A Study of a Complex Multi-Band Pass ΔΣ D/A Modulator for I,Q signal generation

Shaiful Nizam Bin Mohyar*
Masahiro Murakami, Haruo Kobayashi, Tatsuji Matsuura (Gunma Univ.)
Osamu Kobayashi (STARC)

Kobayashi Laboratory
Depart. of Electronic Eng.,
Graduate Sch. of Eng.
Gunma University
Outline

• Background & motivation
• Approach
• Complex bandpass $\Delta \Sigma$ modulator
• Complex multi-bandpass $\Delta \Sigma$ modulator
• Simulation result
• Conclusion
Outline

- Background & motivation
 - Approach
 - Complex bandpass $\Delta \Sigma$ modulator
 - Complex multi-bandpass $\Delta \Sigma$ modulator
- Simulation result
- Conclusion & Future work
Background & Motivation

Communication devices
- cellular, wireless LAN, blue-tooth, low IF transmitter/receiver (use I,Q signal)

I,Q signal generator is desired
- communication IC testing (receiver)

High quality + low cost
I,Q Signal Generator
Outline

• Background & motivation
• Approach
 • Complex bandpass ΔΣ modulator
 • Complex multi-bandpass ΔΣ modulator
• Simulation Result
• Conclusion
Approach: I,Q Signal Generation Architecture

① DSP + Nyquist
- 2 Nyquist DACs
- 2 analog filters

② DSP + Real $\Delta\Sigma$
- 2 real BP $\Delta\Sigma$ DACs
- 2 analog filters

③ DSP + Complex $\Delta\Sigma$
- 1 complex BP $\Delta\Sigma$ DACs
- 1 analog complex filter

Digital rich
Why Delta-Sigma (ΔΣ) Modulator?

• **Only simple analog circuit**
• **Easy to design in digital**
 – High speed
 – Low power consumption
 – Low cost
• **Easy to configure**
 – programmable
Outline

• Background & motivation
• Approach
• Complex bandpass $\Delta \Sigma$ modulator
• Complex multi-bandpass $\Delta \Sigma$ modulator
• Simulation result
• Conclusion
What is complex number?

Real number
- \(I_{in}(n), Q_{in}(n) \rightarrow I_{out}(n), Q_{out}(n) \)

Complex number
- \(I_{in}(n) + jQ_{in}(n) \rightarrow I_{out}(n) + jQ_{out}(n) \)

I - In phase (real), Q - In Quadrature (imaginary)
Filtering

more filtering stage ↔ less filtering stage
Real & Complex

Power

In band signal

Real

Cost

Digital input

DAC

Analog

Real band pass $\Delta \Sigma$

Power consumption

DAC

Analog band pass filter

Digital input

DAC

Analog band pass filter

Complex

Digital input

Analog complex band pass filter

Analog output

Analog output

Quantization noise

$-\frac{f_s}{2}$

$\frac{f_s}{2}$

f

bandwidth
Complex Band pass Filter

Transfer function

\[H(z) = \frac{1}{z - (\beta + j\alpha)} \]

Frequency response

\[|H(z)| \]

\[F_s/4 \]
Frequency Response

Case: negative
\[
\begin{align*}
I_{in}(t) &= \cos(2\pi f_o t) \\
Q_{in}(t) &= -\sin(2\pi f_o t)
\end{align*}
\rightarrow e^{-j2\pi f_o t}
\]

Case: positive
\[
\begin{align*}
I_{in}(t) &= \cos(2\pi f_o t) \\
Q_{in}(t) &= \sin(2\pi f_o t)
\end{align*}
\rightarrow e^{j2\pi f_o t}
\]
The 3rd Electrical Eng. Symposium, Utsunomiya

1st order Complex Band Pass
ΔΣ DA Modulator

\[Y(z) = \frac{H(z)}{1 + H(z)} X(z) + \frac{1}{1 + H(z)} E(z) \]

\[H(z) \rightarrow \infty, \text{STF} = 1 \quad H(z) \rightarrow \infty, \text{NTF} = 0 \]

