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Abstract 

This paper proposes a new procedure for calculating 
high-accuracy PDF estimates, which are free of random 
error and nearly free of bias error.  The procedure is 
verified experimentally using random jitter and a 16-bit 
ADC. 
 
1. Introduction 
 

It is well established that jitter in high-speed serial 
I/O devices, and differential nonlinearities (DNL) in 
ADCs are effectively tested by characterizing timing or 
output codes in a probabilistic manner [1], [2], [3].  Fail 
count or bit error rate (BER) is easily measured by 
comparing the output voltage from the DUT with a 
pre-defined voltage of logic one or zero at the strobe.  An 
ATE or an on-chip checker circuit commonly implements 
a fail counter [4], [5].  These error counts correspond to a 
cumulative distribution function (CDF).  From this, a 
probability density function (PDF) can be constructed by 
differentiating the CDF (BER) curve.   

Similarly, to measure differential and integral 
nonlinearities in an ADC, a PDF is constructed directly 
from the output digital codes of the ADC, into which an 
analog sinusoid is typically applied.  However, the 
sinusoid spends more time around its maxima and minima, 
and less time around its zero crossings.  Therefore when 
a sinusoid is captured, less code count is expected around 
the ADC middle code.  Hence, this type of code density 
test requires that a fairly large number of samples be 
captured [3].  The higher the ADC resolution, the more 
difficult it becomes to perform an effective statistical test, 
gaining sufficient accuracy without utilizing long test 
times.  

A fundamental problem in statistical testing is that a 
PDF estimate from a sequence of sampled events is an 
ill-posed measurement [6], and its properties are not well 
understood.  In addition, there is a tradeoff between the 
bias error and random error of the PDF [7].   

Accurate PDF measurements cannot be realized by 
simply increasing the bandwidth-time ( BT ) product.  If 
a PDF is measured using high time resolution, its bias 

error is reduced.  However, this increased time resolution 
results in increased random error, as shown in Fig. 1(c).   

This paper revisits the statistical errors in PDF 
measurements, and proposes a new procedure to calculate 
high-accuracy PDF estimates that are nearly free of bias 
error and random error.  This new PDF measurement 
procedure is validated experimentally using random jitter 
and a 16-bit ADC. 

In Section 2 of this paper, statistical error in PDF 
estimates is revisited.  Existing nonparametric 
approaches are also discussed.  In Section 3, the theory 
for measuring a high-accuracy PDF is developed, and it is 
experimentally validated in Section 4.  Finally, the 
advantages and limitations of the proposed procedure are 
discussed in Section 5. 
 
2. Review of Previous Works 
 

In this section, the two basic parameters of a random 
variable (RV) used in conjunction with a CDF are defined.  
Also, statistical errors in PDF estimates are discussed, and 
existing approaches to PDF estimation are reviewed.   

 
2.1 Probability Fundamentals 

Continuous and Discrete RVs [8].  A random 
variable (RV) t  is a real-valued function of the elements 

of a sample space, S .  Given an experiment E in 

sample space, S , RV t  maps each possible 

outcome Sx  to a real number  xt .  If the range of 

t  is a non-countable infinite number of points, we refer 
to t  as a continuous random variable.  On the other 

hand, if the mapping  xt  is such that the random 

variable t  takes on a finite or an infinite but countable 

set of values in S , then t  is referred to as a discrete 
random variable.   

It is important to note that a discrete random 
variable can be defined on a continuous sample space.  
For example, a discrete random variable has value 1 for 
the set of outcomes {0 < s < 6} and 0 for {6 < s < 13}.  
This establishes a common ground for a fail counter. 
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Cumulative Distribution Function (CDF) [9].  A 

non-decreasing function  tF  defined on the whole real 

line and satisfying the following conditions (1), is called a 
cumulative distribution function of the RV t . 

   ttF  tP    (1) 

 tF is defined for every t  from   to  .   tF  

has the following properties [10]: 

A.   0lim 


tF
t

 and   1lim 


tF
t

 (2) 

B.  It is a non-decreasing function of t  

    21 tFtF   21 tt    (3) 

C.  The function  tF  is continuous from the right: 

    tFtF     (4) 

Probability Density Function (PDF). The PDF 

 tf  is defined as the derivative of the CDF  tF : 
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tdF
tf  

   
W

tFWtF
W


0

lim  


 
W

WtF
W

,
lim

0
  (5) 

The mean of a random variable t  depends only on 
the distribution of t .  Therefore, if the CDF is known, 

the mean  tE  can be expressed as the integral function 

of it with respect to  tF  [9]. 

