Digitally-Controlled Gm-C Band-pass Filter

G. Jin, H. Chen, C. Gao, Y. Zhang
H. Kobayashi, N. Takai, K. Niitsu
(University of Gunma)
K. Hadidi (Urmia University)

Supported by STARC
Presented by Guanglei Jin (靳 光磊)
Outline

• Research Objective

• Switched Gm-C Band-pass Filter

• Center Frequency Tuning

• Q-Value Tuning

• Conclusion
Outline

• **Research Objective**

• *Switched Gm-C Band-pass Filter*

• *Center Frequency Tuning*

• *Q-Value Tuning*

• Conclusion
Background

Wireless LAN, Bluetooth, etc.

IF Receiver

Gm-C filters are needed

Center frequency & Q-value adjustment is a challenge
Research Objective

Fine CMOS process → Low voltage

Analog band-pass filter

• Switched Gm-C integrator

• Digital schemes
 ➢ Center Frequency
 ➢ Q-value
Outline

• Research Objective

• *Switched Gm-C Band-pass Filter*

• Center Frequency Tuning

• Q-Value Tuning

• Conclusion
Proposed Switched Gm-C Integrator

\[I_o = I_{o+} - I_{o-} = gm(V_{i+} - V_{i-}) \]

\[V_{o+} = \frac{I_{o+}}{sC} = \frac{gm}{2sC} (V_{i+} - V_{i-}) \]

\[V_{o-} = \frac{I_{o-}}{sC} = -\frac{gm}{2sC} (V_{i+} - V_{i-}) \]

\[V_o = V_{o+} - V_{o-} = \frac{gm}{sC} V_i \]
Proposed Switched Gm-C Integrator

Conventional approach

Proposed method

Analog adjustment of Gm using I_{bias}

Difficult for fine CMOS with low voltage

Digital adjustment of Gm by switch

low voltage control
Continuous Adjustment of Switched Gm-C Integrator

Noise characteristics

C → Constant
Gm → Adjustable

Continuous Adjustment

Switched Gm-C Integrator

- Low-voltage
- Digital control
Switched Gm-C Integrator

Integral Part Adjusting

Factional part tuning

Gm

Gm \(^{N-2}\)

Gm \(^{N-1}\)

Gm \(^N\)

Gm \(^{N-2}\)

Gm \(^{N-1}\)

Gm \(^N\)

0

2Gm
Adjust Fractional Part by PWM

Switched Gm-C Integrator

\[
\frac{I_{\text{out}}}{V_{\text{in}}} = D \cdot Gm
\]

\[
D = \frac{T_{\text{on}}}{T_{\text{on}} + T_{\text{off}}}
\]

PWM control
Adjust Fractional Part by $\Delta\Sigma$

1bit $\Delta\Sigma$ converter for high accuracy

Switched Gm-C Integrator

1bit $\Delta\Sigma$ converter
Input and Output Waveforms of Switched Gm-C Integrator

\[V_{in} = 500mV \]
\[f = 598kHz \]
\[C = 1pF \]
\[1/Gm = 2 \times 10^6 S \]
Input Voltage Amplitude and Pulse Density with ΔΣ Adjustment
Gm-C Second-order BPF

\[H(s) = \frac{Gm_1C_2s}{s^2C_1C_2 + sC_2Gm_2 + Gm_3Gm_4} \]

\[\omega_0 = \sqrt{\frac{Gm_3Gm_4}{C_1C_2}} \]

\[Q = \sqrt{\frac{C_1Gm_3Gm_4}{C_2Gm_2^2}} \]

\[K = \sqrt{\frac{C_2Gm_1^2}{C_1Gm_3Gm_4}} \]
Another node of the filter

\[H''(s) = \frac{V_m}{V_{in}} = \frac{Gm_1Gm_3}{s^2C_1C_2 + sC_2Gm_2 + Gm_3Gm_4} \]

\[H(s) = \frac{K\omega_0}{s^2 + \frac{\omega_0}{Q} s + \omega_0^2} \]

\[\omega_0 = \sqrt{\frac{Gm_3Gm_4}{C_1C_2}} \]

\[Q = \sqrt{\frac{C_1Gm_3Gm_4}{C_2Gm_2^2}} \]

