APCCAS 2012 Kaohsiung, Taiwan

DC-DC Converter with Continuous-Time Feed-Forward Sigma-Delta Modulator Control

H. Gao, L. Xing, Y. Kobori, Feng Zhao, H. Kobayashi,

S. Miwa, A. Motozawa,

Z. Nosker, K. Niitsu, N. Takai

Gunma University

T. Odaguchi, I. Nakanishi, K. Nemoto

AKM Technology Corporation

J. Matsuda

Asahi Kasei Power Devices Corporation

Power device advances Fast switching speed For DC-DC converter controller PWM ΔΣ modulator

> Fast transient response High efficiency at low load Spread spectrum of switching noise

Outline

- Research Background and Objective
- ΔΣ Controller Advantages in DC-DC Converter
- Architecture Comparison of ΔΣ Controllers
 in DC-DC Converter
- Simulation results
- Conclusion

Outline

- Research Background and Objective
- ΔΣ Controller Advantages in DC-DC Converter
- Architecture Comparison of ΔΣ Controllers
 in DC-DC Converter
- Simulation results
- Conclusion

Research Objective

Fast, low ripple, low power DC-DC converter controller design

Our Approach

Application of $\Delta\Sigma$ modulator to DC-DC converter

(CT: Continuous-Time, RC integrator)
(DT: Discrete-Time, Switched-capacitor)

Outline

- Research Background and Objective
- ΔΣ Controller Advantages in DC-DC Converter
- Architecture Comparison of ΔΣ Controllers
 in DC-DC Converter
- Simulation results
- Conclusion

(High efficiency)

Vref

T1111

output

10

ΔΣ Μ

Controller

Error Amp

input

Outline

- Research Background and Objective
- ΔΣ Controller Advantages in DC-DC Converter
- Architecture Comparison of ΔΣ Controllers
 in DC-DC Converter
- Simulation results
- Conclusion

Delta-Sigma Modulator Types

- Feed-forward vs. Feedback $\Delta\Sigma$ modulator
- CT vs. DT $\Delta\Sigma$ modulator
- 1^{st} -order vs. 2^{nd} -order $\Delta\Sigma$ modulator

1st-order Feed-forward $\Delta\Sigma$ Modulator

$$Y(z) = \underbrace{1}_{\bullet} \cdot X(z) + \frac{1}{1 + H(z)} \cdot E(z)$$

$$STF(z) = \underbrace{1}_{\bullet} NTF(z) = \underbrace{1 - z^{-1}}_{\text{noise transfer function}}$$
Signal transfer function
No Delay
Differentiation=Noise Shaping

2^{nd} -order Feed-forward $\Delta\Sigma$ Modulator

$$Y(z) = \underbrace{1} \cdot X(z) + (\underbrace{1 - z^{-1}})^2 \cdot E(z)$$

STF=1
NTF= $\underbrace{(1 - z^{-1})^2}$
No Delay
2nd-order Differentiation

2^{nd} -order Feedback $\Delta\Sigma$ Modulator

Feedback

Continuous-Time vs Discrete-Time

$CT \Delta \Sigma$ modulator

- Low power
- High-speed, high-frequency
- Time constant (RC) variation

DT $\Delta\Sigma$ modulator

- High precision
- High power consumption
- low-speed, low-frequency

CT ΔΣ modulator

Application to DC-DC converter controller

DT $\Delta\Sigma$ to CT $\Delta\Sigma$ STF Design

STF: Signal Transfer FunctionNTF: Noise Transfer Function(Y/X)(Y/E)

Position of the sampling switch

A: Discrete-Time $\Delta\Sigma$

B: Continuous-Time $\Delta\Sigma$

Mapping From Discrete-Time To Continuous-Time $\Delta\Sigma$

Continuous time $\Delta \Sigma$

Impulse Response Invariant Transformation

Derivation of 1^{st} -order $\Delta\Sigma$ Transfer Function

1^{st} –order Continuous-Time Feedback $\Delta\Sigma$ STF

$$Hc(s) = -\frac{1}{sT}$$

STF(s) = - Hc(s)NTF(s)
$$= \frac{1}{1-sT} [1-e^{(-sT)}]$$

1^{st} -order Continuous-Time Feed-forward $\Delta\Sigma$ STF

$$Hc(s) = -\frac{1}{sT}$$

STF(s)= [1+Hc(s)]NTF(s)
= [1+ $\frac{1}{sT}$][1- $e^{(-sT)}$]

Derivation of 2nd-order ΔΣ Transfer Function

2nd -order CT Feedback ΔΣ STF Design

$$Hc(s) = \frac{3}{2sT} + \frac{1}{(sT)^2}$$

STF(s)= Hc(s)NTF(s)
= $\left[\frac{2}{sT} + \frac{1}{(sT)^2}\right] \left[1 - e^{(-sT)^2}\right]$

2^{nd} CT Feed-forward $\Delta\Sigma$ STF Design

$$Hc(s) = \frac{3}{2sT} + \frac{1}{(sT)^2}$$

STF(s)= [1+Hc(s)]NTF(s)
=
$$[1 + \frac{3}{2sT} + \frac{1}{(sT)^2}][1 - e^{(-sT)}]$$

Comparison of STF Bode Plot

 2^{nd} -order CT Feedback $\Delta\Sigma$

Omega

1^{st} order CT Feed-forward $\Delta\Sigma$

 2^{nd} -order CT Feed-forward $\Delta\Sigma$

- Feedback-types have phase lag.
- Feed-forward types have phase lead.

STF Characteristics of CT ΔΣ Modulator

Outline

- Research Background and Objective
- ΔΣ Controller Advantages in DC-DC Converter
- Architecture Comparison of ΔΣ Controllers
 in DC-DC Converter
- Simulation results
- Conclusion

Simulation Conditions

Output Voltage Ripple ($DT \Delta \Sigma$)

30

Output Voltage Ripple (CT $\Delta\Sigma$)

Transient Response Simulation (Output Current change from 0.5A to1A)

Outline

- Research Background and Objective
- ΔΣ Controller Advantages in DC-DC Converter
- Architecture Comparison of ΔΣ Controllers
 in DC-DC Converter
- Simulation results
- Conclusion

ΔΣ Controller Comparison

	No Delay	High Frequency	Small Ripple	Low Power	High Precision
1^{st} CT FF $\Delta\Sigma$	\bigcirc	\bigcirc		\bigcirc	
1^{st} DT FF $\Delta\Sigma$	\bigcirc				\bigcirc
1^{st} CT FB $\Delta\Sigma$		\bigcirc		\bigcirc	
1^{st} DT FB $\Delta\Sigma$					\bigcirc
2^{nd} CT FF $\Delta\Sigma$	Ø	Ø	O	Ø	
2^{nd} DT FF $\Delta\Sigma$	\bigcirc		\bigcirc		\bigcirc
2^{nd} CT FB $\Delta\Sigma$		O	\bigcirc	\bigcirc	
2^{nd} DT FB $\Delta\Sigma$			\bigcirc		\bigcirc

Conclusion

2nd-order Continuous-Time, Feed-forward ΔΣ modulator has

- the fastest transient response
- with comparable voltage ripple.

Low power implementation is expected.

Remaining Problem

Investigation of R,C variation effects