① Oversampling
② Noise-shaping
1st order Complex Bandpass $\Delta \Sigma$
Output Spectrum

In band signal

Output

Level, dB

Fin/Fs

Positive

In band signal
2nd order Complex Band Pass
\(\Delta \Sigma\) DA Modulator

No I,Q mismatch in modulation
2nd order Complex Bandpass $\Delta \Sigma$ Output Spectrum
Outline

• Background & motivation
• Approach
• Complex bandpass ΔΣ modulator
• Complex multi-bandpass ΔΣ modulator
• Simulation result
• Conclusion
Complex Multi-Band pass Filter

Transfer function

\[H(z) = \frac{1}{z^n - (\beta + j\alpha)} \]

Frequency response

n = 2

n = 4
Frequency Response

Case: n=2

\[
\begin{align*}
I_{in}(t) &= \cos(2\pi f_o t) + \cos(2\pi f_1 t) \\
Q_{in}(t) &= \sin(2\pi f_o t) + \sin(2\pi f_1 t)
\end{align*}
\]

\[A_0 e^{j2\pi f_o t} + A_1 e^{j2\pi f_1 t}\]

n-stages

\[
\begin{align*}
I_{in}(t) &= \cos(2\pi f_o t) + \cos(2\pi f_1 t) + \cos(2\pi f_2 t) + \ldots + \cos(2\pi f_n t) \\
Q_{in}(t) &= \sin(2\pi f_o t) + \sin(2\pi f_1 t) + \sin(2\pi f_2 t) + \ldots + \sin(2\pi f_n t)
\end{align*}
\]

\[A_0 e^{j2\pi f_o t} + A_1 e^{j2\pi f_1 t} + A_2 e^{j2\pi f_2 t} + \ldots + A_n e^{j2\pi f_n t}\]
2nd order Complex Multi-Band Pass
ΔΣ DA Modulator

DIGITAL INPUT

ANALOG OUTPUT

I_{in} → I_{out}

Q_{in} → Q_{out}

ΔΣ DA Modulator diagram with symbols and components labeled.
Complex Multi-Bandpass(1)

In band signal

Output

Level, dB

Fin/Fs

N=2

N=4

In band signal

Output

Level, dB

Fin/Fs
Outline

• Background & motivation
• Approach
• Complex bandpass ΔΣ modulator
• Complex multi-bandpass ΔΣ modulator
• Simulation result
• Conclusion
Positive & Negative

Graph showing the comparison of Positive and Negative IF frequencies.
Real versus Complex

In band signal

Real BP

Complex BP

Level, dB

0 0.1 0.2 0.3 0.4 0.5

Fin/Fs

BW
Real versus Complex(2)

In band signal

SNR Decrement

>10 dB

Complex BP
Real BP

OSR (2^n)

SNR Level, dB

Level, dB

Fin/Fs

-140 -120 -100 -80 -60 -40 -20 0 20

0 0.1 0.2 0.3 0.4 0.5
Complex Multi-Bandpass (2)

- **n = 1**
- **n = 2**
- **n = 4**

SNR Decrement

- Greater than 10 dB

SNR level (dB) vs **OSR (2n)**

- **n = 1**
- **n = 2**
- **n = 4**

The 3rd Electrical Eng. Symposium, Utsunomiya
Outline

- Background & motivation
- Approach
- Complex bandpass ΔΣ modulator
- Complex multi-bandpass ΔΣ modulator
- Simulation Result
- Conclusion
Conclusion

• **Real & complex $\Delta \Sigma$ modulator**
 - Digital rich
 - **SNR \rightarrow Complex BP $\Delta \Sigma >$ Real BP $\Delta \Sigma$**

 Suitable for a high quality, low cost for I,Q signals generation

• **Complex multi-bandpass $\Delta \Sigma$ modulator**
 - lower SNR compare to single tone

 Suitable for a high quality, low cost multi-tone I,Q signals generation
Thank you very much