A Self-Calibration Technique of Cyclic ADC

Yu Liu, Haruo Kobayashi, Osamu Kobayashi 2), Tatsuji Matsuura, Kiichi Niitsu, Nobukazu Takai Dept. of Electronics Engineering, Gunma University, Kiryu Gunma 376-8515, Japan K haruo@el.gunma-u.ac.jp ²⁾Semiconductor Technology Academic Research Center (STARC), Yokohama 222-0033 Japan

Transfer function of CyclicADC

Proposed Self-Calibration block diagram

Self-calibration at step 1

Self-calibration at step k

Error analysis

Error analysis (mathematical model)

> The circuit worked on different modes, the error of circuit is like this diagram

Calibration coefficient calculation

Dout1=Wf1*D1+Wb1*D2=Wf1*D1+Wb1*V1 V1=(1-efg)[(1+em/2)*2*Vin-(1+em)*D1*Vref]

Calibration coefficient calculation (continued)

Doutk=Wf1*D1+Wf2*Wb1*D2+Wf3*Wb2*D3+ · · · Wfk*Wb(k-1)*Dk+Wbk*D(k+1) Vk=(1-efg)[(1+em/2)*2*V(k-1)-(1+em)*Dk*Vref]

> After the calibration, the linearity is better than before

SNR=44.13dB THD=-45.65dB SNDR=41.81dB ENOB=6.65Bit

Power spectrum(simulation)

> After the calibration, SNDR is better than before

Conclusion

Verified with Matlab simulation