任意波形発生器を用いたノイズシェーピング技術

村上 正紘* 新井 薫子 Mohyar Nizam Shaiful 安部文隆 加藤啓介 小林 春夫

松浦 達治 (群馬大学) 小林修 (STARC) 新津 葵一 高井 伸和 (群馬大学)

Noise-Shaping Technique with Arbitrary Waveform Generator

Masahiro Murakami^{*}, Yukiko Arai, Mohyar Nizam Shaiful, Fumitaka Abe, Keisuke Kato, Haruo Kobayashi Tatsuji Matsuura (Gunma University) Osamu Kobayashi (STARC)

Kiichi Niitsu, Nobukazu Takai (Gunma University)

Abstract—This paper describes a technique for generating pure single and multi-tone signals, for testing an ADC using an arbitrary waveform generator (AWG). The AWG consists of DSP and DAC, and the DAC quantization degrades the S/N ratio. We propose here to use DSP algorithms to precompensate for the quantization noise with lowpass and /or multi-bandpass noise-shaping. The quantization noise close to the signal frequencies is suppressed, though quantization noise far from the signal frequencies may be increased (which may be relatively easy to remove the following analog filter). Theoretical analysis and simulation results show the effectiveness of this approach.

キーワード:任意波形発生器、ノイズシェープ、信号生成、LSI 試験、ADC 試験

(Keywords: Arbitrary Waveform Generator, Noise-Shaping, Signal Generation, LSI Testing, ADC Testing)

1. はじめに

この論文では任意波形発生器(Arbitrary Waveform Generator: AWG) [1-7] から信号を発生させる際に、内部 DAC の量子化誤差等のノイズをノイズシェープする手法を 提案する。発生する信号帯域内でのノイズを低減できるので、 AWG 後段のアナログフィルタを併用することで、高 S/N 比 の ADC テスト信号(正弦波、2トーン、マルチトーン信号 [7]等)生成に使用することができる。提案手法は AWG 内の DSP 部のプログラム(または波形メモリのデータ)の変更の みでよい。数値シミュレーションによりこれらの動作確認を 行い、効果を検証した。

2. AWG による ADC 線形性テスト信号生成

〈2・1〉 AWGの構成 AWGは任意のアナログ信号を生 成するために使用され、DSP(または波形メモリ)と DAC により構成される(図 1)。DSP部でデジタル信号を発生し、 それを DAC でアナログ信号に変換し出力する。DAC の静的 特性は 2 つの非理想要因をもつ。

(1) 非線形性:理想的な DAC はデジタル入力とアナログ出 力が比例(線形特性)を示す。しかし実際には内部アナ ログ回路の製造ばらつき等により非線形特性を示す。 (2) 量子化誤差:DAC の有限分解能のためによる誤差。 筆者らは AWG の非線形性の影響を低減させる技術につい て検討してきた[1-6]。ここでは量子化誤差(および DAC 内 部で生成されるノイズ)の影響の低減について 文献[10]にヒ ントを得て検討した。

Fig.1. AWG configuration.

3. ノイズシェーピング・アルゴリズム

AWG 内の DSP の波形生成アルゴリズムをわずかに変更 することで、信号帯域内のノイズシェープができることを示 す。

(3・1) ローパス・ノイズシェーピング DAC サンプリ ング周波数に比べて低域の正弦波信号を生成することを考 える。 1) Nビットのデジタルデータのサイン波D(n)を生成する。 サンプリング点は切り捨てで取り、整数値を得る。この 時発生する丸め誤差をe(n)とする($0 \le e(n) < 1$)。

$$D(n) = [2^{N-1} sin\{2\pi(f_{in}/f_s)n\}].$$
(1)
ここで [] はガウス記号である。

$$e(n) = 2^{N-1} sin\{2\pi(f_{in}/f_s)n\} - D(n).$$
(2)
2) $e(n)の累積値E(n)は以下のように表せる。$

$$E(n) = E(n-1) + e(n).$$
(3)

3) E(n)が誤差の和が 1LSB を超えたとき、E(n)から 1LS B 分だけ引き、デジタル値D(n)に 1LSB 加算する(図 2) $If E(n) \ge 1LSB, E(n) = E(n) - 1LSB,(4)$

$$D(n) = D(n) + 1LSB.$$
(5)

このアルゴリズムの流れを図3に示す。

Fig.2. Proposed algorithm for lowpass noise-shaping.