  



 tdFE t   




dtttf   (6) 

The variance of a random variable t  also depends 

only on its distribution.   tVar  is also expressed as an 

integral function of 2t  with respect to  tF  [9]: 

 tVar 
2
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tdFdFt  

       



 dttfEt

2
t  (7) 

If a CDF is constant except for a finite number of 
jump discontinuities (i.e., it is piecewise constant), then 
t  is said to be a discrete random variable, and its PDF 
has the general form 

    j
j

j ttptf     

In the case of a discrete RV, the PDF is known as the 
probability mass function (PMF).   

The mean of the discrete RV is given from (6) by: 

  tE    



 dtttpt j

j
j 

j
jjtp (8) 

The variance of the discrete RV is given from (7) 
by: 

  tVar      



 dtttpEt

j
jj

2
t  

          
j

jj Etp
2

t  (9) 

Example 1.  Gaussian RV [10].  An RV t  is 
called Gaussian if its PDF is the normal curve: 
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and its CDF is given by: 
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where  zerf  denotes the error function. 

Example 2.  Sinusoidal RV [7].  An RV t  is 
called sinusoidal if its PDF is the bathtub curve: 
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and its CDF is given by: 
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Example 3.  Binomial RV [11].  This is a very 
important random variable for this application.  If a coin 
is tossed n  times, and a head (H) turns up with a 
probability of p , the sample space of this experiment is 

represented as  nTHS , .  Let x be the total 

number of heads.  The variable x  takes values in the 

set {0, 1, …, n } and is discrete.  Exactly 







k

n
points in 

S  gives a total of k heads; and each point occurs with a 

probability of knk qp     knk pp 1 :  

    knk pp
k

n
kf 








 1   (14) 

This is known as a binomial random variable, and it 
takes on integer values from 0 to n .  It is the sum 

nyyyx  21 of n Bernoulli variables.   

The mean and the variance of the Bernoulli RV are: 

  pE x    (15) 

   pppqVar  1x   (16) 

Hence, the mean and the variance of the binomial RV are: 

  npE x    (17) 

   pnpnpqVar  1x   (18) 
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It is important to note that binomial random variables 
occur when the number of errors in a DUT are counted by 
a fail counter in either an ATE digital channel or in an 
on-chip circuit. 

Histogram  [6], [7].  A histogram is a plot of the 
number of measured values of a quantity that partitions t  
into distinct bins of width W . 
 
2.2 Statistical Errors in PDF Estimates 

The PDF in Fig. 1(a) was obtained by dividing the 
count in each distinct bin by the total number of 

observations eventN  and by the bin (interval) width W  

[12].  From Fig. 1(c), it can be seen that the 
high-resolution PDF is noisy.  This is an artifact of the 
bin-edge partitions rather than any property of the 
distribution of the PDF distribution itself [6].  The noise 
corresponds to statistical errors.  

Theoretically, the total mean squared error of the 

measured PDF  tf̂  is given by [7]: 

     
 

2ˆ tftfE 
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tfW

BTW

tfc
 

     (19) 
where W  is a finite length window, and BT2  
corresponds to the number of independent estimates 

eventN .  The first term is the variance of an estimate 

 tf̂  and the second term is the square of the bias.   

It is clear from (19) that there are conflicting 
requirements on the bin width W in PDF measurements.  

In order to suppress the bias error 
 

24

2 tfW 
 a small 

value of W  is needed.  However, the estimated PDF 
becomes very spiky, i.e., it contains more random error, as 
shown in Fig. 1(c).   

Alternatively, to reduce the random error in the PDF, 

represented by 
 

BTW

tfc

2

2

, a large bin width W  is 

desirable.  This results in a PDF that is too smooth as 
shown in Fig. 1(a).  Hence, it would be easy to miss the 
multimodal nature of the true distribution in PDF.  

 
2.3 Existing Approaches to Estimating a PDF 

Parametric approaches to PDF estimation assume 
prior knowledge of the distribution, e.g. it is Gaussian, 
sinusoidal, etc.  Also, the values of the distribution 
parameters, such as mean and variance in the case of 
Gaussian, are assumed to be determined from measured 
counts.   

The model-based approach for estimating the PDF 
of discrete RVs was proposed in [13].   This approach 

assumes that the input histogram consists of equidistant 
bins.  A multi-rate filtering on the input bins can then be 
performed to obtain an orthogonal projection of the given 

histogram onto a low-frequency subspace 0 .  It was 

shown that the model-based PDF estimates are unbiased 
and have smaller variance than the histogram-based PDF 
estimates.   

However, in order to minimize the variance, a set of 
PDFs is required as a training set for optimizing the filter 
coefficients.  In Section 4, it will be demonstrated that 
our new procedure minimizes both the random and bias 
errors in PDF estimates without requiring a training set.   