\[K = \sqrt{\frac{Gm_1^2Gm_3}{C_1C_2Gm_4}} \]
Proposed Digitally-controllable BPF and LPF

\[V_{BP} \]

\[V_{LP} \]

\[Gm_1 = N_1 gm \]
\[Gm_2 = N_2 gm \]
\[Gm_3 = N_3 gm \]
\[Gm_4 = N_4 gm \]
\[C_1 = M_1 C \]
\[C_2 = M_2 C \]

\[\omega_0 = \frac{N_3 N_4}{\sqrt{M_1 M_2}} \frac{gm}{C} \]
\[Q = \sqrt{\frac{M_1 N_3 N_4}{M_2 N_2}} \]
\[K = \sqrt{\frac{M_2 N_1^2}{M_1 N_3 N_4}} \]
Outline

• Research Objective

• Switched Gm-C Band-pass Filter

• **Center Frequency Tuning**

• Q-Value Tuning

• Conclusion
• Suitable for **digital low voltage** implement
• Require a reference frequency
Center Frequency Tuning Part

Diagram showing a circuit with labels such as Vin, Vref, Sin(ω₀t), VCNST, VLPF, VBPF, V1, V2, and VC. The circuit includes a PFD, Gm-C Filter, Register, Charge pump, and 4bit ADC.
Proposed Center Frequency Tuning Method

Magnitude characteristics

\[H(s) = \frac{Gm_1 C_2 s}{s^2 C_1 C_2 + s C_2 Gm_2 + Gm_3 Gm_4} \]

Phase characteristics

\[\theta = \frac{\pi}{2} - \arctan \frac{\omega_i \omega_0}{Q(\omega_0^2 - \omega_i^2)} \]

\(\omega_0 \): Center Frequency
\(\omega_i \): Input Frequency

\(\theta = 0 \rightarrow \) Center frequency tuning is done
Principle for Using Phase Characteristics

\[\theta = \frac{\pi}{2} - \arctan \frac{\omega \omega_0}{Q(\omega_0^2 - \omega_i^2)} \]

\[\omega_0 = \sqrt{\frac{Gm_3 Gm_4}{C_1 C_2}} \]

1. \(\theta < 0 \rightarrow \omega_0 < \omega_i \) \hspace{1cm} Gm_3, Gm_4 \text{ bigger} \hspace{1cm} \omega_0 \text{ is adjusted bigger}

2. \(\theta = 0 \rightarrow \omega_0 = \omega_i \) \hspace{1cm} \text{Done}

3. \(\theta > 0 \rightarrow \omega_0 > \omega_i \) \hspace{1cm} Gm_3, Gm_4 \text{ smaller} \hspace{1cm} \omega_0 \text{ is adjusted smaller}
\[V_{\text{ref}} = \sin(\omega_0 t) \]

\(\omega_0 \) is desired center frequency.

PFD (Phase Frequency Detector)

- **Comparator**
- **BPF (Bandpass Filter)**
- **Charge pump**
- **4bit ADC**

Signals of PFD

- Phase Lag
Operation of Charge Pump

Adjust the Gm_3, Gm_4 values

Output of charge pump V_c

Output of PFD
Input and Output Waves of BPF

Vout

Vref

Transient state

Adjusted state

Phase is aligned
Center Frequency Tuning Simulation Result of BPF

Simulation parameters

\[Gm = 5 \times 10^{-5} \text{S} \quad C = 1.59 \text{pF} \]

\[N_1 = N_2 = 2 \quad M_1 = M_2 = 1 \quad 0 \leq N_3 = N_4 \leq 15 \]

Center Frequency Tuning Simulation Results of LPF

Simulation parameters

\[G_m = 5 \times 10^{-5} \text{S} \quad C = 1.59 \text{pF} \]

\[N_1 = N_2 = 2 \quad M_1 = M_2 = 1 \quad 0 \leq N_3 = N_4 \leq 15 \]
Outline

• Research Objective

• Switched Gm-C Band-pass Filter

• Center Frequency Tuning

• \textit{Q-Value Tuning}

• Conclusion
Q-value Tuning Part

The diagram illustrates a circuit with a Gm-C filter, a PFD (Phase Frequency Detector), and components for signal processing, including a charge pump and a 4-bit ADC.
Q-value Tuning Method