図 3 MASH 0-1 構成

Fig.3. MASH 0-1 configuration.

(3・2) MASH 0-1 型 ΔΣ 変調器 上記のアルゴリズム
 は MASH 0-1 型 ΔΣ 変調(図 3,4) [9]であることを示す。
 図 3,4 より、初段ナイキスト ADC の出力は次のようになる。

 $Y_1(z) = X(z) + E_1(z)$ (6)

2段目の1次 $\Delta\Sigma$ 変調器の入力は $-E_1(z)$ なので

$$Y_2(z) = -E_1(z) + (1/G_2)E_2(z) \qquad \dots \dots (7)$$

が得られる。量子化雑音 $E_1(z)$ を打ち消すために、

$$H_1(z) = 1, \ H_2(z) = 1$$

とすると、最終出力Y(z)は次のようになる。

$$Y(z) = Y_1 H_1 + Y_2 H_2$$

$$= X(z) + E_1(z) - E_1(z) + (1/G_2)E_2(z)$$

$$= X(z) + (1/G_2)E_2(z) \qquad \dots (8)$$

 $E_1(z)$ がキャンセルされ、 $E_2(z)$ に $1/G_2$ のフィルタがかかっていることがわかる。

図 4 MASH 0-1 型 ΔΣ 変調器

Fig.4. $\Delta\Sigma$ modulator with MASH 0-1.

ノイズシェープの効果をシミュレーションにより検証を 行う。Excelを用いて出力信号Y(z)のパワーを計算する。シ ミュレーション条件を表1、シミュレーション結果を図5に 示した。低周波での量子化ノイズは抑圧され、高周波側に追 いやられていることがわかる。後段のアナログフィルタで高 周波側に移動した量子化ノイズを取り除けば、S/N 比の良い サイン波が得られる。

表1 シミュレーション条件

Table 1. Simulation conditions.

入力信号 X	$Asin(2\pi f_{in}t)$
入力周波数 f _{in} [kHz]	11
サンプリング周波数 f _s [MHz]	2.2528
振幅 A	3.5
データ点数 N	1024
分解能 [bit]	3

Fig.5. DAC output power spectrum. (a) Before modifying algorithm. (b) After modifying algorithm.

このときの、AWGへの入力波形及び出力波形をそれぞ れ図 6、図 7 に示す。入力波形においては提案するアルゴ リズムにより波形が補正されている。出力波形においては 補正していない従来信号に比べ、波形がなめらかになって いるので、ノイズシェープの効果が現れていることが確認 できる。

図6 AWG入力波形

Proposed lowpass noise-shaping method.

〈3·2〉 マルチバンドパス·ノイズシェーピング I

〈3·1〉における量子化誤差の累積方法を変えることによって、マルチバンドパス・ノイズシェーピング[7]を実現する。 マルチトーン信号、バンドパス信号を高 S/N 比で生成するの に有効である。

- Nビットのデジタルデータのサイン波D(n)を生成する。
 サンプリング点は切り捨てで取り、整数値を得る。この
 時発生する丸め誤差をe(n)とする(0 ≤ e(n) < 1)。
- 2) 量子化誤差を累積する際に、M個のポインタを持たせる。

$$E_k(n) = E_k(n - M) + e(n).$$
(9)
 $\sub \sub k = mod_M(n).$ (10)

*E(n)*が誤差の和が 1LSB を超えたとき、*E(n)*から 1LS
 B 分だけ引き、デジタル値D(n)に 1LSB 加算する。

If
$$E_k(n) \ge 1$$
, $E_k(n) = E_k(n - M) - 1LSB$ (11)

$$D(n) = D(n) + 1LSB.$$
(12)

M = 3のときを例に考える。 $E_k(n)$ は以下のように表せる。また、図 8 にシミュレーション結果を示す。シミュレーション 条件は表 1 と同様である。

:

$$E_0(6) = e(0) + e(3) + e(6)$$
(13)

$$E_1(7) = e(1) + e(4) + e(7)$$
(14)

- 図 8 M = 3のときの出力スペクトル (マルチバンドパス・ ノイズシェーピング I)
 - Fig.8. Output spectrum when M=3 (Multi-Bandpass

Noise-Shaping I).

