高精度・低消費電力サイクリックADCの 自己校正法の検討

群馬大学大学院 エ学研究科 電気電子工学専攻 情報通信システム第2研究室 劉 羽

アウトライン

- 研究背景•目的
- Cyclic ADCの基本構造・動作
- 有限ゲイン誤差、容量ミスマッチの影響
- 自己校正アルゴリズム
- シミュレーション結果
- まとめと今後の予定

アウトライン

- 研究背景•目的
- Cyclic ADCの基本構造・動作
- 有限ゲイン誤差、容量ミスマッチの影響
- 自己校正アルゴリズム
- シミュレーション結果
- まとめと今後の予定

研究背景

<u>CMOSプロセスの微細化</u>

<u>デジタルアシスト技術</u>

・デジタル → 大きな恩恵(高精度、低消費電力)
 ・アナログ → 必ずしも恩恵を受けない(電源電圧低下)
 ・デジタルアシスト技術 → アナログ回路の性能を向上

研究目的

•研究目的

→ 高精度・低消費電力Cyclic AD変換器のデジタル自己校正法

・Cyclic AD変換器

 → 高精度・回路面積小(メリット)
 ・アンプ低消費電力化、容量を小さくする
 → 回路誤差(有限ゲイン、容量ミスマッチ)
 ・デジタルアシスト技術の応用
 → デジタル自己校正法

アウトライン

- 研究背景•目的
- Cyclic ADCの基本構造・動作
- 有限ゲイン誤差、容量ミスマッチの影響
- 自己校正アルゴリズム
- シミュレーション結果
- まとめと今後の予定

伝達関数(理想)

$$Vout = 2Vin - D * Vref$$
 $D = \begin{bmatrix} 1 & (Vin \ge Vref/4 & Vb = Vref) \\ 0 & (-Vref/4 \le Vin \le Vref/4 & Vb = 0) \\ -1 & (Vin \le -Vref/4 & Vb = -Vref) \end{bmatrix}$

Cyclic ADC基本回路

冗長性を考慮し、二つのコンパレータの構造を使用

アウトライン

- 研究背景•目的
- Cyclic ADCの基本構造・動作
- 有限ゲイン誤差、容量ミスマッチの影響
- ・ 自己校正アルゴリズム
- シミュレーション結果
- まとめと今後の予定

	有限ゲイ ン誤差	容量ミス マッチ
理想	A=無限大	Cf=Cs
実際	A=有限	Cf≠Cs

主な電力が消費される

ADCへの誤差影響

乗算型DAC動作

1. Qf=Vin*Cf Qs=Vin*Cs 2. Q'f=(Vout-V1)*Cf Q's=(VDAC-V1)*Cs

乗算型DAC動作

3. 次サイクル Qf=Vin*Cf Qs=Vin*Cs 4. 次サイクル Q'f=(Vout-V1)*Cf Q's=(VDAC-V1)*Cs

伝達関数の導出

点P:電荷保存則を用い、伝達関数を導出

-Qf - Qs = -Qf' - Qs' , V1 = Vout/A

-Vin * Cf - Vin * Cs = -(Vout - V1) * Cf - (VDAC - V1) * Cs

伝達関数モデル

(理想)
$$Vout = 2Vin - D * Vref$$
 $D = \begin{bmatrix} 1 & (Vin \ge Vref/4 & Vb = Vref) \\ 0 & (-Vref/4 \le Vin \le Vref/4 & Vb = 0) \\ -1 & (Vin \le -Vref/4 & Vb = Vref) \end{bmatrix}$

(**実**際) *Vout* =
$$(1 - efg)$$
{ $(1 + \frac{em}{2})$ * 2*Vin* − $(1 + em)D$ * *Vref*}

アウトライン

- 研究背景•目的
- Cyclic ADCの基本構造・動作
- 有限ゲイン誤差、容量ミスマッチの影響
- 自己校正アルゴリズム
- シミュレーション結果
- まとめと今後の予定

提案自己校正のアプローチ

自己校正モード ・高電力モード → ---> 容量ミスマッチを測定

・通常モード ── 有限ゲイン誤差を測定

通常動作モード ・システム通常動作 ----> 自己校正を行う

提案自己校正のアプローチ

システムの分解能と合わせるリファレンスDACを使用

自己校正システムの1サイクル動作

自己校正システムの2サイクル動作

自己校正システムのkサイクル動作

回路誤差の測定

・システムが高電力モードとなり、オペアンプの利得が無限大
→→ 回路誤差は容量ミスマッチのみ

・システムが通常モードに戻り、容量ミスマッチ誤差を除き →→ 有限ゲイン誤差Wb

・高電力モード → 容量ミスマッチ補正係数Wf(k)
 ・通常モード → 有限ゲイン補正係数Wb(k)