Nonparametric approaches to PDF estimation make 
few assumptions about the distributions of the RVs. 

One such approach uses the kernel density estimator.  
This type of estimator suffers from the presence of 
artificial discontinuities at the boundaries of cubes (= 
D-dimensional bins) however.   

A relatively smooth kernel function such as the 
Gaussian function can be used to obtain a smooth PDF, [6].  
In order to obtain a smooth kernel function though, it is 

implicitly assumes that the input counts binN  are 

uniformly distributed over t, and that a sufficiently large 

number of input counts binN  is used.  Since test time is 

negatively impacted by a large binN , the kernel density 

estimator is inappropriate for production testing.   
 

2.4 Limitations of the Existing Approaches 
The limitations of the existing approaches can be 

summarized as follows: 
 If a PDF is directly estimated from a histogram, 

conflicting requirements on the bin width W  are 
inevitable.  To reduce the bias error, a small value of 
W  is needed, but to reduce random error, a large 
value of W  is required. 

 The model-based approach for estimating the PDF 
requires design of a multi-rate filter.  The 
model-based PDF estimates are unbiased, but a 
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Figure 1.  Measured PDFs f(t) from aperture jitter 
histograms.  (a) PDF in time resolution W = 20 fs. 

(b) PDF in W = 2 fs.  (c) PDF in W = 0.2 fs. 
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training set of PDFs is required to minimize error. 
 Nonparametric approaches, such as the kernel density 

estimator, suffer from the presence of artificial 
discontinuities at the boundaries of cubes. 

 
3. Theory of High-Accuracy PDF Estimates 

 
The theory in support of our procedure for 

calculating high-accuracy convex (e.g., Gaussian) or 
concave (e.g., sinusoidal) PDFs is now presented.  Since 
the random error in (19) is caused by the difference 
operation in (5), our procedure performs no difference 

operations on  WtF , . 

 
3.1 PDF Estimates 

The variance of  WtF ,  based on 

N independent sample values at t  is given by [7]: 

       
N

WtFWtF
WtFVar

,1,
,


  (20) 

Note that  WtFp ,  and  WtFq ,1 are 

substituted into (16) to obtain the variance.  Substituting 
(5) into (20), the variance at t is approximated by: 

        tWftf
N

W
WtFVar  1,  

Hence, PDFs can be computed from the quadratic form: 

        0,2  WtFVar
W

N
tftWf  

The real valued roots of the quadratic equation are given 
by: 

     WtFVar
W

N
tf ,   (21) 

    






  WtFVar

NW

N
tf ,

1
 (22) 

Note that, since  tf  and  tf  have opposite signs,  

 tf  provides a convex PDF while  tf  provides a 

concave PDF.  Furthermore, since both (21) and (22) 
have no difference calculation with respect to W , (19) 
theoretically predicts a bias-free estimate of the PDF.  
These properties will be validated by both numerical 
examples & experiment in Section 4.1 & 4.2, respectively. 

If  WtF ,  is given as counts of logic <1> from a 

fail counter, the distribution follows a binomial 

distribution.  Therefore   WtFVar ,  at t  can be 

calculated using (16). 

 
3.2 PDF Estimation Procedure 

The procedure for estimating a PDF from a CDF is 
outlined in the following steps: 

 Step 1. Measure a digital CDF. 

 Step 2. For each t , calculate   WtFVar ,  

using (16). 

 Step 3. Determine if the distribution  tf  is 

convex or concave or flat using the PDF model 

identifier [14]. 

 Step 4.1. If the distribution is convex, calculate a 

PDF  tf  at t  using. (21). 

 Step 4.2. If the distribution is concave, calculate a 

PDF  tf  at t  using (22). 
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Figure 2. Calculated PDF f+(t) and theoretical PDF 
of a Gaussian distribution.  (a) PDFs.  (b) CDF. 
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Figure 3.  Calculated PDF f-(t) and theoretical 

PDF of a sinusoidal distribution.  (a) PDFs.  (b) 
CDF. 
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 Step 4.3. If the distribution is flat, calculate a 

uniform PDF. 

 

4. Performance Validation and Comparison 
 

Methods for calculating a Gaussian PDF and a 
sinusoidal PDF are now illustrated using numerical 
examples.  The resulting PDFs are compared with those 
of the histograms method. 

 
4.1 Numerical Examples  
4.1.1 Gaussian Distribution (Convex PDF) 

From (11), probabilities p  and q  of the 

Gaussian RV t  taking values <1> and <0> are given by: 
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Thus, from. (21) and a calculated   WtFVar , , the 

PDF  tf  becomes 
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The theoretical curve of the Gaussian CDF is plotted 
in Fig. 2(b).  In Fig. 2(a), the theoretical Gaussian PDF 

is compared with the calculated PDF  tf  using (21). 