このアルゴリズムを用いると、 $(m/M) f_s$ の周波数のところで ノイズシェープされる (m = 0, 1, 2, ...)。 $(m/M) f_s$ の周波数 が入力周波数 f_{in} の近傍になるように設定すると、S/N 比の良 いサイン波、マルチサイン波が得られる。たとえばM = 3の ときは周波数が(1/3) f_s ごとに極ができる。

〈3·3〉 マルチバンドパス・ノイズシェーピング Ⅱ 量 子化誤差の累積方法をさらに変えることによって、マルチバ ンドパス・ノイズシェーピング[7]を実現する。

- Nビットのデジタルデータのサイン波D(n)を生成する。
 サンプリング点は切り捨てで取り、整数値を得る。この
 時発生する丸め誤差をe(n)とする(0 ≤ e(n) < 1)。
- 量子化誤差e(n)のnが偶数のときは加算、奇数のときは 減算としてこれを交互に行う。

$$E_k(n) = E_k(n - M) + e(n) \quad in \ case \ n: even \qquad \dots \dots (16)$$

$$E_k(n) = E_k(n - M) - e(n) \quad in \ case \ n: \ odd \qquad \dots \dots (17)$$

*E(n)*が誤差の和の絶対値が 1LSB を超えたとき、*E(n)*から 1LSB 分だけ引き(足し)、デジタル値*D(n)*に 1LSB 加算する。

 $If E_k(n) \ge 1, E_k(n) = E_k(n - M) - 1LSB, \qquad \dots \dots (18)$ $D(n) = D(n) + 1LSB. \qquad (19)$

$$D(n) = D(n) + 125D.$$
(17)

If $E_k(n) \le -1$, $E_k(n) = E_k(n - M) + 1LSB$,(20) D(n) = D(n) + 1LSB.(21)

M = 2のときを例に考える。 $E_k(n)$ は以下のように表せる。また、図 9 にシミュレーション結果を示す。シミュレーション

条件は表1と同様である。

:

$$E_0(4) = e_0 - e_2 + e_4$$
(22)
 $E_1(5) = e_1 - e_3 + e_5$ (23)

図9 M = 2のときの出力スペクトル (マルチバンドパス・

ノイズシェーピングⅡ)

Fig.9. Output spectrum when M=2 (Multi-Bandpass

Noise-Shaping II).

このアルゴリズムを用いた時には、

 $((2m+1)/(2M))f_s$ の周波数のところでノイズシェープされる (m = 0, 1, 2, ...)。たとえばM = 2のときは周波数が $(1/4) f_s$ ごとに極ができる。

4. 複合マルチバンドパス・ノイズシェーピング

これまでに示したローパス・ノイズシェーピングおよびマ ルチバンドパス・ノイズシェーピングをカスケードに接続し、 MASH 0-1-1 の構成をとれば、自由度高く周波数帯域に極を 作ることができる。また、同じ積分器を組み合わせれば、高 次のノイズシェーピングも可能である。

図 10 マルチバンドパスの出力パワースペクトル

Fig.10. Output power spectrum of Multi-Bandpass Noise-Shaping.