1サイクル動作の補正係数

eout1=Din-Dout1

=Vin-Wf1*D1-Wb1*(1-efg){(1+em/2)*2*Vin-(1+em)*D1*Vref}

=Vin[1-Wb1(1-efg)(1+em/2)*2]+D1[Wb1(1-efg)(1+em)-Wf1]

・eout1=0 → Wf1とWb1が最適に収束 Wb1=1/2(1-efg)(1+em/2) Wf1=(1+em)/2(1+em/2)

最急降下法(LMS) Wb(k+1)=Wb(k)+ μ (eoutb1)=Wb(k)+ μ {Vin-Wb(k)2(1-efg)(1+em/2)Vin} Wf(k+1)=Wf(k)+ μ (eoutf1)=Wf(k)+ μ {D1(1+em)/2(1+em/2)-Wf(k)}

2サイクル動作の補正係数

Dout2=Wf1*D1+Wf2*Wb1*D2+Wb2*V2 V2=(1-efg)[(1+em/2)*2*V1-(1+em)*D1*Vref] Vref=1

2サイクル動作の補正係数

eout2=Din-Dout2

=Vin-Wf1*D1-Wf2*Wb1*D2-Wb2*V2

=Vin-Wf1*D1-Wb1*Wf2*D2-Wb2(1-efg){[(2(1-efg)(1+em/2))^2]*Vin-(1+em/2)2(1-efg)(1+em)D1-(1+em)D2}

=Vin{1-Wb2[2(1-efg)(1+em/2)]^2} +D1{Wb2*[(1-efg)^2]2(1+em/2)(1+em)-[(1+em)/(1+em/2)*2]} +D2{Wb2(1-efg)(1+em)-Wf2/[(1-efg)(1+em/2)2]}

・eout2=0 → Wf2とWb2が最適に収束

Wb2= $1/[2(1-efg)(1+em/2)]^2$ Wf2=(1+em)/2(1+em/2)

 $Wb(k+1)=Wb(k)+\mu(eoutb2)=Wb(k)+\mu(eoutb2)$ $Wf(k+1)=Wf(k)+\mu(eoutf2)=Wf(k)+\mu(eoutf2)$

kサイクル動作の補正係数

Doutk=Wf1*D1+Wf2*Wb1*D2+Wf3*Wb2*D3+ • • • Wfk*Wb(k-1)*Dk+Wbk*D(k+1) Vk=(1-efg)[(1+em/2)*2*V(k-1)-(1+em)*Dk*Vref] Vref=1

kサイクル動作の補正係数

eoutk=Din-Doutk

=Vin-Wf1*D1-Wf2*Wb1*D2-Wf3*Wb2*D3 $\cdot \cdot \cdot -$ Wfk*Wb(k-1)*Dk-Wbk*D(k+1)

・eoutk=0 → WfkとWbkが最適に収束

```
Wbk=1/[2(1-efg)(1+em/2)]^k
Wfk=(1+em)/2(1+em/2)
```

```
Wb(k+1)=Wb(k)+\mu(eoutbk)=Wb(k)+\mu(eoutbk)
Wf(k+1)=Wf(k)+\mu(eoutfk)=Wf(k)+\mu(eoutfk)
```

アウトライン

- 研究背景•目的
- Cyclic ADCの基本構造・動作
- 有限ゲイン誤差、容量ミスマッチの影響
- ・ 自己校正アルゴリズム
- シミュレーション結果
- ・ まとめと今後の予定

シミュレーション結果

分解能:12bit サンプリング周波数=2¹⁶

Vref=1 ステップゲイン:μ=1/128

有限ゲイン誤差: efg=0.14 容量ミスマッチ誤差: em=0.02

自己校正前

ADCの線形性が良くなったことが分かった

分解能:12bit 入力周波数=255

Vref=1 ステップゲイン: μ=1/128

有限ゲイン誤差: efg=0.14 容量ミスマッチ誤差: em=0.02

有効bit数は4.46bitから10.93bitに大きく改善した

アウトライン

- 研究背景•目的
- Cyclic ADCの基本構造・動作
- 有限ゲイン誤差、容量ミスマッチの影響
- 自己校正アルゴリズム
- シミュレーション結果
- まとめと今後の予定

まとめ

- Cyclic ADCの誤差係数が規則的だと数学モデルで確認した。
- サイクル数が増えるにつれて、後段サイクルの有限ゲイン誤差が0に近づく。
- 有限ゲイン誤差、容量ミスマッチがある時、自己校正ができた。

今後の予定

■ オペアンプの非線形性まで考慮し、ADCのデジタル自己校正の効果を確認。