The proposed method is given by:

\[H(\omega_0) = \frac{G_{m1}}{G_{m2}} = \sqrt{\frac{G_{m1}^2 C_2}{G_{m3} G_{m4} C_1}} \cdot \sqrt{\frac{G_{m3} G_{m4} C_1}{G_{m2}^2 C_2}} = KQ \]

where

\[\omega_0 = \sqrt{\frac{G_{m3} G_{m4}}{C_1 C_2}} \]

\[Q = \sqrt{\frac{C_1 G_{m3} G_{m4}}{C_2 G_{m2}^2}} \]

\[K = \sqrt{\frac{G_{m1}^2 G_{m3}}{C_1 C_2 G_{m4}}} \]

\[\omega_0 \text{ determined by } G_{m3}, G_{m4} \]

\[K \text{ determined by } G_{m1}, G_{m3}, G_{m4} \]

Fix Center frequency and K

Q-value is proportional to gain

\[|H(j\omega_0)| = K \cdot Q \]
In Case Q is Smaller than Desired Value

\[V_1 > V_2 \quad \rightarrow \quad V_{cp} \text{ is tuned bigger} \quad \rightarrow \quad Gm_2 \text{ is tuned smaller} \]

\[Q = \sqrt{\frac{C_1 Gm_3 Gm_4}{C_2 Gm_2^2}} \]

\[Q \propto \frac{1}{Gm_2} \]

Q → bigger

\(\omega_0 \) has been adjusted
ω_0 has been adjusted

Output of Comparator

COMP UP

COMP DOWN
ω_0 has been adjusted

Output of Charge pump

V_{cp}

$V_{ref} = \sin(\omega_0 t)$

V_{clk} Constant voltage

Gm-C Filter

$1/A$

CLK

\begin{align*}
V_1 \\
V_2 \\
V_{cp}
\end{align*}

4 bit ADC

\begin{align*}
S1 \\
S2 \\
S3 \\
S4
\end{align*}
ω_0 has been adjusted

Output of ADC

$V_{\text{ref}} = \sin(\omega_0 t)$

V_{clk} Constant voltage

V_1

V_2

V_{cp}

$\propto \left(\frac{1}{Gm_2} \right)$

$Q \propto \frac{1}{Gm_2}$
In Case Q is Bigger than the Desired Value

\[
Q = \sqrt{\frac{C_1 Gm_3 Gm_4}{C_2 Gm_2^2}}
\]

\[Q \propto \frac{1}{Gm_2}\]

\[V_1 < V_2 \rightarrow V_{cp} \text{ is tuned smaller} \rightarrow Gm_2 \text{ is tuned bigger}\]

\[\omega_0 \text{ has been adjusted}\]
Algorithm of Q-value Tuning

When $V_1 = V_2$

$V_1 = V_{ref}$

$V_2 = Q \cdot KV_{ref} / A$

ω_0 has been adjusted

K is fixed

$Q = \frac{1}{K} A$

$Q \rightarrow$ Determined by A
Input and Output Waves of BPF

\[|H(j\omega_0)| = Q \]

\[V_{\text{ref}} \]

\[V_{\text{out}} \]

Phase is aligned
Q-value Tuning Simulation Result of BPF

Simulation parameters

\[\begin{align*}
G_m &= 5 \times 10^{-5} \, S \\
C &= 1.59 \, \text{pF} \\
\omega_0 &= 600 \, \text{kHz} \\
M_1 &= M_2 = 1
\end{align*} \]
Q-value Tuning Simulation Result of LPF

Simulation parameters

\[G_m = 5 \times 10^{-5} \, S \]
\[C = 1.59 \text{pF} \]
\[f_0 = 600 \text{kHz} \]
\[M_1 = M_2 = 1 \]
Outline

- Research Objective
- Switched Gm-C Band-pass Filter
- Center Frequency Tuning
- Q-Value Tuning
- Conclusion
• Propose a digitally-controlled Gm-C band-pass filter using switched Gm arrays
 - Fine CMOS → Low voltage

• Digital tuning schemes
 - Center Frequency → Phase property
 - Orthogonal
 - Determined by Gm3, Gm4
 - Q-value → Gain property (Center frequency has been adjusted)
 - Determined by Gm2

• Present SPICE simulation results