〈4·1〉 カスケード(MASH 0-1-1)型 ΔΣ 変調器

初段ナイキスト ADC の出力は次のようになる。

$$Y_1(z) = X(z) + E_1(z)$$
(24)

2段目の1次 $\Delta\Sigma$ 変調器の入力は $-E_1(z)$ なので

$$Y_2(z) = -E_1(z) + (1/G_2)E_2(z) \qquad \dots \dots (25)$$

となる。 3 段目の 1 次 ΔΣ 変調器の入力は-E₂(z)なので

$$Y_3(z) = -E_2(z) + (1/G_3)E_3(z) \qquad \dots \dots (26)$$

となる。量子化雑音 $E_1(z), E_2(z)$ を打ち消すために

$$H_1(z) = 1, \ H_2(z) = 1, \ H_3(z) = 1/G_2$$

とすると、最終出力Y(z)は次のようになる。

$$Y(z) = Y_1H_1 + Y_2H_2 + Y_3H_3$$

= X(z) + E₁(z) - E₁(z) + (1/G₂) E₂(z) -
(1/G₂) E₂(z) + (1/G₂) (1/G₃) E₃(z)
= X(z) + (1/G₂G₃)E₃(z)(27)

 $E_1(z), E_2(z)$ がキャンセルされ、 $E_3(z)$ に $1/G_2G_3$ のフィルタが かかっていることがわかる。これをブロック図で表したもの が図 11 である。

図 11 カスケード(MASH 0-1-1)型ΔΣ変調器
 Fig.11. ΔΣ modulator with cascade (MASH 0-1-1).
 (4・2) 2次ローパス・ノイズシェーピング 図 11 において、ローパス・ノイズシェーピングの積分器を2段にカスケード接続し、2次ローパス・ノイズシェーピングを構成する。
 G2およびG3の伝達関数を

$$G_2(z) = \frac{1}{1 - Z^{-1}} \qquad \dots \dots (28)$$

$$G_3(z) = \frac{1}{1 - Z^{-1}} \qquad \dots \dots (29)$$

として、量子化雑音 $E_1(z), E_2(z)$ を打ち消すために、

 $H_1(z) = 1, \ H_2(z) = 1, \ H_3(z) = 1/G_2$

とし、シミュレーションにより検証を行う。

Excel を用いて出力信号Y(z)のパワーを計算する。シミュレ ーション条件は表1と同様である。シミュレーション結果を 図12に示した。1次よりもノイズシェープの傾きが急しゅ んになっており、高S/N比になっていることがわかる。

Noise-Shaping).

〈4・3〉 マルチバンドパス・ノイズシェーピング 図 11 において、異なるマルチバンドパス・ノイズシェーピングの 積分器を2段にカスケード接続し、任意の周波数帯域に極を 構成する。G2およびG3の伝達関数を例えば

$$G_2(z) = \frac{1}{1 - Z^{-2}} \qquad \dots \dots (30)$$

$$G_3(z) = \frac{1}{1 - Z^{-4}} \qquad \dots \dots (31)$$

として、量子化雑音 $E_1(z), E_2(z)$ を打ち消すために、

 $H_1(z) = 1, \ H_2(z) = 1, \ H_3(z) = 1/G_2$

とし、シミュレーションにより検証を行う。

Excel を用いて出力信号Y(z)のパワーを計算する。シミュレ ーション条件は表 1 と同様である。2 段目の 1 次 $\Delta \Sigma$ 変調器 の積分器 G_2 のみで MASH0-1 を構成した時の出力のシミュ レーション結果を図 13 (a)、 G_3 のみで MASH0-1 を構成した 時の出力のシミュレーション結果を図 13 (b)に示す。最終的 な出力のシミュレーション結果を図 14 に示した。DC 付近 $bf_s/2$ の周波数に極がある積分器 (G_2) と DC 付近 $bf_s/4$ お よび $f_s/2$ の周波数に極がある積分器 (G_3) を組み合わせたの で、DC 付近 $bf_s/2$ の周波数では 2 次のノイズシェープがさ れており、 $f_s/4$ の周波数では 1 次のノイズシェープがされて いて、3 つの極が存在していることがわかる。

Fig.13. Output spectrum when performing 1st order
Multi-Bandpass Noise-Shaping only with (a) integrator G₂.
(b) integrator G₃.