 
4.1.2 Sinusoidal Distribution 

From (13), probabilities p  and q  of the 

sinusoidal RV t  taking values <1> and <0> are given 
by: 
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p 1sin
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Thus, from (22) and a calculated   WtFVar , , the 
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The theoretical curve of the sinusoidal CDF is plotted in 
Fig. 3(b).  In Fig. 3(a), the theoretical sinusoidal PDF is 

compared with the calculated PDF  tf  using. (22). 

Both the calculated Gaussian PDF and the calculated 
sinusoidal PDF agree with their theoretical PDF curves, 
respectively.  As being predicted by (19), there is no 
random error and a very small bias error over the region 

of  tf max .  These results validate the proposed 

procedure. 
 

4.2 Experimental Results  
4.2.1 Aperture Jitter PDF  

The conventional PDFs and the new PDF estimates 

 tf  of the aperture jitter waveforms were measured by 

applying our previous method [15] and the currently 
proposed procedure to an ADC output.  The ADC under 
test was a 16-bit, 130 MS/s, with VDD = 3.3 V ADC.  An 
SMA 100A (Rohde & Schwarz) signal generator provided 
both a sinusoid of amplitude -0.5dBFS at frequency fin = 
174.8 MHz and a sampling clock of amplitude A = 0.6 VPP 
at frequency fS = 102.4 MHz. 

The aperture jitter PDF is plotted in blue in Fig. 4(a).  
It follows a Gaussian distribution and was measured with 
a conventional histogram method with W  = 2 fs.  The 
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Figure 4. Measured Gaussian PDFs f(t) and f+(t).  
(a) PDFs with 2 fs resolution.  (b) PDFs with 0.2 

fs resolution. 
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Figure 5. Estimated PDF f-(t) of the code density.  
A 16-bit ADC, fS = 100.8576 MS/s, fin = 200.0008 
MHz, A = 0.65 V.  (a) PDF.  (b) Zoomed PDF. 
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red PDF  tf , plotted in red in Fig. 4(a), was 

calculated from the CDF obtained from the conventional 
PDF in blue by using the proposed method. 

The aperture jitter PDF plotted in blue in Fig. 4(b), 
was measured with the conventional histogram method, 

with W  = 0.2 fs.  The PDF  tf , plotted in red in 

Fig. 4(b), was calculated from the CDF obtained from the 
conventional PDF in blue using the proposed method.   

This experimentally validates that our new procedure 

for measuring a Gaussian PDF,  tf , is free of both 

bias error and random error.  Note that, since the 
proposed procedure performs no difference operation on 
the CDF using W , this bias-free property of the PDF 
estimate is theoretically predicted by (19).  Note also that 
an identical value of 59.5 fs for the standard deviation is 

obtained from the two PDFs  tf , even with different 

values of W . 
. 

4.2.2 Code Density PDF 
The code density PDFs were measured by applying 

a sinusoid input to an ADC.  The ADC under test was a 
16-bit, 130 MS/s, with VDD = 3.3 V ADC.  An SMA 
100A (Rohde & Schwarz) signal generator provided both 
a sinusoid of amplitude 2A = 1.3 VPP at frequency fin = 
200.0008 MHz and a sampling clock at frequency fS = 
104.8576 MHz. 

The code density PDF is plotted in blue in Fig. 5(a), 

and follows the sinusoidal distribution.  The PDF  tf  

plotted in red in Fig. 5(a) and Fig. 5(b) was measured 
from the CDF obtained from the conventional PDF using 
the proposed procedure. 

This experimentally validates the procedure for 

estimating a high-resolution sinusoidal PDF  tf  using 

Eq. (22).  From Fig. 5(b), it is clear that  tf  is also 

free of random error and is nearly free of bias error. 
 

5. Advantages and Limitations of the 
Proposed Procedure 

 

Advantages 
 The PDF estimates obtained from the proposed 

procedure are free of random error and nearly free of 
bias error. 

 Since the new PDF estimates are free of random error, 
the resolution of the estimates is effectively enhanced, 
as illustrated in Fig 4.   

 The proposed procedure requires no PDF training set. 
 Test times are shortened by at least 10x, since the  

PDF estimates don’t require large numbers of samples. 
Limitations  
 Different calculations are required depending on the 

shape of the PDF; convex, concave and flat. 
 
6. Conclusion 
 

A new procedure for calculating high-accuracy PDF 
estimates was introduced.  The procedure was verified 
numerically, and was also validated experimentally using 
random jitter and a 16-bit ADC.  It was shown that the 

procedure provides  tf  or  tf , both of which are 

free of random error and nearly free of bias error. 
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