Vernier Stochastic TDC Architecture with Self-Calibration

Yuta Doi, Satoshi Ito, Shigeyuki Nishimura, Haruo Kobayashi, Nobukazu Takai

Department of Electronic, Graduate School of Engineering Gunma University, 1-5-1 Tenjin-cho, Kiryu 365-8515, Japan
K_haruo@el.gunma-u.ac.jp

Introduction

Research Objective

- Development of High-performance TDC
 - For good linearity
 - For self-calibration method
 - For fine time resolution
- Vernier delay line TDC
- Stochastic TDC

Proposed TDC Architecture

Self-calibration flow

- Improvement of nonlinearity due to delay-time mismatches among delay buffers

Test mode

- Using two-ring-oscillator

Normal mode

- # of '1's Counter
- Digital Correction
- Voltage output

Self-calibration

- Principle of Self-calibration

- TDC is non-linear

Simulation Results

Self-calibration Results

- Stochastic TDC
- 8 delay buffers
- 8 DFF's from one delay buffer
- MATLAB simulation

Conclusion

- We propose Vernier Stochastic TDC as TDC for fine time resolution and good linearity.
 - For fine time resolution:
 - Vernier technique (using two delay lines)
 - Stochastic topology (using process variations)
 - For good linearity:
 - Self-calibration (using a two-ring-oscillator, signal is "time")

Our Publication

Summary

Suitable for advanced low CMOS implementation