(4.4) SNDR : Signal to noise and distortion ratio

AD 変換の性能を議論する上で,信号電力と(ノイズ電力 +全高調波電力)の比である SNDR が一つの指標となる。 横軸に OSR(Over Sampling Rate)、縦軸に SNDR をとった ものを図 15 に示す。OSR が増えるにつれ、SNDR が大きく なっているので、信号付近(低周波)のノイズが減っている ことが確認できる。

図 15 1 次及び 2 次 ローパス・ノイズシェーピングにおけ

る SNDR 向上

Fig.15. SNDR improvement in 1st and 2nd order Lowpass

Noise-Shaping.

5. まとめ

この論文では任意波形発生器(AWG)から信号を発生させ

る際に、内部 DAC の量子化誤差等のノイズをノイズシェー プする手法を提案し、その有効性を理論解析とシミュレーシ ョンで確認した。提案手法は AWG 内の DSP 部のプログラ ム(または波形メモリのデータ)の変更のみでよく、MASH の構成を多段にすることにより高次のノイズシェープ及び 任意の周波数帯域に極を作ることも可能である。今後は AWG を用いた実測での検証を行っていく。

謝辞 有意義な御討論をいただきました、山口隆弘氏, 辻 将信氏, 梅田定美氏, 土橋則亮氏, 塩田良治氏, 渡邉雅 史氏に感謝いたします。

献

文

- (1) K. Wakabayashi, T. Yamada, S. Uemori, O. Kobayashi, K. Kato, H. Kobayashi, K. Niitsu, H. Miyashita, S. Kishigami, K. Rikino, Y. Yano, T. Gake, "Low-Distortion Single-Tone and Two-Tone Sinewave Generation Algorithms Using an Arbitrary Waveform Generator", IEEE International Mixed-Signals, Sensors and Systems Test Workshop, Santa Barbara, CA (May 2011).
- (2) K. Wakabayashi, K. Kato, T. Yamada, O. Kobayashi, H. Kobayashi, F. Abe, K. Niitsu, "Low-Distortion Sinewave Generation Method Using Arbitrary Waveform Generator", Journal of Electronic Testing : Theory and Applications, Springer, vol.28, no.2, pp.152-163 (April 2012)
- (3) T. Yamada, O. Kobayashi, K. Kato, K. Wakabayashi, H. Kobayashi, T. Matsuura, Y. Yano, T. Gake, K. Niitsu, N. Takai, T. J. Yamaguchi, "Low-Distortion Single-Tone and Two-Tone Sinewave Generation Using $\Sigma \Delta DAC$ ", IEEE International Test Conference (poster session), Anaheim, CA (Sept. 2011).
- (4) K. Kato, F. Abe, K. Wakabayashi, T. Yamada, H. Kobayashi, O. Kobayashi, K. Niitsu, "Low-IMD Two-Tone Signal Generation for ADC Testing", IEEE International Mixed-Signals, Sensors, and Systems Test Workshop, Taipei, Taiwan (May 2012).
- (5) K. Kato, F. Abe, K. Wakabayashi, C. Gao, T. Yamada, H. Kobayashi, O. Kobayashi, K. Niitsu, "Two-Tone Signal Generation for Testing of Communication Application Devices", 第25回回路 とシステムワークショップ、淡路島 (2012年7月).
- (6) 加藤啓介,若林和行,山田貴文,小林春夫,小林修,新津葵一「任意 波形発生器を用いた低歪み2トーン信号発生技術」第24回回路と システムワークショップ、淡路島(2011年8月).
- (7) A. Maeda, "A Method to Generate a Very Low Distortion, High Frequency Sine Waveform Using an AWG", IEEE International Test Conference, (Oct. 2008).
- (8)元澤篤史、萩原広之、山田佳央、小林春夫、小室貴紀、傘昊、「マル チバンドパスΔΣ変調器技術とその応用」、電子情報通信学会誌 和 文誌C vol. J90-C, no.2, pp.143-158 (2007 年 2 月).
- (9) R. Schreier, G. Temes, Understanding Delta-Sigma Data Converters, IEEE Press (2005).
- (1 0) J. Fredenburg, M. Flynn, "A 90MS/s 11MHz Bandwidth 62dB SNDR Noise-Shaping SAR ADC", Tech. Digest of ISSCC, San Francisco (Feb. 2012)