
- Experimental Results
- Extension to ΔΣDAC
- Conclusion

Experimental Conditions

X RBW : Resolution Band Width

Test Signal

50MSa/s

Maximum Sampling Rate

Two-tone Signal	200kHz <i>,</i> 220kHz
Sampling rate	10MSa/s
Input Voltage	0.8~2.0Vpp (0.2V steps)
Offset	0

Experimental Results 6 Conventional **Fundamental** Frequency Switching Pre-Distortion 3 $f_1 f_2$ Power [dBm] -0.60dB 0 • Phae, Phae Freq. -3 Switching **Conventional** -1.24dB -6 2.0 0.8 1.2 1.6 **Phase** Input Voltage [Vpp] Switching Conventional Frequency ·50 Switching IMD3 Easy $2f_1 - f_2$ g_2 $2f_2 - f_1$ g_2 IMD3 -60 Phase proposed Frequency -70 **Switching** -80Average : - 11.9dB **Pre-Distortion** 0.8 1.2 2.0 1.6 Input Voltage [Vpp] 38/50

SFDR Improvement

Phase Switching	Frequency Switching	Phase Frequency Switching	Pre-Distortion
+ 12.5 dB	+ 10.6 dB	+ 12.4 dB	+ 10.5 dB

Phase Switching HD3_3f1,3f2 **Around Fundamental** Sampling Frequency_fs 0 $f_s/2$ **Conventional Method** f_1 4 f_1 f, f_2 f₂ f_2 -25_17 H -501 3Į1 -75 Power [dBm] -100 10×10^3 5×10^3 160 200 240 200 400 600 0 $f_s/2$ f₁ f₂ $\mathbf{f_1}$ f₂ f₂ Ľ1 **Phase Switching** -25Π -50 $3t^{5}$ 1 3f -75-100 $\textbf{10}{\times}\, \textbf{\overline{10}}^3$ 5×10^3 160 200 240 200 400 600 Frequency [kHz] 40/50

Phase Frequency Switching

Pre-Distortion

Outline

- Research Background
- Conventional Method
- Proposed Method
- Experimental Results
- Extension to ΔΣDAC
- Conclusion

Proposed Techniques using ΔΣDAC

Conventional and Proposed digital input signal

Phase Switching using ΔΣDAC

Frequency Switching using ΔΣDAC

Phase Frequency Switching using ΔΣDAC

Pre-Distortion using ΔΣDAC

Outline

- Research Background
- Conventional Method
- Proposed Method
- Experimental Results
- Extension to ΔΣDAC
- Conclusion

Conclusion

- Low IMD3 signal generation with low-cost AWG
 - Only program change, No hardware change
 - No need for calibration
 - No need for AWG nonlinearity identification
- 4 proposed techniques cancel IMD3
- Applicable to Nyquist-rate DAC and ΔΣDAC

Low cost testing of communication application ADCs can be realized